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a b s t r a c t

The hypermetric cone HYPn+1 is the parameter space of basic
Delaunay polytopes of n-dimensional lattice. If one fixes one
Delaunay polytope of the lattice then there are only a finite number
of possibilities for the full Delaunay tessellations. So, the cone
HYPn+1 is the union of a finite set of L-domains, i.e. of parameter
space of full Delaunay tessellations.
In this paper, we study this partition of the hypermetric cone

into L-domains. In particular, we prove that the cone HYPn+1 of
hypermetrics on n + 1 points contains exactly 1

2n! principal L-
domains. We give a detailed description of the decomposition of
HYPn+1 forn = 2, 3, 4 and a computer result forn = 5. Remarkable
properties of the root system D4 are key for the decomposition of
HYP5.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

An n-dimensional lattice L is a subgroup of Rn of the form L = v1Z+ · · · + vnZwith (v1, . . . , vn) a
basis ofRn. Let S(c, r) be a sphere inRnwith center c and radius r . Then, S(c, r) is said to be aDelaunay
sphere in the lattice L if the following two conditions hold:
(i) ‖v − c‖ ≥ r for all v ∈ L,
(ii) the set S(c, r)

⋂
L has affine rank n+ 1.

The n-dimensional polytope P , which is defined as the convex hull of the set S(c, r)
⋂
L, is called

a Delaunay polytope of rank n. The Delaunay polytopes of rank n form a face-to-face tiling of Rn. The
Voronoi polytope PV (L) of a lattice L is the set of points, whose closest element in L is 0. Its vertices are
centers of Delaunay polytopes of L. The polytope PV (L) forms a tiling ofRn under translation by L, i.e. it
is a parallelohedron (see Fig. 1).
The cones Sn>0, S

n
≥0 are respectively the cone of positive definite, positive semidefinite n × n

matrices. The rational closure Snrat≥0 of S
n
>0 is defined as the positive semidefinite matrices, whose
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Fig. 1. A lattice L ⊂ R2 and the induced partitions.

kernel is defined by rational equalities (see [1]). Given a basis B = (vi)1≤i≤n of a lattice L, we associate
the Gram matrix a = BTB ∈ Sn>0. On the other hand if a ∈ Sn>0, then we can find an invertible real
matrix B such that a = BTB, i.e. B is the basis of a lattice L = BZn with Gram matrix a. So, we can
replace the study of Delaunay polytopes of L for the standard scalar product by the study of Delaunay
polytopes of Zn for the scalar product xTax. If one takes another basis B′ of L, then B′ = BP for some
P ∈ GLn(Z) and one has a′ = PTaP , i.e. a and a′ are arithmetically equivalent. In other words, the study
of n-dimensional lattices up to isometric equivalence is the same as the study of positive definite
n × n symmetric matrices, up to arithmetic equivalence. In [1] it is proved that if a ∈ Sn

≥0, then one
can define, possibly infinite, Delaunay polytopes of Zn for xTax if and only if a ∈ Snrat≥0.
Given a polytope P ofZn the condition that it is a Delaunay polytope for the norm xTax translates to

linear equalities and strict inequalities on the coefficients of a. An L-domain is the convex cone of all
matrices a ∈ Sn>0 such that Zn has the same Delaunay tessellation for xTax (Details see, for example,
in [2,3,1]). Voronoi proved that the cone Sn>0 is partitioned into polyhedral L-domains. An L-domain of
maximal dimension 12n(n+ 1) is called primitive. An L-domain is primitive if and only if the Delaunay
tiling related to it consists only of simplices. Each non-primitive L-domain is an open face of the closure
of a primitive one. In particular, an extreme ray of the closure of an L-domain is a non-primitive one-
dimensional L-domain. The group GLn(Z) acts on the L-domains of Sn>0 by D 7→ PTDP , and there
is a finite number of orbits of L-domains, called L-types. The geometric viewpoint is most useful for
thinking, and drawings about lattice and the Gram matrix viewpoint is the most suitable to machine
computations.
A metric on the set {0, 1, . . . , n} is a function d such that d(x, x) = 0, d(x, y) = d(y, x) and

d(x, y) ≤ d(x, z)+ d(z, y). A metric d is a hypermetric if it satisfies the inequalities

Hz(d) =
∑

0≤i<j≤n

zizjd(i, j) ≤ 0 (1)

for all integral vectors z ∈ Zn+1 such that
∑n
i=0 zi = 1. The set of all hypermetrics on n points

{0, . . . , n− 1} is denoted by HYPn.
The group Sym(n) acts on HYPn; it is proved in [4] that there is no other symmetries if n 6= 4. It

is proved in [3] that HYPn+1 is polyhedral, i.e. among the infinite set of inequalities of the form (1),
a finite number suffices to get all facets. This result can be proved in many different ways, see [3,
Theorem 14.2.1]; the second proof uses that the image ξ(HYPn+1) is the union of a finite number of
L-domains. The purpose of this article is to investigate such decompositions of HYPn+1.
The set of orbits of facets of HYPn for n ≤ 6 is given in Table 1, HYP7 has 14 orbits of facets (see [3,

5,6]) and the list is not known for n ≥ 8. An inequality of (1) is called k-gonal if
∑n
i=0 |zi| = k. 3-gonal

and 5-gonal inequalities are also called triangle and pentagonal inequalities, respectively.
A Delaunay polytope P of a lattice L is called generating if the smallest, for the inclusion relation,

lattice containing V (P) is L. Moreover, if there exist a family (v0, . . . , vn) of vertices of P such that for
any v ∈ L there exist αi ∈ Zwith

1 =
n∑
i=0

αi, v =

n∑
i=0

αivi
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Table 1
The facets of HYPn for n ≤ 6

n Representative of orbits of facets of HYPn

3 (1, 1,−1) (triangle inequality)
4 (1, 1,−1, 0)
5 (1, 1,−1, 0, 0) and (1, 1, 1,−1,−1) (pentagonal inequality)
6 (1, 1,−1, 0, 0, 0), (1, 1, 1,−1,−1, 0), (1, 1, 1, 1,−1,−2) and (2, 1, 1,−1,−1,−1)

then P is called basic and (v0, . . . , vn) is an affine basis. Given such an affine basis, we define the
distance d(i, j) = ‖vi − vj‖2 and we have

Hb(d) =
∑

0≤i<j≤n

bibjd(i, j) =

r2 − ∥∥∥∥∥ n∑
i=0

bivi − c

∥∥∥∥∥
2
 ≤ 0,

where r and c relate to the circumscribing sphere S(c, r) of P . So the hypermetric inequalities
correspond to the inequalities determining a family (v0, . . . , vn) to be an affine basis of a Delaunay
polytope. Moreover we have Hb(d) = 0 if and only if

∑n
i=0 bivi is a vertex of P . In other words

the hypermetric cone HYPn+1 is the parameter space of a basic simplex in Zn. We refer for proofs
to [7,3]. In practice, if (v0, . . . , vn) is an affine basis, we can replace it by v0 = 0, vi = ei and call
the corresponding simplex main. At this point we should note that the hypermetric cone is just one
possibility for a parameter space of Delaunay polytopes. Following [8,9], define M2,n to be the space
of real polynomials of n variables with degree at most 2. We then have

Cn = {f ∈ M2,n|f (x) ≥ 0 for all x ∈ Zn}.

