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Abstract

Autonomous driving has recently gained much attention with improved efficiency and safety. Ob-
ject detection algorithms are vital to these systems. They provide the vehicle with a perception
of its surroundings. However, these algorithms can be costly regarding computation and power
demand. Because autonomous devices have small hardware resources and some constraints re-
garding energy usage, implementing ML models on edge devices is a problem. Therefore, FPGAs
are gaining interest due to their hardware reconfigurability and low power consumption. Some
frameworks like Vitis AI have been developed to accelerate these detection models on FPGA-like
boards.

This research aimed to convert CNNs into hardware descriptions and evaluate their perfor-
mance and energy efficiency. The PointPillars and Voxel R-CNN models were selected as repre-
sentatives of state-of-the-art 3D object detection networks, and their suitability for deployment in
resource-constrained embedded systems was assessed.

A Versal AI Core VCK190 board was used, and the Vitis AI framework was tested as the im-
plementation tool. The PointPillars network was run, making use of the Vitis AI Library. Regard-
ing the Voxel R-CNN model, only a part of this network was quantized, compiled, and accelerated.
It was implemented with and without total DPU support.

We found that the DPU presents good values in terms of performance when compared to the
GPU. However, there are some timing bottlenecks when transferring the data between the CPU
and the DPU. Regarding power usage, the Versal device uses far less energy than the GPU.

The results of this work show that Vitis AI and the DPUs are powerful tools to aid the imple-
mentation of CNNs. Future works may explore problems encountered in this project, such as the
unsupported sparse convolutions so that a full Voxel R-CNN model could be implemented on a
Xilinx device and the optimization of the data transfer between the DPU and the CPU.
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Chapter 1

Introduction

In this chapter, the context of this work will be summarized, as well as the main goals, motivation,

and document structure. It serves as a starting point for the following chapters.

1.1 Context

Autonomous driving (AD) is entering a pre-industrialization phase, where it has recently reached

a good level of development. It offers a safer and more comfortable driving experience, free from

human error. To achieve this, all system levels must be robust and trustworthy [1]. The first

challenge such an algorithm faces is localizing the various objects in the environment to perform

their respective tasks.

LiDAR (Light Detection and Ranging) sensors are the most popular and essential ones in this

regard. By sending laser light to their surrounding and receiving the same reflected waves, they

can calculate the object’s distance, making an accurate and dense 3D point cloud of the surround-

ing environment [2]. This active sensor has gained more interest over passive sensors like RADAR

and cameras. They are robust in various conditions, less affected by adverse weather conditions,

and provide high-resolution, three-dimensional data that accurately represents the environment.

However, they can be more expensive than other sensors, making them difficult to adopt on au-

tonomous systems. Their data output can be vast and brutal to process for real-time applications,

so efficient algorithms and hardware acceleration techniques must be implemented.

For this to all work together, the autonomous vehicle needs an object detection system that

takes the data from the vehicle sensors and transforms it into semantic information. Although 2D

object detection methods have been used for several works, 3D methods present more information

and accuracy. Therefore, much research has been done in recent years, and many models have

been developed with Convolutional Neural Networks (CNNs) widely adopted [3].

Deep neural networks are highly precise and very effective. However, this comes at a high

computational cost and power consumption. Using these methods in portable devices and, in this

case, autonomous devices with acceptable use of hardware resources can become a problem. For

this reason, FPGAs have been gaining more interest over the past years due to their high efficiency

1



2 Introduction

and reconfigurability [4]. They can be used to accelerate these models and obtain some satisfactory

results with very few consequences. Some frameworks have been developed to implement and

accelerate these CNNs on FPGA, such as Vitis™ AI [5] and FINN [6].

1.2 Motivation

It is just a matter of time until the roads are populated with autonomous vehicles, which will

be essential for the transportation industry and society as a whole. According to this study [7],

road traffic in America has made people travel 8.8 billion extra hours, resulting in an excess con-

sumption of 33.3 billion liters of fuel, causing an estimated cost of 154 billion euros. Autonomous

driving can help to improve this, boosting traffic efficiency and reducing carbon emissions, making

the transportation system better, safer, and more eco-friendly.

One of the main challenges in object detection for autonomous driving is to balance the trade-

off between the cost and power demand of processing devices and their processing capabilities.

This is a significant opportunity for edge and FPGA-based hybrid SoC to contribute to this problem

[8]. However, there are some challenges they need to face, like processing vast amounts of data in

real-time, having strict power constraints, and being safe and secure against attacks [9].

Since these systems at the edge are far from perfect, some techniques can be used to improve

the efficiency of model deployment, like pruning (removing redundant weights) and quantization

(converting the baseline 32-bit parameters to fewer bits) [10]. Vitis AI makes implementing these

models in Xilinx hardware possible, from being compatible with most popular frameworks like

Pytorch, Tensorflow, etc., and running them in Xilinx’s DPU (Deep Processing Unit) accelerator.

1.3 Goals

This project was proposed from a partnership between Bosch and Porto University called Theia

(THEIA – Automated Perception Driving). It aims to improve the overall state of autonomous ve-

hicles’ capabilities with several sub-projects with contributions from different areas of knowledge.

