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Abstract

We propose an innovative machine learning paradigm enabling precision medicine for prioritizing 

cognitive assessments according to their relevance to Alzheimer’s disease at the individual patient 

level. The paradigm tailors the cognitive biomarker discovery and cognitive assessment selection 

process to the brain morphometric characteristics of each individual patient. We implement this 

paradigm using a newly developed learning-to-rank method PLTR. Our empirical study on the 

ADNI data yields promising results to identify and prioritize individual-specific cognitive 

biomarkers as well as cognitive assessment tasks based on the individual’s structural MRI data. 

The resulting top ranked cognitive biomarkers and assessment tasks have the potential to aid 

personalized diagnosis and disease subtyping.

1. Introduction

Identifying structural brain changes related to cognitive impairments is an important 

research topic in the study of Alzheimer’s Disease (AD). Regression models have been 

widely investigated to predict cognitive outcomes using morphometric measures extracted 

from structural magnetic resonance imaging (MRI) scans (e.g., [1]). Such studies can 

improve the understanding of the neuroanatomical basis of cognitive impairments, but are 

not designed to directly impact clinical practice. To bridge this gap, here we propose a new 

learning paradigm which ranks cognitive assessments according to their relevance to AD 

using brain MRI data.
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Cognitive assessments provide the most common clinical routine for the diagnosis of AD. 

Given a large number of cognitive assessment tools and a time-limited office visit, 

determining a proper set of cognitive tests is a widely studied topic. Most existing studies 

aim to create selection guidelines for a targeted population [2]. In this work, we propose a 

novel learning paradigm that embraces the concept of precision medicine and tailors the 

cognitive test selection process to the individual characteristics of a given patient. 

Specifically, we perform an innovative application of a newly developed learning-to-rank 

method, denoted as PLTR [3], to the structural MRI and cognitive assessment data of the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort [4]. Using structural MRI 

measures as the individual characteristics, we aim to not only identify individual-specific 

cognitive biomarkers but also prioritize them and their corresponding assessment tasks 

according to AD-specific abnormality.

The uniqueness of our study is twofold. First, traditional regression-based studies for 

prediction of cognitive performances from MRI data focuses on identifying relevant imaging 

biomarkers at the population level. The proposed new model aims to identify AD-relevant 

cognitive biomarkers tailored to each individual patient. Second, the identified cognitive 

biomarkers and assessments are prioritized based on the individual’s brain characteristics, 

which can be used to guide the determination of cognitive assessments in a personalized 

fashion in clinical practice. It has the potential to enable personalized diagnosis and disease 

subtyping.

2. Materials

The study sample from the ADNI cohort [4] consists of 819 ADNI-1 subjects, including 229 

healthy control (HC), 397 mild cognitive impairment (MCI, a prodromal stage of AD) and 

193 AD participants. Combining MCI and AD subjects as patients, we have 590 cases and 

229 controls.

Baseline 1.5T MRI scans and cognitive assessment data were downloaded from the ADNI 

website (adni.loni.usc.edu). MRI scans were processed using Freesurfer version 5.1 as in [5], 

where volumetric and cortical thickness measures of 101 regions relevant to AD were 

extracted to characterize brain morphometry.

In this study, our analysis focuses on 151 measures assessed in 15 neuropsychological tests. 

For convenience, below we call these measures as cognitive features and these tests as 

cognitive tasks. The 15 studied tasks include Alzheimer’s Disease Assessment Scale 

(ADAS), Clinical Dementia Rating Scale (CDR), Functional Assessment Questionnaire 

(FAQ), Geriatric Depression Scale (GDS), Mini-Mental State Exam (MMSE), Modified 

Hachinski Scale (MODHACH), Neuropsychiatric Inventory Questionnaire (NPIQ), Boston 

Naming Test (BNT), Clock Drawing Test (CDT), Digit Span Test (DSPAN), Digit Symbol 

Test (DSYM), Category Fluency Test (FLUENCY), Weschler’s Logical Memory Scale 

(LOGMEM), Rey Auditory Verbal Learning Test (RAVLT) and Trail Making Test (TRAIL).
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3. Methods

We use the joint push and learning-to-rank method as developed in He et al. [3], denoted as 

PLTR, for personalized cognitive feature prioritization. Our goal is to prioritize cognitive 

features for each patient that are most relevant to his/her disease diagnosis using patients’ 

brain morphometric measures extracted from their MRI scans. In specific, the cognitive 

features are in the form of scores or answers from cognitive tasks that the patients take. The 

prioritization result can potentially be used in clinical practice to recommend the most 

relevant cognitive features or tasks that can most effectively help diagnosis of an individual.