If P is a Delaunay polytope of rank k ≤ n, then we define

Cn(P) = {f ∈ Cn|f (x) = 0 for all x ∈ vert P}.

Those cones were used in [10] to find some so-called perfect Delaunay polytopes. Note that if P =
{0, e1, . . . , en}, then the cone Cn(P) is isomorphic to the cone HYPn+1.
The covariance map ξ : d→ a transforms a hypermetric d on n+ 1 points i, 0 ≤ i ≤ n, of a set X

into an n× n positive semidefinite symmetric matrix a as follows:

aij = ξ(d(i, j)) =
1
2
(d(0, i)+ d(0, j)− d(i, j))

(see [3, Section 5.2]). The covariance ξ maps the hypermetric cone HYPn+1 into Snrat≥0. Note that there
are n+ 1 distinct such maps depending on which point of {0, e1, . . . , en} is chosen as the zero point.

2. Decomposition methods

Recall that the Delaunay tiling related to a Gram matrix a from a primitive L-domain D consists
of simplices. The set of Delaunay simplices of the tiling containing the common lattice point 0 is the
star St0. By translations, along Zn, the star St0 determines fully the Delaunay tiling of Zn. The primitive
L-domainD belongs to ξ(HYPn+1) if and only if its star St0 contains a main simplex.
A wall W is an n(n+1)2 − 1 dimensional L-domain, which necessarily separates two primitive L-

domains D , D ′. Let one moves a point a from the primitive L-domain D to D ′ by passing through
W . When a ∈ W , some pairs of simplices of St0, which are mutually adjacent by a facet, glue into
repartitioning polytopes. It is well known (see, for example, [1,2]) that an n-dimensional polytope
with n + 2 vertices can be triangulated in exactly two ways. When the point a goes fromW into the
L-domainD ′, each repartitioning polytope repartitions into its other set of simplices.
Since each repartitioning polytope has n + 2 vertices, there is an affine dependence between its

vertices. This affine dependence generates a linear equality between the coefficients aij of the Gram
matrix a ∈ Sn>0. This equality is just the equation determining the hyperplane supporting the wallW .
If the point a lies inside the L-domainD , then this equality holds as an inequality.
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Table 2
Decomposition of HYPn+1 into L-domains

n # primitive L-types # facets of HYPn+1 # orbits of primitive L-domains in
HYPn+1 under Sym(n+ 1)

# primitive L-domains in HYPn+1

2 1 3 1 1
3 1 12 1 3
4 3 40 5 172
5 222 210 8287 5338 650

So, the convex hull of vertices of any pair of simplices of St0 adjacent by a facet is a putative
repartitioning polytope giving an inequality separating the L-domain D from another L-domain. All
adjacent pairs of simplices of St0 determine a system of inequalities describing the polyhedral cone
of the primitive L-domainD . Note that some of these inequalities define faces ofD but not walls. If
the adjacent pair of simplices contains the main simplex then the corresponding wall lies on a facet
of the cone ξ(HYPn+1).
Using the above system of inequalities, one can define all extreme rays of D , and then all facets

ofD . The sum of Gram matrices lying on extreme rays ofD is an interior point a(D) ofD uniquely
related to this L-domain (see [1] for more details). Hence, L-domains D and D ′ belong to the same
L-type if and only if a(D ′) = PTa(D)P for some P ∈ GLn(Z), i.e. a(D ′) and a(D) are arithmetically
equivalent.
The algorithm for enumerating primitive L-domains in ξ(HYPn+1) works as follows. One takes a

primitive Gram matrix a ∈ ξ(HYPn+1). There is a standard algorithm which, for a given a ∈ Sn>0,
constructs its simplicial Delaunay tiling. (For example, one can take a from a principal L-domain,
described in following sections).
Using the star St0 of the Delaunay tiling, the algorithm, for each pair of adjacent simplices,

determines the corresponding inequality. By the system of obtained inequalities, the algorithm finds
all extreme rays of the domainD of a, computes the interior central ray a(D) and finds all facets of
D . The L-domainD is put in the listL of primitive L-domains in ξ(HYPn+1).
Let F be a facet ofD which does not lie on a facet of ξ(HYPn+1). For each repartitioning polytope

related to the facet F ofD , the algorithm finds another partition into simplices. This gives theDelaunay
tiling of the primitive L-domainD ′, which is neighboring toD by the facet F . The algorithm finds all
extreme rays ofD ′, the ray a(D ′) and tests if it is arithmetically equivalent to a(D) for someD from
L. If not, one puts D ′ in L. The algorithm stops when all neighboring L-domains are equivalent to
ones in L. This algorithm is very similar to the one in [11] for the decomposition of the metric cone
into T -domains and belongs to the class of graph traversal algorithms.
We give some details of the partition of HYPn+1 into primitive L-domains in Table 2.
We now expose another enumeration method of the orbits of primitive L-domains in HYPn+1.

Consider a primitive L-domain D . The group Stab(D) = {P ∈ GLn(Z) : PTa(D)P = a(D)} is a
finite group, which permutes the translation classes of simplices of the Delaunay decomposition of
D . It splits the translation classes of simplices into different orbits. Let S be a basic simplex in D;
if one chooses the coordinates such that vert S = {0, e1, . . . , en} then one obtains an L-domain DS ,
whose image by ξ−1 is included in HYPn+1. A permutation of the vertex set of S induces a permutation
in HYPn+1 as well. So, two cones ξ−1(DS) and ξ−1(DS′) are equivalent under Sym(n+ 1) if and only
if S and S ′ belong to the same orbit of translation classes of simplices under Stab(D). Therefore from
the list of L-types in dimension n, one obtains the orbits of L-domains in HYPn+1.

