651 research outputs found

    200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications

    Get PDF
    We present a dual-polarization O-band silicon photonic (SiP) transmitter for intra-datacenter optical interconnects. The transmitter is built using two identical O-band traveling wave Mach-Zehnder modulators with an average VπL and a bandwidth at 1.5 V bias voltage of 2.88 V.cm and 24.5 GHz, respectively. We experimentally demonstrate the transmitter in a Stokes vector direct-detection (SV-DD) system for dual-polarization intensity modulated signals with 2-level and 4-level pulse amplitude modulation (DP-PAM2 and DP-PAM4) formats. The direct-detection Stokes vector receiver (DD-SVR) followed by offline digital signal processing (DSP) is implemented for SOP de-rotation. We characterize the performance of the SV-DD system versus number of taps, received signal power, state of polarization (SOP), reach, and bit rate. Results reveal that 112 Gb/s DP-PAM2 can be transmitted over 10 km of single mode fiber (SMF) at a bit error rate (BER) below 10−5 at −1 dBm received signal power irrespective of the SOP. Moreover, a 168 Gb/s (42 Gbaud) DP-PAM4 signal can be transmitted over 2 km and 10 km at a BER below the 7% hard-decision forward error correction (HD-FEC) threshold (i.e., 3.8 × 10−3) at 0 dBm and 2 dBm, respectively. Furthermore, 224 Gb/s and 200 Gb/s DP-PAM4 are successfully received at a BER below the HD-FEC in the back-to-back and 2 km cases, respectively. Finally, we compare the performance of the 6 × 2 multiple-input multiple-output (MIMO) equalization to a simpler 4 × 2 MIMO equalization and explain the superior performance of the 6 × 2 in the presence of SVR imperfections

    Microwave Photonic Signal Processing Using On-Chip Nonlinear Optics

    Get PDF
    The field of microwave photonics (MWP) emerged as a solution to the challenges faced by electronic systems when dealing with high-bandwidth RF and microwave signals. Photonic devices are capable of handling immense bandwidths thanks to the properties of light. MWP therefore employs such devices to process and distribute the information carried by RF and microwave signals, enabling significantly higher capacity compared to conventional electronics. The photonic devices traditionally used in MWP circuits have mainly comprised bulky components, such as spools of fibre and benchtop optical amplifiers. While achieving impressive performance, these systems were not capable of competing with electronics in terms of size and portability. More recently, research has focused on the application of photonic chip technology to the field of MWP in order to reap the benefits of integration, such as reductions in size, weight, cost, and power consumption. Integrated MWP however is still in its infancy, and ongoing research efforts are exploring new ways to match integrated photonic devices to the unique requirements of MWP circuits. This work investigates the application of on-chip nonlinear optical interactions to MWP. Nonlinear optics enables light-on-light interactions (not normally possible in a linear regime) which open a vast array of powerful functionalities. In particular, this thesis focuses on stimulated Brillouin scattering, resulting from the interaction of light with hypersonic sound waves, and four-wave mixing, where photons exchange energies. These two nonlinear effects are applied to implement MWP ultra-high suppression notch filters, wideband phase shifters, and ultra-fast instantaneous frequency measurement systems. Experimental demonstrations using integrated optical waveguides confirm record results

    Microwave Photonic Signal Processing Using On-Chip Nonlinear Optics

    Get PDF
    The field of microwave photonics (MWP) emerged as a solution to the challenges faced by electronic systems when dealing with high-bandwidth RF and microwave signals. Photonic devices are capable of handling immense bandwidths thanks to the properties of light. MWP therefore employs such devices to process and distribute the information carried by RF and microwave signals, enabling significantly higher capacity compared to conventional electronics. The photonic devices traditionally used in MWP circuits have mainly comprised bulky components, such as spools of fibre and benchtop optical amplifiers. While achieving impressive performance, these systems were not capable of competing with electronics in terms of size and portability. More recently, research has focused on the application of photonic chip technology to the field of MWP in order to reap the benefits of integration, such as reductions in size, weight, cost, and power consumption. Integrated MWP however is still in its infancy, and ongoing research efforts are exploring new ways to match integrated photonic devices to the unique requirements of MWP circuits. This work investigates the application of on-chip nonlinear optical interactions to MWP. Nonlinear optics enables light-on-light interactions (not normally possible in a linear regime) which open a vast array of powerful functionalities. In particular, this thesis focuses on stimulated Brillouin scattering, resulting from the interaction of light with hypersonic sound waves, and four-wave mixing, where photons exchange energies. These two nonlinear effects are applied to implement MWP ultra-high suppression notch filters, wideband phase shifters, and ultra-fast instantaneous frequency measurement systems. Experimental demonstrations using integrated optical waveguides confirm record results

    High-Performance On-Chip Microwave Photonic Signal Processing Using Linear and Nonlinear Optics

