7,275 research outputs found

    A dual input single output non-isolated DC-DC converter for multiple sources electric vehicle applications

    Get PDF
    There is a need to design DC-DC converters capable of handling high voltages and that employ single-stage conversion to integrate renewable energy resources, such as solar photovoltaic cells and fuel cells, for electric vehicle applications. This paper elucidates the design and analysis of a dual input single output non-isolated Cuk-derived converter with a high step-up ratio. The proposed converter can effectively handle two different energy resources that have different electrical characteristics. It makes use of one common inductor between the dual input port, which reduces the passive components and the circuit volume required. The maximum efficiency that can be achieved by this converter is 95.72%, with two main switches and one diode in the circuit. This study involved a detailed analysis of the proposed converter in continuous current operation mode. A continuous current with reduced ripple in the output improves a fuel cell’s operating life-span. The efficacy of the proposed converter is verified through simulation and validated by constructing a 200 W, real-time, scaled-down prototype model

    SIDO coupled inductor-based high voltage conversion ratio DC–DC converter with three operations

    Get PDF
    Abstract Here, a single‐input, dual output (SIDO) coupled inductor‐based high voltage conversion ratio DC–DC converter is proposed. The proposed converter has the capability of operating as a SIDO converter in a way that the terminal of the input voltage source is exchangeable among the three ports. Therefore, there are three different operation modes for the proposed converter. The voltage conversion ratios of the high voltage ports over the low voltage port can be improved by increasing the turn ratio of the coupled inductors. The main advantage of the proposed converter is achieving high voltage gains with lower number of components for the whole range of duty cycles comparing to the conventional multi‐port high voltage gain converters. Moreover, two output voltages of the proposed converter can be simultaneously regulated on different constant levels with a good precision. In this study, the voltage conversion ratios, the inductors’ average currents, the voltage and current stress on the switches are calculated theoretically. Finally, an experimental prototype of 30 V input and 410, 260 V outputs with the power 510 W is implemented and the results are verifying the theoretical ones

    Multiport power electronics circuitry for integration of renewable energy sources in low power applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    The increasing demand for electricity and the global concern about environment has led energy planners and developers to explore and develop clean energy sources. Under such circumstances, renewable energy sources (RES) have emerged as an alternative source of energy generation. Immense development has been made in renewable energy fields and methods to harvest it. To replace conventional generation system, these renewable energy sources must be sustainable, reliable, stable, and efficient. But these sources have their own distinguished characteristics. Due to sporadic nature of renewable energy sources, the uninterrupted power availability cannot be guaranteed. Handling and integration of such diversified power sources is not a trivial process. It requires high degree of efficiency in power extraction, transformation, and utilization. These objectives can only be achieved with the use of highly efficient, reliable, secure and cost-effective power electronics interface. Power electronics devices have made tremendous developments in the recent past. Numerous single and multi-port converter topologies have been developed for processing and delivering the renewable energy. Various multiport converter topologies have been presented to integrate RES, however some limitations have been identified in these topologies in terms of efficiency, reliability, component count and size. Therefore, further research is required to develop a multiport interface and to address the highlighted issues. In this work, a multi-port power electronics circuitry for integration of multiple renewable energy sources is developed. The proposed circuitry assimilates different renewable sources to power up the load with different voltage levels while maintaining high power transfer efficiency and reliability with a simple and reliable control scheme. This research work presents a new multiport non-isolated DC-DC buck converter. The new topology accommodates two different energy sources at the input to power up a variable load. The power sources can be employed independently and concurrently. The converter also has a bidirectional port which houses a storage device like battery to store the surplus energy under light load conditions and can serve as an input source in case of absence of energy sources. The new presented circuitry is analytically examined to validate its effectiveness for multiport interface. System parameters are defined and the design of different components used, is presented. After successful mathematical interpretation, a simulation platform is developed in MATLAB/Simscape to conduct simulations studies to verify analytical results and to carry out stability analysis. In the final stage, a low power, low voltage prototype model is developed to authenticate the results obtained in simulation studies. The converter is tested under different operating modes and variable source and load conditions. The simulation and experimental results are compiled in terms of converter’s efficiency, reliability, stability. The results are presented to prove the presented topology as a highly reliable, stable and efficient multiport interface, with small size and minimum number of components, for integration of renewable energy sources

    A Bidirectional Soft-Switched DAB-Based Single-Stage Three-Phase AC–DC Converter for V2G Application

    Get PDF
    In vehicle-to-grid applications, the battery charger of the electric vehicle (EV) needs to have a bidirectional power flow capability. Galvanic isolation is necessary for safety. An ac-dc bidirectional power converter with high-frequency isolation results in high power density, a key requirement for an on-board charger of an EV. Dual-active-bridge (DAB) converters are preferred in medium power and high voltage isolated dc-dc converters due to high power density and better efficiency. This paper presents a DAB-based three-phase ac-dc isolated converter with a novel modulation strategy that results in: 1) single-stage power conversion with no electrolytic capacitor, improving the reliability and power density; 2) open-loop power factor correction; 3) soft-switching of all semiconductor devices; and 4) a simple linear relationship between the control variable and the transferred active power. This paper presents a detailed analysis of the proposed operation, along with simulation results and experimental verification

    Analysis and control of dual-output LCLC resonant converters with significant leakage inductance

    Get PDF
    The analysis, design and control of fourth-order LCLC voltage-output series-parallel resonant converters for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are developed to establish operating mode boundaries with which to describe the internal behavior and the impact of output leakage inductance. The resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control to verify the analysis, modeling, and control predictions

    Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network

    Get PDF
    Reactive power flow increases dual active bridge (DAB) converter RMS current leading to an increase in conduction losses especially in high power applications. This paper proposes a new optimized triple phase shift (TPS) switching algorithm that minimizes the total reactive power of the converter. The algorithm iteratively searches for TPS control variables that satisfy the desired active power flow while selecting the operating mode with minimum reactive power consumption. This is valid for the whole range of converter operation. The iterative algorithm is run offline for the entire active power range (-1pu to 1pu) and the resulting data is used to train an open loop artificial neural network controller to reduce computational time and memory allocation necessary to store the data generated. To validate the accuracy of the proposed controller, a 500-MW 300kV/100kV DAB model is simulated in Matlab/Simulink, as a potential application for DAB in DC grids

    Modelling and regulation of dual-output LCLC resonant converters

    Get PDF
    The analysis, design and control of 4th-order LCLC voltage-output series-parallel resonant converters (SPRCs) for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are employed and new analysis techniques are developed to establish operating mode boundaries with which to describe the internal behaviour of a dual-output resonant converter topology. The designer is guided through the most important criteria for realising a satisfactory converter, and the impact of parameter choices on performance is explored. Predictions from the resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control

    Analysis and control of dual-output LCLC resonant converters, and the impact of leakage inductance

    Get PDF
    The analysis, design and control of 4th-order LCLC voltage-output series-parallel resonant converters (SPRCs) for the provision of multiple regulated outputs, is described. Specifically, state-variable concepts are developed to establish operating mode boundaries with which to describe the internal behaviour of dual-output resonant converters, and the impact of output leakage inductance. The resulting models are compared with those obtained from SPICE simulations and measurements from a prototype power supply under closed loop control to verify the analysis, modeling and control predictions
    corecore