3. Dicings, rank 1 extreme rays of an L-domain and of HYPn+1

We denote by bTc the scalar product of column vectors b and c . A vector v ∈ Zn is called primitive
if the greatest common divisor of its coefficients is 1; such a vector defines a family of parallel
hyperplanes vTx = α for α ∈ Z. In the same way, a vector family V = (vi)1≤i≤M of primitive
vectors definesM families of parallel hyperplanes. A vector familyV is called a lattice dicing if for any
n independent vectors vi1 , . . . , vin ∈ V the vertices of the hyperplane arrangement vTijx = αi form the
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lattice Zn (see an example on Fig. 1). This is equivalent to say that any n independent vectors vi have
determinant±1, i.e. the vector family is unimodular. Given a dicing, the connected components of the
complement of Rn by the hyperplane arrangement form a partition of Rn by polytopes. It is proved
in [12] that the polytopes of a lattice dicing defined by V = (vi)1≤i≤M are Delaunay polytopes for the
matrices belonging to the L-domain generated by the rank 1-forms (vivTi )1≤i≤M , whose corresponding
quadratic form is fvi(x) = (v

T
i x)

2. The reverse is also proved there, i.e. any L-domain, whose extreme
rays have rank 1 has its Delaunay tessellation being a lattice dicing. Such L-domains are called dicing
domains; they are simplicial, i.e. their dimension is equal to their number of extreme rays.
Our exposition of matroid theory is limited here to what is useful for the comprehension of the

paper and we refer to [13–15] for more details. Given a graph G of vertex-set {1, . . . , n}we associate
to every edge e = (i, j) a vector ve, which is equal to 1 in position i,−1 in position j and 0 otherwise.
The vector family V(G) = (ve)e∈E(G) is unimodular and is called the graphic unimodular system of the
graph G. Given a unimodular n-dimensional system U ofm vectors, for any basis B ⊆ U , we can write
U = B(In, A), where A is a totally unimodular matrix and (In, A) is the concatenation of In and A. The
matrix (−AT, Im−n) defines a unimodular system, which is called the dual of U and denoted Dual(U).
Given a graph G of vertex set V (G) and edge set E(G), we choose an orientation on every edge e and
associate to it a coordinate xe. We define a vector space V to be the set of vector v ∈ RE(G) satisfying
for all x ∈ V (G) to the vertex cut equation

0 =
∑
y∈N(x)

v(x,y)ε(x,y)

with N(x) the neighbors of x and ε(x,y) = 1 if the orientation of the edge (x, y) goes from x to y and
−1 otherwise. Take v1, . . . , vN a basis of the space and denote by CoGr(G) the cographic unimodular
system of the graph G defined to be the vector system obtained by taking the transpose of the matrix
(v1, . . . , vN). The unimodular systems CoGr(G) and Dual(Gr(G)) are isomorphic. In [13] a general
method for describing unimodular vector families is given using graphic, cographic unimodular
systems and a special unimodular system named E5 (or R10 as in [16]).
Given a finite set E, amatroid M = M(E) is a family C(M) of subset of X called circuits such that:
• for C1, C2 ∈ C(M), it holds C1 6⊆ C2, C2 6⊆ C1 if C1 6= C2;
• if e ∈ C1

⋂
C2, then there is C3 ∈ C(M) such that C3 ⊆ C1

⋃
C2 − {e}.

A set of vectors qe, e ∈ E, represents a matroid M(E) if, for any circuit C ∈ C(M), the equality∑
e∈C qe = 0 holds. A matroid, is called regular if it admits a representation as a unimodular system

of vectors. IfM(E) is a graphic or cographic matroid of a graph Gwith a set E of edges, then circuits of
M are cycles or cuts of G, respectively.
A graph G is plane if it is embedded in the 2-plane such that any two edges are non-crossings. A

plane graph defines a partition of the plane into faces delimited by edges. The dual graph G∗ is the
graph defined by faces with an edge between two faces if they share an edge. Then (G∗)∗ = G, and
there is a bijection between (intersecting) edges of G and G∗ such that each cut of G corresponds to a
cycle of G∗, and vice versa. In other words, the cographic matroid of G and the graphic matroid of G∗
are isomorphic.
The only rank 1 extreme rays of the cone HYPn+1 are cut metrics. For n ≤ 5, the hypermetric

cone HYPn+1 coincides with the cut cone CUTn+1 which is the cone hull of 2n − 1 cut metrics. Denote
N = {1, . . . , n}; if S ⊂ N , S 6= ∅ then the cut metric δS on X = {0}

⋃
N is defined as follows:

δS(i, j) = 1 if
∣∣∣{ij}⋂ S

∣∣∣ = 1, and δS(i, j) = 0, otherwise.

The covariance map ξ transforms the cut metric δS into the following correlationmatrix p(S) of rank
1:

pij(S) = 1 if {ij} ⊂ S, and pij(S) = 0, otherwise, where 1 ≤ i, j ≤ n.

The quadratic form corresponding to the correlation matrix p(S) is

fS(x) = ξ(δS)(x) =
∑
pij(S)xixj =

(∑
i∈S

xi

)2
.
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So, fS = fq with fq(x) = (qTx)2 and q =
∑
i∈S bi := b(S) the incidence vector of the set S. In summary:

Lemma 1. A vector q ∈ Zn determines an extreme ray fq of ξ(HYPn+1) if and only if q = b(S) for some
S ⊆ N, S 6= ∅.

By Lemma 1, if U determines a dicing domain in ξ(HYPn), then the set of coordinates of vectors
from U in the basis B forms a unimodular matrix with (0, 1)-coefficients. Note that the columns of
any (0, 1)-matrix are incidence vectors of subsets of a set. Since any unimodular systemU determines
a dicing L-domainD(U), we have the following proposition:

Proposition 1. Let D(U) be a dicing domain determined by a unimodular set U. The following assertions
are equivalent:
(i) D(U) lies in ξ(HYPn);
(ii) U is represented by a (0, 1)-matrix.

4. The principal L-domain

There is a unique primitive L-type, whose L-domains are dicing domains of maximal dimension
1
2n(n+ 1) [17,18]. Voronoi calls this L-type principal. Each principal L-domain is simplicial and all its
1
2n(n+ 1) extreme rays have rank 1. The set Q of vectors q determining extreme rays fq of a principal
L-domain forms a maximal unimodular system. This system is the classical unimodular root system
An representing the graphic matroid of the complete graph Kn+1 on n+ 1 vertices.
In our case, when a principal L-domain is contained in ξ(HYPn+1), its extreme rays belong to the

set {p(S) : S ⊆ N, S 6= ∅} of extreme rays of the cone ξ(HYPn+1). Hence, the vectors q have the form
b(S) for S ⊆ N . We shall find all subsets of these vectors representing the graphic matroid of Kn+1.
We orient edges of Kn+1 into arcs and relate a vector b(S) to each arc of the directed graph Kn+1 such
that, for any directed circuit C in Kn+1, the following equality holds∑

e∈C

εeb(Se) = 0. (2)

Here b(Se) is the vector related to the arc e and εe = 1 if the directions of e and C coincide, and εe = −1,
otherwise.
Given a chain of equally directed arcs labeled by one-element set, a subchain of this chain

determines a (0, 1)-characteristic vector. It is known that the set of characteristic vectors of a set of
connected subchains determines a graphic unimodular system. We show below that such graphical
systems are contained in the set {b(S) : S ⊆ N}.
This relation of vectors b(S) and arcs of Kn+1 provides a labeling of arcs of Kn+1 by subsets S ⊆ N .

