867 research outputs found

    Knowledge Transfer in Automatic Optimisation of Reconfigurable Designs

    No full text
    This paper presents a novel approach for automatic optimisation of reconfigurable design parameters based on knowledge transfer. The key idea is to make use of insights derived from optimising related designs to benefit future optimisations. We show how to use designs targeting one device to speed up optimisation of another device. The proposed approach is evaluated based on various applications including computational finance and seismic imaging. It is capable of achieving up to 35% reduction in optimisation time in producing designs with similar performance, compared to alternative optimisation methods

    Analysis of CMOS IC-based Hybrid Architecture for Edge Computing

    Get PDF
    With the rapid advancement of Internet of Things (IoT), mobile internet, and big data technologies, edge computing has emerged as a novel computing paradigm. In the hybrid architecture of edge computing,Complementary Metal-Oxide-Semiconductor (CMOS) integrated circuits play a pivotal role in empowering edge devices and servers with essential computing, storage, and communication capabilities. Despite their critical importance, CMOS integrated circuits in edge computing environments confront significant challenges in low-power electronics. These challenges include an increase in power density and a decrease in system stability and reliability. This paper delves into the key technologies of the hybrid architecture in edge computing and sheds light on the vital role of CMOS integrated circuits in edge devices. It introduces a novel approach for low-power electronics, which encompasses methods like optimization of double threshold voltage and refinement of algorithmic processes. These methods aim to tackle the power-efficiency issues while maintaining the performance of edge computing systems.Furthermore, the paper presents a detailed analysis of the proposed low-power techniques, focusing on how they can effectively reduce power consumption without compromising the functionality and efficiency of the edge computing systems. It concludes with a comprehensive discussion on the optimization results, highlighting the benefits and potential implications of implementing these low-power strategies in edge computing environments. This discussion not only underscores the importance of energy efficiency in edge computing but also opens new avenues for future research and development in this rapidly evolving field

    Towards Machine Learning-Based FPGA Backend Flow: Challenges and Opportunities

    Get PDF
    Field-Programmable Gate Array (FPGA) is at the core of System on Chip (SoC) design across various Industry 5.0 digital systems—healthcare devices, farming equipment, autonomous vehicles and aerospace gear to name a few. Given that pre-silicon verification using Computer Aided Design (CAD) accounts for about 70% of the time and money spent on the design of modern digital systems, this paper summarizes the machine learning (ML)-oriented efforts in different FPGA CAD design steps. With the recent breakthrough of machine learning, FPGA CAD tasks—high-level synthesis (HLS), logic synthesis, placement and routing—are seeing a renewed interest in their respective decision-making steps. We focus on machine learning-based CAD tasks to suggest some pertinent research areas requiring more focus in CAD design. The development of open-source benchmarks optimized for an end-to-end machine learning experience, intra-FPGA optimization, domain-specific accelerators, lack of explainability and federated learning are the issues reviewed to identify important research spots requiring significant focus. The potential of the new cloud-based architectures to understand the application of the right ML algorithms in FPGA CAD decision-making steps is discussed, together with visualizing the scenario of incorporating more intelligence in the cloud platform, with the help of relatively newer technologies such as CAD as Adaptive OpenPlatform Service (CAOS). Altogether, this research explores several research opportunities linked with modern FPGA CAD flow design, which will serve as a single point of reference for modern FPGA CAD flow design

    6G White Paper on Machine Learning in Wireless Communication Networks

    Full text link
    The focus of this white paper is on machine learning (ML) in wireless communications. 6G wireless communication networks will be the backbone of the digital transformation of societies by providing ubiquitous, reliable, and near-instant wireless connectivity for humans and machines. Recent advances in ML research has led enable a wide range of novel technologies such as self-driving vehicles and voice assistants. Such innovation is possible as a result of the availability of advanced ML models, large datasets, and high computational power. On the other hand, the ever-increasing demand for connectivity will require a lot of innovation in 6G wireless networks, and ML tools will play a major role in solving problems in the wireless domain. In this paper, we provide an overview of the vision of how ML will impact the wireless communication systems. We first give an overview of the ML methods that have the highest potential to be used in wireless networks. Then, we discuss the problems that can be solved by using ML in various layers of the network such as the physical layer, medium access layer, and application layer. Zero-touch optimization of wireless networks using ML is another interesting aspect that is discussed in this paper. Finally, at the end of each section, important research questions that the section aims to answer are presented

    Edge AI for Internet of Energy: Challenges and Perspectives

    Full text link
    The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI). This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a meticulously curated research methodology, the article delves into the myriad of edge AI techniques specifically tailored for IoE. The myriad benefits, spanning from reduced latency and real-time analytics to the pivotal aspects of information security, scalability, and cost-efficiency, underscore the indispensability of edge AI in modern IoE frameworks. As the narrative progresses, readers are acquainted with pragmatic applications and techniques, highlighting on-device computation, secure private inference methods, and the avant-garde paradigms of AI training on the edge. A critical analysis follows, offering a deep dive into the present challenges including security concerns, computational hurdles, and standardization issues. However, as the horizon of technology ever expands, the review culminates in a forward-looking perspective, envisaging the future symbiosis of 5G networks, federated edge AI, deep reinforcement learning, and more, painting a vibrant panorama of what the future beholds. For anyone vested in the domains of IoE and AI, this review offers both a foundation and a visionary lens, bridging the present realities with future possibilities
    • …
    corecore