In the context of MCI/AD cognitive feature prioritization, PLTR learns and uses latent 

vectors of patients and their imaging features to score each cognitive feature for each patient, 

and ranks the cognitive features based on their scores; patients with similar imaging feature 

profiles will have similar latent vectors. During the learning process, PLTR explicitly pushes 

the most relevant cognitive features on top of the less relevant ones for each patient, and 

therefrom optimizes the latent patient and cognitive feature vectors so they will reproduce 

the pushed ranking structures. In PLTR, such latent vectors are learned by solving the 

following optimization problem:

min
U, V

ℒs = (1 − α)Ps + αOs
+ + β

2 Ruv + γ
2 Rcsim, (1)

where U = [u1, u2, ⋯, um] and V = [v1, v2, ⋯, vn] are the latent vector matrices for patients 

and features, respectively; ℒS is the overall loss function; and Ps  measures the average 

number of relevant cognitive features that are ranked below an irrelevant cognitive feature, 

defined as follows,

Ps = ∑p = 1
m 1

np
+np

− ∑
f i
− ∈ 𝒫p

∑
f j
+ ∈ 𝒫p

+ 𝕀 sp f j
+ ≤ sp f i

− , (2)

where m is the number of patients, f j
+ and f i

− are the relevant and irrelevant features of 

patient 𝒫p, np
+ and np

− are their respective numbers, and 𝕀(x) is the indicator function (𝕀(x) = 1

if x is true, otherwise 0). In Problem (2), sp(fi) is a scoring function defined as follows,

sp f i = up
⊤vi, (3)

that is, it calculates the score of feature fi on patient 𝒫p using their respective latent vectors 

up and vi. In Problem (1), Os
+ measures the ratio of mis-ordered feature pairs over the 

relevant features among all the patients, defined as follows,

Os
+ = ∑p = 1

m 1
f i

+ ≻𝒫p
f j

+
∑

f i
+ ≻𝒫p

f j
+ 𝕀 sp f i

+ < sp f j
+ ,

(4)
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where fi ≻R fj represents that fi is ranked higher than fj under the relation R. In Problem (1), 

Ruv is a regularizer on U and V to prevent overfitting, defined as Ruv = 1
m U

F

2
+ 1

n V
F

2
,

where ‖X‖F is the Frobenius norm of matrix X. Rcsim is a regularizer on patients to constrain 

patient latent vectors, defined as Rcsim = 1
m2 ∑p = 1

m ∑q = 1
m wpq up − uq 2

2, where wpq is the 

similarity between 𝒫p and 𝒫q that is calculated using the imaging features of the patients.

4. Data Processing

4.1. Data Normalization

We selected all the MCI/AD patients from the dataset and did the following data 

normalization for the patients. We first conducted a t-test on each of the cognitive features 

between patients and controls, and selected cognitive features if there is a significant 

difference between patients and controls on these features. Then we converted each of the 

selected features into [0, 1] by shifting and scaling the feature values. We also converted all 

the normalized feature values based on the Cohen’s d of the features between patients and 

controls, so that smaller values always indicate more AD possibility. After that, we filtered 

out features whose values are 0, 1 or 0.5 for more than 95% patients, in order to remove 

features that are either extremely dominated by patients or controls, or not discriminative. 

We conducted the same process as above on the imaging features.

4.2. Patient Similarities from Imaging Features

After the above normalization and filtering steps, we have 86 normalized imaging features 

remaining in the study. We represent each patient as a vector of these features, denoted as rp 

= [rp1, rp2, ⋯, rp86], where rpi (i = 1, ⋯, 86) is an imaging feature for patient p. We calculate 

the patient similarity from imaging features using the radial basis function (RBF) kernel, 

that is, wpq = exp −
rp − rq

2

2σ2 , where wpq is the patient similarity used in Rcsim.