We call this labeling feasible if the corresponding set of vectors b(S) gives a representation of the
graphical matroid of Kn+1, i.e. (2) holds for each circuit C of Kn+1.
Consider a k-circuit C = {ei : 1 ≤ i ≤ k}, whose arcs have the same directions. Suppose that, for

1 ≤ i ≤ k, Si is a label of the arc ei, and that this labeling is feasible. Then the equality
∑k
i=1 b(Si) = 0

holds. Since the coordinates of the vectors b(S) take (0, 1)-values, this equality is not possible for a
feasible labeling. Hence, the directed graph Kn+1 with a feasible labeling has no circuit, whose arcs
have the same directions. Any finite directed graph with no circuit has at least one source vertex (and
a sink vertex as well).
Now consider a directed 3-circuit C = {e1, e2, e3} of a feasible labeled Kn+1. Then two arcs of C ,

say the arcs e1, e2, have directions coinciding with the direction of C , and the third arc e3 has opposite
direction. If Si is a label of ei, i = 1, 2, 3, then we have the equality b(S1)+b(S2) = b(S3). This equality
is possible only if S1

⋂
S2 = ∅ and S1

⋃
S2 = S3. Since any two adjacent arcs of a complete graph

belong to a 3-circuit, we obtain the following result:

Lemma 2. Let two arcs ei and ej be adjacent in a feasible labeled graph Kn+1 and have labels Si and Sj. Then
Si
⋂
Sj = ∅ if the directions of these arcs coincide in the 2-path [ei, ej]. If these directions are opposite,

then either Si ⊂ Sj or Sj ⊂ Si.
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Let v be a source vertex of Kn+1 and E(v) be the set of n arcs incident to v. Since all arcs of
E(v) go out from v, any two arcs e, e′ ∈ E(v) have opposite directions in their 2-path [e, e′]. Let
S(v) = {Se : e ∈ E(v)}. By Lemma 2, the family S(v) is a nested family of n mutually embedded
distinct subsets. This implies that the sets S ∈ S(v) and the arcs e ∈ E(v) can be indexed as Si, ei,
1 ≤ i ≤ n, such that Si is the label of ei and |Si| = i.
For 2 ≤ i ≤ n, let gi be the arc of the graph Kn+1, which forms a 3-circuit with the arcs

ei−1, ei ∈ E(v). Lemma 2 implies that the arc gi has the one-element set Si − Si−1 as label, and the
direction of gi coincides with the direction of ei−1 in their 2-path [ei−1, gi]. Now, it is clear that the n
arcs gi for 1 ≤ i ≤ n, where g1 = e1, form an n-path, whose arcs have the same directions and are
labeled by one-element sets. Recall that a non-self-intersecting n-path in a graph with n+ 1 vertices
is called a Hamiltonian path. We obtain the following result.

Lemma 3. A feasible labeled complete directed graph Kn+1 has a Hamiltonian path such that all its arcs
have the same directions and each arc has a one-element labeling set.

Let {0}
⋃
N be the set of vertices of Kn+1, where the vertex 0 is the source. Let 0, i1, i2, . . . , in be

the vertices of the Hamiltonian path π in Lemma 3. The path π defines uniquely an orientation and a
feasible labeling of Kn+1 as follows. The arc with end-vertices ij, ik, where 0 ≤ j < k ≤ n, is labeled by
the set Sjk = {ir : j+ 1 ≤ r ≤ k} ⊆ N . If one reverse the above order, then one gets the same family
of sets, and the labeled graph Kn+1 gives the same representation of the unimodular system An. We
have

Lemma 4. Any representation of the graphic matroid of the complete graph Kn+1 by vectors b(S), S ⊆ N,
S 6= ∅, is determined by a complete order of the set N. Two opposite orders determine the same
representation.

Since there are n! complete orders on an n-set, as a corollary of Lemma4,we obtain ourmain result.

Proposition 2. The cone ξ(HYPn+1) contains 12n! distinct principal L-domains.

So, each principal domain is determined by an order (and its reverse) of the set N . For the sake of
definition, we choose the lexicographically minimal order O from these two orders. Let S(O) be the
family of sets S ⊆ N , S 6= ∅, such that elements of each set S determine a continuous subchain of the
n-chain, corresponding to the order O. A principal domain determined by an order O of the set N has
1
2n(n+ 1) extreme rays p(S) for S ∈ S(O).
Each face F of a dicing L-domain in ξ(HYPn+1) is uniquely determined by its extreme rays p(S), all

of rank 1. Set

S(F) = {S ⊆ N : p(S) is an extreme ray of F}.

Proposition 3. If n ≥ 4, then any two principal domains in ξ(HYPn+1) are not contiguous by a facet.

Proof. If two principal domainsD(O),D(O′) ⊂ ξ(HYPn+1) share a facet F , then they have 12n(n +
1)− 1 common extreme rays p(S) for S ∈ S(F). This implies that the families S(O) and S(O′) should
differ by one element only. But, for any two distinct orders O and O′, the families S(O) and S(O′)
differ at least by two sets, if n ≥ 4. For example, suppose O and O′ differ by a transposition of two
elements i and j. Then there is at least one subchain in O containing i and not containing j, which is
not a subchain of O′. The same assertion is true for the order O′. �

5. The decompositions of HYP3 and HYP4

Since, for n = 2 and n = 3 there exists only one primitive L-type, namely, the principal L-type,
Proposition 2 describes completely the decompositions of the cones ξ(HYPn+1) for n = 2, 3.
Recall that each facet F of HYPn+1 is described by an inequality (1). If n ≤ 4 and F is a facet

of HYPn+1, then zi ∈ {0,±1}. Hence, we can denote triangle and pentagonal facets as F(ij; k) and
F(ijk; lm), respectively. Here zi = zj = 1, zk = −1, zl = 0, l ∈ X − {ijk}, for the triangle facet, and
zi = zj = zk = 1, zl = zm = −1, zr = 0 if r ∈ X − {ijklm}, for the pentagonal facet.
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Note that ξ(δS) = p(S). For S = {ij, . . . , k}, set S = ij, . . . , k and p(S) = p(ij, . . . , k).
n = 2. The cone ξ(HYP3) is three-dimensional and simplicial. There is only one order O =

(12) with S(O) = {1, 2, 12}. Its three extreme rays p(1), p(2) and p(12) span a principal domain,
i.e. ξ(HYP3) coincides with a principal domain.

n = 3. The cone ξ(HYP4) is six-dimensional and has seven extreme rays p(i), i = 1, 2, 3, p(ij),
ij = 12, 13, 23, p(123) and 12 facets ξ(F(ij; k)) for i, j, k ∈ {0}

⋃
N . Note that

p(1)+ p(2)+ p(3)+ p(123) = p(12)+ p(13)+ p(23) = p.