This work was in the subproject where the main goal was to "implement and validate perception

algorithms based on neural networks in reconfigurable hardware to improve computational and

energy efficiency." It is intended to answer the following questions:

• What are the trade-offs between accuracy, real-time performance, and resource utilization

when accelerating deep neural networks on an FPGA-like device?

• What are the main differences in accuracy and performance when the inference process is

done on the GPU or hardware?

1.4 Document structure

This dissertation is organized into five chapters:
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• Chapter 1 provides an overview of the research topic and its motivation. This chapter also

states the main objectives of this work.

• Chapter 2 comprehensively reviews the existing knowledge and research in autonomous

driving and object detection acceleration. It covers the latest advancements, methodologies,

and technologies related to object detection in autonomous driving systems. This chapter

also discusses the strengths and limitations of current approaches, identifies any research

gaps or challenges, and provides a foundation for the proposed methodology.

• Chapter 3 explains the approach and methodology employed. It details the design and im-

plementation of Voxel R-CNN and PointPillars, including the architecture, training process,

and optimization techniques. Additionally, this chapter outlines the integration of the neu-

ral networks on Versal VCK190 and explains the software and hardware tools utilized. It

concludes with a summary of the methodology employed.

• Chapter 4 presents and analyzes the findings of the research. It showcases the experimen-

tal results obtained from the acceleration of the neural networks. This chapter includes

a detailed evaluation of the performance of the implemented networks, such as accuracy,

precision, recall, and computational efficiency. Power measurements are also included.

• Chapter 5 summarizes the essential findings and contributions of this research. It concisely

summarizes the primary outcomes and insights obtained from this work. This chapter also

addresses some limitations and challenges encountered during the realization of this project

and suggests potential areas for improvement and future research directions.
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Chapter 2

State of the Art

This chapter presents state-of-the-art technologies about 3D object detection for AD. It explores

the importance of CNNs and their crucial role in this scene. LiDAR sensors are presented together

with their key part in capturing 3D information about the surroundings. The main structures for

3D object detection models are also summarized. Furthermore, FPGA technology potential is

discussed in addition to Vitis AI framework capabilities for deploying ML models.

2.1 Convolutional Neural Networks

Nowadays, most artificial intelligence systems are based on "Machine Learning" algorithms. These

techniques are characterized by their ability to "learn" through analyzing training data, thus be-

coming more robust and less prone to errors [11]. They aim to automate cognitive tasks like

recognizing objects or translating a conversation. These techniques are applicable, especially in

high-level tasks such as classifications and regressions. Reliable solutions can be obtained by

learning from previous computations and extracting data from giant databases. This is why these

algorithms are used in various tasks, including image recognition. In this sense, artificial neural

networks are exciting, having a very flexible structure that allows them to be used in multiple

contexts.

As the name implies, an artificial neural network can be seen as a mathematical representation

of the human brain’s workings. To do this, a set of interconnected neurons represent it. In a

simplified way, each neuron can be defined as a linear combination between its input and its

connection weight (w). This value is added to a bias value and then passed through an activation

function, obtaining the output value of the neuron [12]. During the training phase, values of the

synapse weights are adjusted so that the neural network’s output matches the desired value.

Activation functions introduce non-linearity to neural networks, enabling them to model com-

plex relationships in data. They transform neuron outputs, control gradient propagation, enhance

representation power, and influence stability and convergence during training. The choice of acti-

vation function depends on the task and desired network behavior.

5



6 State of the Art

Figure 2.1: Simple CNN structure [13].

There are several types of neural networks with different structures, and the most used by sev-

eral authors [14] concerning the topic of 3D object detection are convolutional networks. Figure

2.1 represents a simple CNN. This type of ANN has three types of layers: Convolutional, pooling,

and fully connected. A CNN architecture is created once these layers are stacked.

2.1.1 Convolutional layers

As its name suggests, the convolutional layer is critical to the operation of CNNs. This layer plays

a vital role in extracting meaningful features from input data, allowing the network to learn and

understand complex visual patterns. To create a feature map for the supplied image, it essentially

convolves or multiplies, using a given kernel, the pixel matrix created for the given image or

object.

This process is simplified in figure 2.2. Considering a 2D image represented as a matrix of

pixel values (in the middle), a small kernel (on the left side) is placed in the upper left corner of the

image. Element-wise multiplication is performed between the kernel and the overlapping region

of the image, and the results are added to get a single value. The kernel is then moved to the right

by one pixel, repeating this element-wise process. The output of this process is a new matrix ( on

the right side) called the feature map or activation map.

The real benefit of an activation map is that it reduces the quantity of data that needs to be

processed while storing all the distinctive characteristics of an image. A feature detector (kernel)

is the matrix with which the data is convolved. By applying multiple filters, convolutional layers

can detect different features at different locations, effectively capturing various patterns and edges

within the input data [16]. Stacking multiple convolutional layers allows the network to extract

increasingly complex and abstract features, allowing for higher-level representation learning.

