861 research outputs found

    The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices

    Get PDF
    In this paper we report on the full classification of Dirichlet-Voronoi polyhedra and Delaunay subdivisions of five-dimensional translational lattices. We obtain a complete list of 110244110244 affine types (L-types) of Delaunay subdivisions and it turns out that they are all combinatorially inequivalent, giving the same number of combinatorial types of Dirichlet-Voronoi polyhedra. Using a refinement of corresponding secondary cones, we obtain 181394181394 contraction types. We report on details of our computer assisted enumeration, which we verified by three independent implementations and a topological mass formula check.Comment: 16 page

    Schottky Algorithms: Classical meets Tropical

    Full text link
    We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky-Igusa modular form.Comment: 17 page

    Classification of eight dimensional perfect forms

    Get PDF
    In this paper, we classify the perfect lattices in dimension 8. There are 10916 of them. Our classification heavily relies on exploiting symmetry in polyhedral computations. Here we describe algorithms making the classification possible.Comment: 14 page

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo

    The decomposition of the hypermetric cone into L-domains

    Get PDF
    The hypermetric cone \HYP_{n+1} is the parameter space of basic Delaunay polytopes in n-dimensional lattice. The cone \HYP_{n+1} is polyhedral; one way of seeing this is that modulo image by the covariance map \HYP_{n+1} is a finite union of L-domains, i.e., of parameter space of full Delaunay tessellations. In this paper, we study this partition of the hypermetric cone into L-domains. In particular, it is proved that the cone \HYP_{n+1} of hypermetrics on n+1 points contains exactly {1/2}n! principal L-domains. We give a detailed description of the decomposition of \HYP_{n+1} for n=2,3,4 and a computer result for n=5 (see Table \ref{TableDataHYPn}). Remarkable properties of the root system D4\mathsf{D}_4 are key for the decomposition of \HYP_5.Comment: 20 pages 2 figures, 2 table
    corecore