Hence, the four-dimensional cone C1 = R+p(1) + R+p(2) + R+p(3) + R+p(123) intersects by the
rayR+p the three-dimensional cone C2 = R+p(12)+R+p(13)+R+p(23). The rayR+p is an interior
ray of both.
By Proposition 2, ξ(HYP4) contains three principal domains. These three six-dimensional L-

domains are determined by the three orders (123), (132) and (213) of N = {123}. Denote the
domain determined by the order (ijk) as Dj, where j is the middle element of the order (ijk).
Since the three one-element subsets {i}, i ∈ N , and the set N give continuous chains in all the
three orders, the four rays p(1), p(2), p(3) and p(123) are common rays of all the three domains
D1, D2 and D3. Hence, the cone C1 is the common four-dimensional face of these three principal
domains. The domain Di is the cone hull of C1 and two rays p(ij) and p(ik). The four triangle facets
ξ(F(jk; i)), ξ(F(jk; 0)), ξ(F(0i; j)), ξ(F(0i; k)) of ξ(HYP4) are also facets ofDi. The other two facets of
Di separating the domain Di from Dj and Dk are the cone hulls of C1 with the rays p(ij) and p(ik),
respectively.

6. L-domains in ξ(HYP5)

A parallelohedron is an n-dimensional polytope, whose image under a translation group forms a
tiling ofRn. Given a face F of a parallelohedron P , the set of faces of P which are translates of F is called
the zone of P . For a parallelohedron P the Minkowski sum P + z(q) may not be a parallelohedron. A
parallelohedron P is called free along a vector q and the vector q is called free for a parallelohedron P if
the sum P + z(q) is a parallelohedron (see [19] for more details on this notion).
If Pq = P + z(q) is an n-dimensional parallelohedron, then Pq has a non-zero width along the line

l(q) spanned by q. This means that the intersection of Pq with a line parallel to l(q) is distinct from a
point. In this case, the lattice Lq of the parallelohedron Pq has a lamina H , i.e. a hyperplane H such that
H is transversal to l(q), the intersection Lq

⋂
H is an (n − 1)-dimensional sublattice of Lq and each

Delaunay polytope of Lq lies between two neighboring layers of Lq parallel to Lq
⋂
H (see [20]). If a

Voronoi polytope has a non-zero width along a line l, then the lamina H is orthogonal to l.

6.1. Root lattice D4

The lattice Dn is defined as

Dn =

{
x ∈ Zn

∣∣∣∣∣ n∑
i=1

xi ≡ 0(mod 2)

}
.

If {ei : 1 ≤ i ≤ n} is an orthonormal basis of Zn, then the set of shortest vectors of Dn is ±ei ± ej
for 1 ≤ i < j ≤ n. It is the set of all facet vectors of PV (Dn) and form an irreducible root system,
which we also denote by Dn. There are three translation classes of Delaunay polytopes in Dn: the
cross polytope βn whose vertex set is formed by all e1 ± ei for 1 ≤ i ≤ n, the half cube 12Hn
whose vertex set is {x ∈ {0, 1}n|

∑n
i=1 xi ≡ 0(mod 2)} and a second half cube

1
2H
′
n whose vertex

set is {x ∈ {1, 2} × {0, 1}n−1|
∑n
i=1 xi ≡ 0(mod 2)}. The two half cubes are equivalent under the

automorphism group Aut(Dn) of the root lattice Dn. It is proved in [21,22] that the Voronoi polytope
PV (Dn) of the n-dimensional root lattice Dn is free only along vectors which are parallel to edges of
PV (Dn). Thus there are 2n + 2n free vectors.
It turns out that when n = 4 all Delaunay polytopes are isometric to the cross-polytope β4

and equivalent under Aut(D4). Any 2-face of β4 is contained in three Delaunay polytopes β4 of the
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Delaunay tessellation. This proves that the L-domains of D4 are not dicing domains. Furthermore, D4
is a rigid lattice (see [23]), i.e. its Delaunay tessellation determines the Gram matrix up to a scalar
multiple. This means that D4 determine a one-dimensional L-type and that any L-domain containing
it as an extreme ray is not a dicing domain.
The free vectors of PV (D4) are parallel and can be identified to the diagonals of the cross polytopes.

They are

• ±2ei with 1 ≤ i ≤ 4 for β4
• (±1,±1,±1,±1)with even plus signs for 12H4 ≡ β4
• (±1,±1,±1,±1)with odd plus signs for 12H

′

4 ≡ β4.

Up to a factor
√
2, those 24 vectors are an isometric copy of the root system D4, which we denote

by D4,2. The union D4
⋃

D4,2 is the irreducible root system F4 (see [24]).
The Voronoi polytope PV (D4) of the root lattice D4 is the regular polytope 24-cell, whose

automorphism group is the Coxeter group W (F4) of Schläfli symbol {3, 4, 3} (see [25]). Its number
of vertices, 2-faces, 3-faces is 24, 96, 24. Each facet is an octahedron with four pairs of opposite and
mutually parallel triangular 2-faces. The facet vectors of the Voronoi polytope PV (D4) are the 24 roots
of the root system D4. The polytope PV (D4) has 12 edge zones of mutually parallel edges representing
D4,2 and 16 face zones of mutually parallel triangular faces. Each edge zone contains 8 parallel edges,
and each face zone contains six parallel faces.
We choose a basis of D4 and denote by a(D4) the Grammatrix of D4 in this basis. The 24 vertices of

PV (D4) are given by 12D4,2.

6.2. The L-domains containing a(D4)

For n = 4, there are three primitive L-types of four-dimensional lattices: the principal type, and
L-types called by Delaunay in [26] types II and III. The ten-dimensional L-domains of these L-types are
constructed as follows (cf., [22]).
Each k-dimensional face of a principal domain relates to the graphic matroid of a subgraph G ⊆ K5

on k edges. Hence each facet (of dimension 9) of a principal domain relates to the graphic matroid of
K5 − 1, i.e. the complete graph K5 without one edge. The Gram matrix a(D4) of the root lattice D4 is
an extreme ray of L-domains of type II and III. The cone hull of a facet of a principal domain and of a
ray of type a(D4) is an L-domain of type II. Hence, any principal domain is contiguous in S4>0 by facets
only with L-domains of type II.
An L-domain of type II has the following three types of facets. One dicing facet by which it is

contiguous in S4>0 to a principal domain relates to the graphic matroid of the graph K5 − 1. Each
of two other types of facets is the cone hull of the ray of type a(D4) and a dicing eight-dimensional
face related to the graphicmatroids of K5−2×1 or of K5−2. Here each of these graphs is the complete
graph K5 without two non-adjacent or two adjacent edges, respectively.
The complete bipartite graph Kij is formed by two blocks S1, S2 of vertices with |S1| = i, |S2| = j

and two vertices adjacent if and only if they belong to different blocks. An L-domain of type III is the
cone hull of a(D4) and a nine-dimensional dicing facet related to the cographic matroid CoGr(K33) of
the bipartite graph K33. Each 8-element submatroid of CoGr(K33) is graphic and relates to the graph
K5 − 2 × 1. Hence, each other facet of an L-domain of type III is the cone hull of a(D4) and a dicing
eight-dimensional face related to K5−2×1. In S4>0, this facet is a common facet of L-domains of types
II and III.
So, an L-domain of type II is contiguous in S4>0 to L-domains of all three types. It is useful to note