5. Experimental Protocol

5.1. Training-Testing Data Splits

We test our methods in two settings: cross validation and leave-out validation. In the cross 

validation (CV), we split the cognitive tasks for each patient into 5 folds. That is, all the 

features in a cognitive task will be either split into training or testing set. We use 4 folds for 

training and the rest fold for testing, and do such experiments 5 times, each with one of the 5 

folds as the testing set. The overall performance of the methods is averaged out over the 5 

testing sets. This setting corresponds to the goal to prioritize additional cognitive tasks that a 

patient should complete. In the leave-out validation (LOV), we split patients into training 

and testing sets, such that a certain patient and all his/her cognitive features will be either in 

the training set or in the testing set. This corresponds to the use scenario to identify the most 

relevant cognitive tasks that a new patient needs to take, based on existing imaging 

Peng et al. Page 4

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2020 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information of the patient, when the patient has not completed any cognitive tasks. Figure 1 

demonstrates the CV and LOV data split process.

5.2. Evaluation Metrics

5.2.1. Metrics on Cognitive Feature Level.—We define average feature hit at k 
(QH@k) to evaluate the ranking performance as follows,

QH@k τq, τq = ∑i = 1
k 𝕀 τi

q ∈ τq(1:k) , (5)

where τq is the ground-truth ranking list of all the features in all the tasks, τq(1 : k) is the top 

k features in the list, τq is the predicted ranking list of all the features, and τi
q is the i-th 

ranked features in τq. That is, QH@k calculates the number of features among top k in the 

predicted feature lists that are also in the ground truth (i.e., hits). Higher QH@k values 

indicate better prioritization performance.

We define a second evaluation metric weighted average feature hit at k (WQH@k) as 

follows:

WQH@k τq, τq = ∑ j = 1
k QH@ j τq, τq /k, (6)

that is, WQH@k is a weighted version of QH@k that calculates the average of QH@j (j = 1, 

⋯, k) over top k. Higher WQH@k indicates more feature hits and those hits are ranked on 

top in the ranking list.

5.2.2. Metrics on Cognitive Task Level.—We use the mean of the top-g normalized 

ground-truth scores/predicted scores on the features of each cognitive task for a patient as 

the score of that task for that patient. For each patient, we rank the tasks using their ground-

truth scores and use the ranking as the ground-truth ranking of these tasks. Thus, these 

scores measure how much relevant to AD the task indicates for the patients. We use the 

predicted scores to rank cognitive tasks into the predicted ranking of the tasks. We define a 

third evaluation metric task hit at k (NHg@k) as follows to evaluate the ranking performance 

in terms of tasks,

NHg@k ⋅ τg
n, τg

n = ∑i = 1
k 𝕀 τgi

n ∈ τg
n(1:k) , (7)

where τg
n/τg

n is the ground-truth/predicted ranking list of all the tasks using top-g question 

scores.

6. Experimental Results

6.1. Overall Performance

Table 1 presents the performance of PLTR in the CV setting. In terms of cognitive features 

from all tasks, PLTR is able to identify on average 2.665 out of the top-5 most relevant 

ground-truth cognitive features among its top-5 predictions. Corresponding to the real 
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scenario to prioritize cognitive tasks that each patient should take, PLTR is able to identify 

the top-1 most relevant task for 74.9% of all the patients (i.e., NH5@1). This indicates the 

strong power of PLTR in prioritizing cognitive features and in recommending relevant 

cognition tasks for real clinical applications. Note that in CV, each patient has only a few 

cognitive tasks in the testing set. Therefore, we only consider the evaluation at the top task in 

the predicted task rankings (i.e., only NHg@1 in Table 1). In addition, as g in NHg@1 

increases in Table 1 (i.e., more top feature scores are used to score tasks), the performance of 

PLTR in terms of NHg@1 first improves and then declines. This may indicate that different 

questions in a task may test different aspects related to AD, and PLTR is able to identify the 

most relevant features from each task.

