Quantitative Stability Conditions for Grid-Forming Converters With Complex Droop Control

Abstract

In this paper, we study analytically the transient stability of grid-connected distributed generation systems with grid-forming (GFM) complex droop control, also known as dispatchable virtual oscillator control (dVOC). We prove theoretically that complex droop control, as a state-of-the-art GFM control, always possesses steady-state equilibria whereas classical droop control does not. We provide quantitative conditions for complex droop control maintaining transient stability (global asymptotic stability) under grid disturbances, which is beyond the well-established local (non-global) stability for classical droop control. For the transient instability of complex droop control, we reveal that the unstable trajectories are bounded, manifesting as limit cycle oscillations. Moreover, we extend our stability results from second-order GFM control dynamics to full-order system dynamics that additionally encompass both circuit electromagnetic transients and inner-loop dynamics. Our theoretical results contribute an insightful understanding of the transient stability and instability of complex droop control and offer practical guidelines for parameter tuning and stability guarantees

    Similar works

    Full text

    thumbnail-image

    Available Versions