([27,28]) that if f belongs to the closureD of an L-domain of type II or III then the Voronoi polytope
PV (f ) of Zn under the quadratic form f is an affine image of the Minkovski sum∑

q∈U

λqz(q)+ λPV (D4), λq ≥ 0, λ ≥ 0,

whereU is the unimodular set of vectors related to rank 1 extreme rays ofD , and PV (D4) is the Voronoi
polytope of the root lattice D4, whose form a(D4) lies also on extreme ray ofD .
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6.3. Unimodular systems in D4,2

Let D(4) ⊂ D4,2 be a subset of 12 roots chosen by one from each pair of opposite roots. The vector
system D(4) is partitioned into three disjoint quadruples Qi, i = 1, 2, 3, of mutually orthogonal roots,
given in Section 6.1.
Forwhat follows, we have to consider triples (r1, r2, r3) of roots chosen by one from each quadruple

Qi, i.e. ri ∈ Qi, i = 1, 2, 3. Let t = (r1, r2, r3) be such a triple. Let {ijk} = {123}, i.e. these three indices
are distinct. We have r2i = 2, r

T
i rj ∈ {±1}. Hence, the vectors

rij = ri − (rTi rj)rj for ij = 12, 23, 31, (3)

are roots of D4,2. Since rTij ri = −r
T
ij rj = 1, one of two opposite roots ±rij belongs to Qk, say rij ∈ Qk.

Hence r12 ∈ Q3, r23 ∈ Q1, r31 ∈ Q2. We have two cases:

(i) rij belongs, up to sign, to the triple t , i.e. rij = rk, for all pairs ij;
(ii) rij does not belong to t , i.e. rij 6= rk.

In case (i), the vectors ri, i = 1, 2, 3, are linearly dependent, and the triple t spans a two-
dimensional plane. We say that the triple t is of rank 2. Note that any two roots r, r ′ from distinct
quadruples determine uniquely the third root r ′′ = r − (rTr ′)r ′ and that there are 16 distinct triples
of rank 2.
In case (ii), the roots ri of the triple t are linearly independent.We say that the triple t has rank 3. In

this case the roots rij for ij = 12, 23, 31, are distinct and do not coincide with the roots ri, i = 1, 2, 3.
Moreover, it is not difficult to verify that the triple (r12, r23, r31) has rank 2.
Triples of rank 2 and 3 are realized in

√
2PV (D4) as follows. The roots of a triple t of rank 2 are

parallel to edges of a 2-face of
√
2PV (D4). We say that a triple t of rank 2 forms a face of

√
2PV (D4).

Since a triple of rank 2 forms a face of
√
2PV (D4), the 16 triples of rank 2 relate to the 16 zones of

triangular faces of it.
Let t ′ = (r ′1, r

′

2, r
′

3) be a triple of rank 3. The 6 vectors±r
′

i , i = 1, 2, 3, have end-vertices in vertices
of
√
2PV (D4). From each pair ±r ′i of opposite roots, we choose a vector ri such that r

T
i rj = 1 for

ij = 12, 23, 31. Then end-vertices of the roots ri are vertices of a face F of
√
2PV (D4), and the triple

t = (rij = ri − rj : ij = 12, 23, 31) has rank 2 and forms the face F .
For what follows, we need subsets U of D(4) which are maximal by inclusion such that PV (D4) +∑
q∈U λqz(q) is a parallelohedron. Note that each quadruple Qi is a basis of R4. Obviously, it is a

unimodular set. It is a maximal by inclusion unimodular subset of D(4), since any other vector of D(4)
has half-integer coordinates in this basis. However, it is proved in [22], that PV (D4)+

∑
q∈U λqz(q) is

not a parallelohedron if U ⊂ D(4) is a quadruple, and it is a parallelohedron for any other maximal
unimodular subsets U ⊆ D(4). Of course, a maximal unimodular set U 6= Qi does not contain each
quadruple Qi as a subset.
We show below that maximal unimodular subsets in D(4) represent either the graphic matroid of

the graph K5 − 1 or the cographic matroid of the graph K33 (see Fig. 2).
The graph K5 − 1 is planar. Hence, the graphic matroid of K5 − 1 is isomorphic to the cographic

matroid of the graph (K5 − 1)∗. Both graphs (K5 − 1)∗ and K33 are cubic graphs on six vertices and
nine edges. These graphs have a Hamiltonian 6-circuit C6 on six vertices vi, 1 ≤ i ≤ 6. Call C6 with the
six edges (vi, vi+1) by a rim, and the other three edges by spokes. The spokes are the following edges:
e1 = (v1, v4), e2 = (v2, v6), e3 = (v3, v5) in (K5 − 1)∗, and ei = (vi, vi+3), i = 1, 2, 3, in K33 (see
Fig. 2). Note that the edges e2 and e3 do not intersect in (K5 − 1)∗ and intersect in K33. The described
form of K33 is the graph Q4 of [13].
Besides the planarity, the graph (K5−1)∗ differs fromK33 by the number of cuts of cardinality three.

All cuts of cardinality 3 of K33 are the six one-vertex cuts, i.e. cuts containing three edges incident to a
vertex. The graph (K5−1)∗, besides the six one-vertex cuts, has a separating cut containing three non-
adjacent edges one of which is a spoke. (These are the edges (v2, v3), (v5, v6) and the spoke (v1, v4)
of the above description of (K5 − 1)∗.)
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Fig. 2. Two cographic matroids.

Proposition 4. A maximal by inclusion unimodular subset U of D(4), U 6= Qi, i = 1, 2, 3, is obtained by
a deletion from D(4) of a triple t = (r1, r2, r3) where ri ∈ Qi, i = 1, 2, 3. Then

(i) if t has rank 2 , then U represents the cographic matroid of the graph K33;
(ii) if t has rank 3 , then U represents the graphic matroid of the graph K5− 1, which is isomorphic to the
cographic matroid of the dual graph (K5 − 1)∗.

