5,817 research outputs found

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control

    Providing frequency droop control using variable speed wind turbines with augmented control

    Get PDF
    An augmentation to conventional wind turbine control is presented and its applicability for providing droop control services to the grid is investigated. Both the impact on the fatigue loads of the turbines and the change in energy capture when providing droop control are assessed. Three alternative strategies for providing droop control are simulated. The controller is found to be suitable for providing droop control. When providing droop control, the damage equivalent loads for the tower and for the blades change by between -0.63% and 0.14% and between -0.45% and 0.29% respectively. Energy capture is reduced by between 3.18% and 10.91% compared to normal operation, depending upon the strategy chosen to supply droop control, the wind turbine used and the wind speed distribution

    Quantitative Stability Conditions for Grid-Forming Converters With Complex Droop Control

    Full text link
    In this paper, we study analytically the transient stability of grid-connected distributed generation systems with grid-forming (GFM) complex droop control, also known as dispatchable virtual oscillator control (dVOC). We prove theoretically that complex droop control, as a state-of-the-art GFM control, always possesses steady-state equilibria whereas classical droop control does not. We provide quantitative conditions for complex droop control maintaining transient stability (global asymptotic stability) under grid disturbances, which is beyond the well-established local (non-global) stability for classical droop control. For the transient instability of complex droop control, we reveal that the unstable trajectories are bounded, manifesting as limit cycle oscillations. Moreover, we extend our stability results from second-order GFM control dynamics to full-order system dynamics that additionally encompass both circuit electromagnetic transients and inner-loop dynamics. Our theoretical results contribute an insightful understanding of the transient stability and instability of complex droop control and offer practical guidelines for parameter tuning and stability guarantees

    MULTIDIMENSIONAL OPTIMAL DROOP CONTROL FOR WIND RESOURCES IN DC MICROGRIDS

    Get PDF
    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques

    Plug and Play DC-DC Converters for Smart DC Nanogrids with Advanced Control Ancillary Services

    Get PDF
    This paper gives a general view of the control possibilities for dc-dc converters in dc nanogrids. A widely adopted control method is the droop control, which is able to achieve proportional load sharing among multiple sources and to stabilize the voltage of the dc distribution bus. Based on the droop control, several advanced control functions can be implemented. For example, power-based droop controllers allow dc-dc converters to operate with power flow control or droop control, whether the hosting nanogrid is operating connected to a strong upstream grid or it is operating autonomously (i.e., islanded). Converters can also be equipped with various supporting functions. Functions that are expected to play a crucial role in nanogrids that fully embrace the plug-and-play paradigm are those aiming at the monitoring and tuning of the key performance indices of the control loops. On-line stability monitoring tools respond to this need, by continuously providing estimates of the stability margins of the loops of interest; self- tuning can be eventually achieved on the basis of the obtained estimates. These control solutions can significantly enhance the operation and the plug-and-play feature of dc nanogrids, even with a variable number of hosted converters. Experimental results are reported to show the performance of the control approaches
    • …
    corecore