5 research outputs found

    Prioritization of Cognitive Assessments in Alzheimer's Disease via Learning to Rank using Brain Morphometric Data

    Get PDF
    We propose an innovative machine learning paradigm enabling precision medicine for prioritizing cognitive assessments according to their relevance to Alzheimer’s disease at the individual patient level. The paradigm tailors the cognitive biomarker discovery and cognitive assessment selection process to the brain morphometric characteristics of each individual patient. We implement this paradigm using a newly developed learning-to-rank method PLTR. Our empirical study on the ADNI data yields promising results to identify and prioritize individual-specific cognitive biomarkers as well as cognitive assessment tasks based on the individual’s structural MRI data. The resulting top ranked cognitive biomarkers and assessment tasks have the potential to aid personalized diagnosis and disease subtyping

    Applications of Data Mining in Healthcare

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)With increases in the quantity and quality of healthcare related data, data mining tools have the potential to improve people’s standard of living through personalized and predictive medicine. In this thesis we improve the state-of-the-art in data mining for several problems in the healthcare domain. In problems such as drug-drug interaction prediction and Alzheimer’s Disease (AD) biomarkers discovery and prioritization, current methods either require tedious feature engineering or have unsatisfactory performance. New effective computational tools are needed that can tackle these complex problems. In this dissertation, we develop new algorithms for two healthcare problems: high-order drug-drug interaction prediction and amyloid imaging biomarker prioritization in Alzheimer’s Disease. Drug-drug interactions (DDIs) and their associated adverse drug reactions (ADRs) represent a significant detriment to the public h ealth. Existing research on DDIs primarily focuses on pairwise DDI detection and prediction. Effective computational methods for high-order DDI prediction are desired. In this dissertation, I present a deep learning based model D 3 I for cardinality-invariant and order-invariant high-order DDI pre- diction. The proposed models achieve 0.740 F1 value and 0.847 AUC value on high-order DDI prediction, and outperform classical methods on order-2 DDI prediction. These results demonstrate the strong potential of D 3 I and deep learning based models in tackling the prediction problems of high-order DDIs and their induced ADRs. The second problem I consider in this thesis is amyloid imaging biomarkers discovery, for which I propose an innovative machine learning paradigm enabling precision medicine in this domain. The paradigm tailors the imaging biomarker discovery process to individual characteristics of a given patient. I implement this paradigm using a newly developed learning-to-rank method PLTR. The PLTR model seamlessly integrates two objectives for joint optimization: pushing up relevant biomarkers and ranking among relevant biomarkers. The empirical study of PLTR conducted on the ADNI data yields promising results to identify and prioritize individual-specific amyloid imaging biomarkers based on the individual’s structural MRI data. The resulting top ranked imaging biomarkers have the potential to aid personalized diagnosis and disease subtyping

    AI-driven synthetic biology for non-small cell lung cancer drug effectiveness-cost analysis in intelligent assisted medical systems

    Get PDF
    According to statistics, in the 185 countries' 36 types of cancer, the morbidity and mortality of lung cancer take the first place, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer (International Agency for Research on Cancer, 2018), (Bray et al., 2018). Significantly in many developing countries, limited medical resources and excess population seriously affect the diagnosis and treatment of alung cancer patients. The 21st century is an era of life medicine, big data, and information technology. Synthetic biology is known as the driving force of natural product innovation and research in this era. Based on the research of NSCLC targeted drugs, through the cross-fusion of synthetic biology and artificial intelligence, using the idea of bioengineering, we construct an artificial intelligence assisted medical system and propose a drug selection framework for the personalized selection of NSCLC patients. Under the premise of ensuring the efficacy, considering the economic cost of targeted drugs as an auxiliary decision-making factor, the system predicts the drug effectiveness-cost then. The experiment shows that our method can rely on the provided clinical data to screen drug treatment programs suitable for the patient's conditions and assist doctors in making an efficient diagnosis

    Drug Selection via Joint Push and Learning to Rank

    Get PDF
    Selecting the right drugs for the right patients is a primary goal of precision medicine. In this manuscript, we consider the problem of cancer drug selection in a learning-to-rank framework. We have formulated the cancer drug selection problem as to accurately predicting 1). the ranking positions of sensitive drugs and 2). the ranking orders among sensitive drugs in cancer cell lines based on their responses to cancer drugs. We have developed a new learning-to-rank method, denoted as pLETORg, that predicts drug ranking structures in each cell line via using drug latent vectors and cell line latent vectors. The pLETORg method learns such latent vectors through explicitly enforcing that, in the drug ranking list of each cell line, the sensitive drugs are pushed above insensitive drugs, and meanwhile the ranking orders among sensitive drugs are correct. Genomics information on cell lines is leveraged in learning the latent vectors. Our experimental results on a benchmark cell line-drug response dataset demonstrate that the new pLETORg significantly outperforms the state-of-the-art method in prioritizing new sensitive drugs
    corecore