Proof. Since Qi 6⊆ U , for i = 1, 2, 3, U does not contain a triple t . We show that a deletion from D(4)
of any triple gives a unimodular set.
Denote by V (r) the set of all triples of rank 2 containing a root r ∈ D(4). If r ∈ Qi and r ′ ∈ Qj, then

V (r)
⋂
V (r ′) is the unique triple of rank 2 containing r and r ′ if i 6= j, and |V (r)

⋂
V (r ′)| = 0 if i = j

and r 6= r ′.
Let ri ∈ Qi, i = 1, 2, 3, be the roots of the deleted triple t . Then

|V (ri)| = 4,
∣∣∣V (ri)⋂ V (rj)

∣∣∣ = 1, and
∣∣∣V (r1)⋂ V (r2)

⋂
V (r3)

∣∣∣ = 0 or 1.
Here, whether 0 or 1 stays in the last equality depends on the triple t has rank 3 or 2, respectively. By
the inclusion-exclusion principle, we have∣∣∣∣∣ 3⋃

i=1

V (ri)

∣∣∣∣∣ = 3∑
i=1

|V (ri)| −
∑

1≤i<j≤3

∣∣∣V (ri)⋂ V (rj)
∣∣∣+ ∣∣∣∣∣ 3⋂

i=1

V (ri)

∣∣∣∣∣ .
Hence, we have the following two cases.

(i) If |
⋂3
i=1 V (ri)| = 1, i.e. if the triple t has rank 2, then |

⋃3
i=1 V (ri)| = 3 · 4− 3 · 1+ 1 = 10.

(ii) If |
⋂3
i=1 V (ri)| = 0, i.e. if the triple t has rank 3, then |

⋃3
i=1 V (ri)| = 9.

Let V =
⋃
r∈D(4) V (r) −

⋃3
i=1 V (ri). Then V is the set of triples of rank 2 that do not contain the

deleted roots r1, r2 and r3. Using the set V we construct a cubic directed graph G as follows. We take
R0 = D(4)− t to be the set of 9 arcs of G. As a set of vertices of Gwe take a subset V0 ⊆ V of six triples.
An arc r ∈ R0 is incident to a vertex v ∈ V0 if the root r belongs to the triple v of rank 2. Hence, each
vertex v is incident to three edges, and the graph G is cubic. Directions of arcs are chosen as follows.
Let the roots r, s, p of a triple v satisfy the equation r − (rTs)s − (rTp)p = 0. Suppose that the arc r
comes in v. Then the arc s goes out or comes in the vertex v if rTs = 1 or rTs = −1, respectively. The
same assertion is true for the arc p.
We show that each root r ∈ R0 belongs to exactly two triples of V0. Let r ∈ Qk, then

|V (r)
⋂
V (rk)| = 0 and |V (r)

⋂
V (ri)| = |V (r)

⋂
V (rj)| = 1, where {ijk} = {123}. We have two
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cases:

V (r)
⋂
V (ri) = V (r)

⋂
V (rj) or V (r)

⋂
V (ri) 6= V (r)

⋂
V (rj). (4)

Suppose that the inequality in (4) holds for r . Since |V (r)| = 4, only two triples from V (r) belong
to V .
Now, if the equality in (4) holds, then it implies that r = (rTri)ri + (rTrj)rj. If t has rank 2, then, up

to sign, this gives r = rk, which contradicts to r ∈ R0. Hence, if t has rank 2, the inequality of (4) holds
for all r ∈ R0. We can set V0 = V , since V contains 16 − 10 = 6 triples. It is easy to verify that G is
isomorphic to K33.
If t has rank 3, then r = rij, where rij is defined in Eq. (3). The roots rij, ij = 12, 23, 31, form a triple

v0 of rank 2. Obviously, v0 ∈ V . We set V0 = V − {v0}. Since the root rij belongs to two triples v0
and (rij, ri, rj), the remaining triples of V (rij) belong to V0. We saw that each root r ∈ R0, r 6= rij for
ij = 12, 23, 31, when the equality holds in (4) belongs to two triples of R0. Hence, in the case when
t has rank 3, the graph G is well defined. It is easy to verify that G is isomorphic to (K5 − 1)∗ and v0
corresponds to a separating cut of cardinality 3.
Arcs of G are labeled naturally by roots from the set R0. This labeling gives a representation of the

cographic matroid of G by vectors of R0.
Note that triples of rank 2 are equivalent under action of the automorphism group of PV (D4).

Similarly, all triples of rank 3 are equivalent under the automorphism group of PV (D4) extended by
changing signs of roots. Hence, any explicit representations of the cographic matroids of the graphs
K33 and (K5 − 1)∗ for fixed triples of rank 2 and 3 prove that the above labeling gives representations
for all pairs of triples of rank 2 and 3. �

6.4. L-types in ξ(HYP5)

From Proposition 4 we deduce that each L-domain corresponding to D4 is contained in 64 = 43
different L-types. 48 of them are of type II and 16 are of type III.
Recall that PV (D4) is free along lines spanned by roots of the root system D4,2, vectors of which are

parallel to diagonals of the cross-polytopes β4 of the Delaunay partition of the lattice D4. Note that
bases related to the forms a(D4) ∈ ξ(HYP5) contain a diagonal of a β4.

Lemma 5. Let the basis related to a(D4) contains a diagonal q ∈ D4,2 of a cross-polytope β4. Then the
L-domain of the parallelohedron Pq = PV (D4) + z(q) related to this basis, i.e. the L-domain of the form
a(D4)+ λfq, does not belong to ξ(HYP5).
Proof. The parallelohedron Pq has a non-zero width along the line l(q) parallel to q. The lattice Lq
of Pq has a lamina H which is orthogonal to q. The lamina H separates the cross-polytope β4 with a
diagonal q into twoDelaunay polytopes, each being a pyramidwith a baseβ3 orthogonal to q and lying
in H . These two pyramids have the end-points of the diagonal q as apexes. Hence vertices of the basic
simplex of a(D4) + λfq belong to two distinct Delaunay polytopes. This implies that the L-domain of
Lq does not belong to ξ(HYP5). �

Proposition 5. The cone ξ(HYP5) contains 12 principal L-domains, 120 L-domains of type II and 40 L-
domains of type III, total 172 L-domains.
Proof. By Proposition 2, ξ(HYP4+1) contains 124! = 12 principal L-domains.
The closure of an L-domain of types II and III is the convex hull of a(D4) and a dicing facet F(U)

related to a unimodular subset U ⊂ D4,2 of 9 vectors that are free for PV (D4).
Each tile of the Delaunay tiling of the root lattice D4 is the regular four-dimensional cross polytope

β4. Any affine base of β4 contains exactly the two verticesw,w′ of a diagonal and 3 vertices v1, v2, v3
chosen from the other diagonals.Wehave dβ4(w,w