    Get PDF
    Manipulating and processing radio-frequency (RF) signals using integrated photonic devices has recently emerged as a paradigm-shifting technology for future microwave applications. This emerging technique is referred to as integrated microwave photonics (IMWP) which enables the high-frequency processing and unprecedentedly wideband tunability in compact photonic circuits, with significantly enhanced stability and robustness. However, to find widespread applications, the performance of IMWP devices must meet or exceed the achievable performance of conventional electronic counterparts. The work presented in this thesis investigates high-performance IMWP signal processing from two aspects: the optimized IMWP processing schemes and the photonic integration. Firstly, we explore novel schemes to improve the performance of chip-based microwave photonic subsystems, such as RF delay lines and RF filters which are basic building blocks of RF systems. A phase amplification technique is demonstrated to achieve a Si3N4 chip-based RF time delay with a delay tuning speed at gigahertz level. A new scheme to achieve an all-optimized RF photonic notch filter is demonstrated, producing a record-high RF link performance and complete functionalities. To unlock the potential of RF signal processing, we investigate a new filter concept of pairing linear and nonlinear optics for a high-performance RF photonic filter. To reduce the footprint of the novel IMWP filter, the photonic integration of both the ring resonators and Brillouin-active circuits on the same photonic chip is achieved. To eliminate the use of integrated optical circulators for on-chip SBS, on-chip backward inter-modal stimulated Brillouin scattering is predicted and experimentally demonstrated in a Si-Chalcogenide hybrid integrated photonic platform. The study and demonstrations presented in this thesis make the first viable step towards high-performance IMWP signal processing for real-world RF applications

    Controlling, storing and manipulating light using on-chip Brillouin scattering

    Get PDF
    The importance of optical signal processing techniques is growing rapidly in recent years due to the exponentially increasing demand for bandwidth, capacity and power efficiency in communications and computing. However, due to their bosonic nature photons do not interact with each other, unless there is a nonlinear medium mediating the interaction. One of the strongest nonlinear effects is the interaction of light waves, photons, with sound-waves, acoustic phonons, which is known as stimulated Brillouin scattering (SBS). This thesis experimentally investigates SBS in photonic chips. It is shown in this thesis that the fundamental interaction strength between light and sound waves can be tailored by using one-dimensional photonic bandgap structures, completely suppressing the effect or alternatively enhancing the interaction to form phase-locked Brillouin frequency combs. It was shown furthermore that efficiently generating SBS on-chip enables the generation of stable RF signals that are widely tunable in frequency. Finally, it is shown in this thesis that SBS enables the storage of light signals on a chip, one of the holy grails of all-optical signal processing. Delaying optical signals is of key importance in optical networks to enable synchronization, buffering, and rerouting. SBS enables large delays by resonantly transferring an optical signal to an acoustic wave, that travels five orders of magnitude slower and retrieving it after a certain storage time. It is demonstrated in this thesis that a Brillouin-based memory (BBM) technique allows storing amplitude and phase of optical data pulses and operate at multiple wavelengths with minimal cross-talk. Replenishing of the acoustic wave to overcome storage time limitations imposed by the lifetime of the acoustic wave as well as non-reciprocal light storage is also shown

    Penalties From 2D Grating Coupler Induced Polarization Crosstalk in Silicon Photonic Coherent Transceivers

    Get PDF
    Silicon photonic two-dimensional grating couplers for C- and O-band dual-polarization coherent transceivers are analyzed with respect to their polarization splitting/combining performance. Due to scattered light in the grating's plane, a linear cross-polarization results. The latter is responsible for a limited polarization split ratio and a polarizations' non-orthogonality. The impact of these two quantities is evaluated by system-level simulations with regard to OSNR penalties in coherent systems. For both C- and O-band, a design modification for reduced penalties is proposed

    Ultra-broadband polarization beam splitter and rotator based on 3D-printed waveguides

    Full text link
    Multi-photon lithography has emerged as a powerful tool for photonic integration, allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements. These structures can be fabricated with high precision on the facets of optical devices and lend themselves to highly efficient package-level chip-chip-connections in photonic assemblies. However, plain light transport and efficient coupling is far from exploiting the full geometrical design freedom that is offered by 3D laser lithography. Here, we extend the functionality of 3D-printed optical structures to manipulation of optical polarization states. We demonstrate compact ultra-broadband polarization beam splitters (PBS) that can be combined with polarization rotators (PR) and mode-field adapters into a monolithic 3D-printed structure, fabricated directly on the facets of optical devices. In a proof-of-concept experiment, we demonstrate measured polarization extinction ratios beyond 11 dB over a bandwidth of 350 nm at near-infrared (NIR) telecommunication wavelengths around 1550 nm. We demonstrate the viability of the device by receiving a 640 Gbit/s dual-polarization data signal using 16-state quadrature amplitude modulation (16QAM), without any measurable optical-signal-to-noise-ratio (OSNR) penalty compared to a commercial PBS.Comment: 11 pages and 4 figures in the main part + 7 pages and 4 figures in the supplementar
    • …
    corecore