29,746 research outputs found

    Voice Conversion Using Sequence-to-Sequence Learning of Context Posterior Probabilities

    Full text link
    Voice conversion (VC) using sequence-to-sequence learning of context posterior probabilities is proposed. Conventional VC using shared context posterior probabilities predicts target speech parameters from the context posterior probabilities estimated from the source speech parameters. Although conventional VC can be built from non-parallel data, it is difficult to convert speaker individuality such as phonetic property and speaking rate contained in the posterior probabilities because the source posterior probabilities are directly used for predicting target speech parameters. In this work, we assume that the training data partly include parallel speech data and propose sequence-to-sequence learning between the source and target posterior probabilities. The conversion models perform non-linear and variable-length transformation from the source probability sequence to the target one. Further, we propose a joint training algorithm for the modules. In contrast to conventional VC, which separately trains the speech recognition that estimates posterior probabilities and the speech synthesis that predicts target speech parameters, our proposed method jointly trains these modules along with the proposed probability conversion modules. Experimental results demonstrate that our approach outperforms the conventional VC.Comment: Accepted to INTERSPEECH 201

    Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure

    Get PDF
    It has been established that incorporating word cluster features derived from large unlabeled corpora can significantly improve prediction of linguistic structure. While previous work has focused primarily on English, we extend these results to other languages along two dimensions. First, we show that these results hold true for a number of languages across families. Second, and more interestingly, we provide an algorithm for inducing cross-lingual clusters and we show that features derived from these clusters significantly improve the accuracy of cross-lingual structure prediction. Specifically, we show that by augmenting direct-transfer systems with cross-lingual cluster features, the relative error of delexicalized dependency parsers, trained on English treebanks and transferred to foreign languages, can be reduced by up to 13%. When applying the same method to direct transfer of named-entity recognizers, we observe relative improvements of up to 26%

    Speech perception under adverse conditions: Insights from behavioral, computational, and neuroscience research

    Get PDF
    Adult speech perception reflects the long-term regularities of the native language, but it is also flexible such that it accommodates and adapts to adverse listening conditions and short-term deviations from native-language norms. The purpose of this article is to examine how the broader neuroscience literature can inform and advance research efforts in understanding the neural basis of flexibility and adaptive plasticity in speech perception. Specifically, we highlight the potential role of learning algorithms that rely on prediction error signals and discuss specific neural structures that are likely to contribute to such learning. To this end, we review behavioral studies, computational accounts, and neuroimaging findings related to adaptive plasticity in speech perception. Already, a few studies have alluded to a potential role of these mechanisms in adaptive plasticity in speech perception. Furthermore, we consider research topics in neuroscience that offer insight into how perception can be adaptively tuned to short-term deviations while balancing the need to maintain stability in the perception of learned long-term regularities. Consideration of the application and limitations of these algorithms in characterizing flexible speech perception under adverse conditions promises to inform theoretical models of speech. © 2014 Guediche, Blumstein, Fiez and Holt

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure
    corecore