′) = 4 and 2 for all other pairs. There are
(
5
2

)
= 10

ways to choose a pair {w,w′} in a 5-elements set so there are exactly 10 rays ai(D4) representing D4
in HYP5.
Every L-domain ai(D4) is contained in the closure of 64 primitive L-domains D(U), but not all of

them are included in ξ(HYP5). Each L-domain D(U) has the form D(U) = conv(ai(D4) + F(U)),
where the subset U ⊂ D4,2 is obtained by a deletion of a triple from D4,2. By Lemma 5, the inclusion
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D(U) ⊂ ξ(HYP5) implies U does not contain the diagonal q which is a basic vector of ai(D4). Let
q = r1 ∈ Q1, then we have 4 choices for the root r2 in Q2. For the third root either we have a rank 2
triple and r3 is completely determined orwe have a rank 3 triple inwhich case there are 3 choices. This
means that a ray ai(D4) is contained in 4 L-domains of type II included in ξ(HYP5) and 12 L-domains
of type III included in ξ(HYP5). This means that there are 120, respectively 40 L-domains of type II,
respectively III in ξ(HYP5). �

Acknowledgments

Both authors are grateful to the hospitality of the graduate school of mathematics of Nagoya
University. The first author is supportedby theCroatianMinistry of Science, Education and Sport under
contract 098-0982705-2707. The second author is supported by grant of RFBR-CNRS No 05-01-02805.

References

[1] M. Dutour, A. Schüermann, F. Vallentin, A generalization of Voronoi’s reduction theory and its application, Duke Math. J.
142-1 (2008) 127–164.

[2] G.F. Voronoi, Nouvelles applications des paramètres continus à la théorie de formes quadratiques - Deuxième mémoire,
1. Recherches sur les paralléloèdres primitifs, J. Reine Angew. Math. 134 (1908) 198–287. 2. Domaines de formes
quadratiques correspondant aux différents types de paralléloèdres primitifs 136 (1909) 67–181.

[3] M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, 1997.
[4] A. Deza, B. Goldengorin, D.V. Pasechnik, The isometries of the cut, metric and hypermetric cones, J. Algebraic Combin. 23-2
(2006) 197–203.

[5] E.P. Baranovskii, The conditions for a simplex of 6-dimensional lattice to be L-simplex, Mathematica, Nauchnyie Trudi
Ivanovo state university vol. 2, 1999 pp. 18–24 (in Russian).

[6] S.S. Ryshkov, E.P. Baranovskii, The Repartitioning Complexes in n-dimensional Lattices (with Full Description for n ≤ 6),
in: Voronoi’s Impact on Modern Science, Book 2, Institute of Mathematics, Kyiv, 1998, pp. 115–124.

[7] P. Assouad, Sous-espaces de L1 et inégalités hypermétriques, C. R. Acad. Sci. Paris 294 (A) (1982) 439–442.
[8] R. Erdahl, A convex set of second-order inhomogeneous polynomialswith applications to quantummechanicalmany body
theory, Mathematical Preprint #1975-40, Queen’s University, Kingston, Ontario.

[9] R. Erdahl, A cone of inhomogeneous second-order polynomials, Discrete Comput. Geom. 8-4 (1992) 387–416.
[10] M. Dutour, K. Rybnikov, A new algorithm in geometry of numbers, in: Proceedings of ISVD-07, the IEEE International

Symposium on Voronoi Diagrams in Science and Engineering, Pontypridd, Wales, IEEE Publishing Services, Los Angeles,
USA, 2007.

[11] B. Sturmfels, J. Yu, Classification of six-point metrics, Electron. J. Combin. 11 (2004) Research paper R44.
[12] R. Erdahl, S. Ryshkov, On lattice dicings, European J. Combin. 15 (1994) 459–481.
[13] V.I. Danilov, V.P. Grishukhin, Maximal unimodular systems of vectors, European J. Combin. 20 (1999) 507–526.
[14] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, New-York, 1979.
[15] K. Truemper, Matroid Decomposition, Academic Press, 1992.
[16] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory ser. B 28 (1980) 305–359.
[17] A.N. Korkine, E.I. Zolotarev, Sur les formes quadratiques positives, Math. Ann. 11 (1877) 242–292.
[18] T.J. Dickson, On Voronoi reduction of positive definite quadratic forms, J. Number Theory 4 (1972) 330–341.
[19] V.P. Grishukhin, Free and non-free Voronoi polytopes, Math. Zametki 80-3 (2006) 367–378.
[20] M. Deza, V.P. Grishukhin, Rank 1 forms, closed zones and laminae, J. Théor. Nombres Bordeaux 14 (2002) 103–112.
[21] V.P. Grishukhin, Parallelotopes of non-zerowidth,Math. Sbornik 195-5 (2004) 59–78. (translated in: Sbornik:Mathematics

195-5 (2004) 669–686).
[22] M. Deza, V.P. Grishukhin, More about 52 four-dimensional parallelotopes, Taiwanese J. Math. 12 (2008) 901–916.
[23] E.P. Baranovskii, V.P. Grishukhin, Non-rigidity degree of a lattice and rigid lattices, European J. Combin. 22 (2001) 921–935.
[24] J. Humphreys, Reflection Groups and Coxeter Groups, in: Cambridge Studies in Advanced Mathematics, 29, 1990.
[25] H.S.M. Coxeter, Regular Polytopes, Third ed, Dover Publications, Inc, 1973.
[26] B.N. Delaunay, Sur la partition régulière de l’espace à 4 dimensions, Izk. Akad. Nauk SSSR, Ser. Phys.-Mat. 1 (1929) 79–110.

2 (1929) 145–164.
[27] S.S. Ryshkov, E.A. Bolshakova, Theorie of fundamental parallelohedra, Izv. Ross. Akad. Nauk, Ser. Math. 69-6 (2005)

187–210. (Translated in: Izvestia Math. 69-6 (2006) 1257-1277).
[28] M. Dutour, F. Vallentin, Some six-dimensional rigid forms, in: Voronoi’s Impact on Modern Science, Book 3. Proc. of the

Third Conf. on Analytic Number Theory and Spatial Tesselations. Inst. of Math. Kyiv 2005, pp. 102–108.


	The decomposition of the hypermetric cone into  L -domains
	Introduction
	Decomposition methods
	Dicings, rank 1 extreme rays of an  L -domain and of  H Y Pn+ 1 
	The principal  L -domain
	The decompositions of  H Y P3  and  H Y P4 
	 L -domains in  ξ (HYP5) 
	Root lattice  D4 
	The  L -domains containing  a (D4) 
	Unimodular systems in  D4, 2 
	 L -types in  ξ (HYP5) 

	Acknowledgments
	References