Table 2 presents the performance of PLTR in the LOV setting. We first hold out 26 and 52 

AD patients as testing patients, respectively. We determine these AD patients as the ones that 

have more than 10 similar AD patients in the training set with corresponding patient 

similarities higher than 0.67 and 0.62, respectively. When 26 patients are hold out for 

testing, PLTR is able to identify the top most relevant questionnaire for 84.6% of the testing 

patients (i.e., 22 patients) under NH1@1. When 52 patients are hold out for testing, PLTR is 

able to identify for 80.8% of the testing patients (i.e., 42 patients) under NH1@1. Note that 

the hold-out testing patients in LOV do not have any cognitive features. Therefore, the 

performance of PLTR as above demonstrates the strong capability of PLTR in identifying 

most AD related cognitive features based on imaging features only. Also note in Table 2, as 

the number of feature scores used to score cognitive tasks (i.e., g in NHg@k) increases, the 

performance of PLTR in NHg@1 first declines and then increases, and in NHg@5 first 

increases. This indicates that PLTR can still prioritize the most relevant cognitive features 

among top in the predicted rankings.

6.2. Case Study

When NH1@1 achieves its optimal performance 0.846 for the 26 testing patients in LOV 

(i.e., the first row block in Table 2), the corresponding most common task that is prioritized 

for the testing patients is Rey Auditory Verbal Learning Test (RAVLT), including the 

following cognitive features: 1) trial 1 total number of words recalled; 2) trial 2 total number 

of words recalled; 3) trial 3 total number of words recalled; 4) trial 4 total number of words 

recalled; 5) trial 5 total number of words recalled; 6) total Score; 7) trial 6 total number of 

words recalled; 8) list B total number of words recalled; 9) 30 minute delay total; and 10) 30 

minute delay recognition score. This task is also the most relevant task in the ground truth if 

tasks are scored correspondingly. RAVLT is a well-known cognitive test that assesses 

learning and memory, and has shown promising performance in early detection of AD [6]. A 

number of studies have reported high correlations between various RAVLT scores with 

different brain regions [7]. For example, RAVLT recall is associated with medial prefrontal 

cortex and hippocampus; RAVLT recognition is highly correlated with thalamic and caudate 

nuclei. Genetic analysis of APOE ε4 allele, the most common variant of AD, reported its 

association with RAVLT score in an early-MCI (EMCI) study [5]. The fact that RAVLT is 

prioritized demonstrates the strong power of PLTR in prioritizing cognitive features to assist 

AD diagnosis.
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Similarly, we find the top-5 most frequent cognitive tasks corresponding to the performance 

at NH3@5=3.731 for the 26 hold-out testing patients. They are: Functional Assessment 

Questionnaire (FAQ), Clock Drawing Test (CDT), Weschler’s Logical Memory Scale 

(LOGMEM), Rey Auditory Verbal Learning Test (RAVLT), and Neuropsychiatric Inventory 

Questionnaire (NPIQ). In addition to RAVLT discussed above, other top prioritized 

cognitive tasks have also been reported to be associated with AD or its progression. In an 

MCI to AD conversion study, FAQ, NPIQ and RAVLT showed significant difference 

between MCI-converter and MCI-stable groups [8]. These evidences further demonstrate the 

diagnostic power of our method.

7. Conclusions

We have proposed an innovative machine learning paradigm for prioritizing cognitive 

assessments according to their relevance to AD at the individual patient level. The paradigm 

tailors the cognitive biomarker discovery and cognitive assessment selection process to the 

brain morphometric characteristics of each individual patient. It has been implemented using 

a newly developed learning-to-rank method PLTR. Our empirical study on the ADNI data 

has yielded promising results to identify and prioritize individual-specific cognitive 

biomarkers as well as cognitive assessment tasks based on the individual’s structural MRI 

data. The resulting top ranked cognitive biomarkers and assessment tasks have the potential 

to aid personalized diagnosis and disease subtyping, and to make progress towards enabling 

precision medicine in AD.
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Figure 1: 
Data split for cross validation (left) and leave-out validation (right)
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TABLE 1:

Overall Performance of PLTR in CV

d QH@5 WQH@5 NH1@1 NH2@1 NH3@1 NH5@1 NHall@1

10 2.665 3,136 0,605 0,701 0,713 0,725 0,683

10 2,647 3.191 0,599 0,677 0,707 0,725 0,677

10 2,569 2,957 0.635 0,707 0,689 0,719 0,653

10 2,623 3,073 0,623 0.713 0,707 0,719 0,671

50 2,467 2,992 0,605 0,695 0.725 0,725 0,653

30 2,491 3,080 0,563 0,689 0,713 0.749 0.689

The column “d” corresponds to the latent dimension. The best performance under each evaluation metric is in fold.
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