Additional parameters that can be changed in convolutional layers are stride and padding. The

stride determines the step size at which the kernel moves across the input. A higher stride value
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Figure 2.2: Representation of a simple convolution [15].

results in smaller output feature maps, diminishing the spatial dimension. In contrast, padding

includes additional border pixels in the input to maintain spatial dimensions in the output feature

maps. Stride and padding govern information loss and spatial dimensions during convolution,

allowing for control over the granularity and resolution of learned features [17].

2.1.2 Pooling layers

The main objective of the pooling layer is to reduce the dimension, the number of parameters, and

the complexity of the model [13]. The most commonly used pooling techniques are max pooling

and average pooling [18]. Max pooling selects the maximum value within a pooling window, while

average pooling calculates the average value. These operations, represented in figure 2.3, enable

the pooling layers to focus on the most prominent features within local regions of the feature maps.

Figure 2.3: Representation of max and average pooling operation [19].

Pooling layers also contribute to regularization in CNNs. By aggregating local features, pool-

ing reduces overfitting by promoting generalization. Spatial aggregation helps the network focus

on the dominant features within a region rather than relying too heavily on localized details. This

regularization effect enhances the robustness of the network in handling variations and noise in

the point cloud data, ultimately leading to improved object detection performance.
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2.1.3 Fully connected layers

Fully connected (FC) layers form an integral component of convolutional neural networks (CNNs)

and play a crucial role in object detection in autonomous driving. They sit in the back of CNN

structures and are in charge of learning intricate feature combinations and capturing global rela-

tionships. In the FC layer, neurons are grouped similarly to how they are in a conventional neural

network. As a result, any node in a fully connected layer is directly connected to every node in

the layer above it and the one below it [17]. The main disadvantage of the FC layer is that it

has many parameters associated with its connectivity pattern, leading to increased computational

complexity.

2.1.4 Activation functions

In neural networks, activation functions are essential because they introduce non-linearity and al-

low the network to simulate complex connections between input and output [20]. They choose

which information should be sent to the next neuron, much like the neuron model in the brain. If

linear activation functions are used, or even no activation functions, it makes the output consis-

tently a linear combination of the inputs, making hidden layers useless [21]. These are some of

the most used activation functions:

• Sigmoid has an overall S-shape and the following equation 2.1 and graph 2.4:

f (x) =
1

1+ e−x (2.1)

Figure 2.4: Sigmoid function plot.

It is possible to utilize the sigmoid function to solve binary classification problems since it

maps input to (0, 1).

• tanh maps a real number to (-1, 1), and since it has a mean value of 0, it can achieve some

degree of normalization. It is represented in equation 2.2 and figure 2.5.
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f (x) =
expx − exp−x

expx + exp−x (2.2)

Figure 2.5: Tanh function plot.

• ReLU has the major advantage of accelerating learning and is one of the most used in CNNs.

However, there are some drawbacks since it can make previous neurons inactivate. This is

because the gradient of ReLU is 0 when x is 0, so the back-propagated error will be null.

The following equation 2.3 and figure 2.6 represents it:

f (x) = max(0,x) (2.3)

Figure 2.6: ReLU function plot.

• Leaky ReLU is a version of ReLU that aims to reduce neuron inactivation when back prop-

agating. The following equation 2.4 and figure 2.7 can represent it:

f (x) =

{
x, if x > 0.
mx, otherwise.

(2.4)

Figure 2.7: Leaky ReLU function plot.

The number m usually is minimal to make a small slope.
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2.2 LiDAR

AD relies heavily on LiDAR technology, which offers precise and in-depth 3D data on the sur-

roundings. The importance of LiDAR in AD systems will be discussed in detail in this section,

along with the datasets currently being utilized for testing and assessing LiDAR-based object de-

tection algorithms.

Typically, a LiDAR scans its surroundings using one or more laser beams. These are produced

by an amplitude-modulated laser diode that emits at near-infrared wavelength. Then after the

reflected laser returns to the sensor, it calculates the range of the respective object based on this

difference [22]. Following this, a high-resolution 3D point cloud is generated, providing spatial

details of the environment. A simple representation of this process is in figure 2.8.

Figure 2.8: An example of how a LiDAR system works [22].

Several datasets have arisen in recent years to assess and benchmark the performance of

LiDAR-based object detection systems. These datasets enable researchers to develop and test

their algorithms. Various realistic scenarios are available in datasets like KITTI, Waymo Open

Dataset, and nuScenes, with varied complexity and annotation quality. These datasets have be-

come priceless tools for creating and evaluating LiDAR-based object recognition algorithms. They

are composed of:

• Many high-resolution images providing visual information about the surroundings.

• 3D point clouds

• Calibration calibration parameters for the sensors used

• Annotations that specify the ground truth information of the detected objects.

In conclusion, LiDAR technology serves as a cornerstone in autonomous driving. The number

of these sensors present in a vehicle can vary. Some configurations using a single LiDAR and

others using multiple have been used [23]. The availability of diverse and well-annotated LiDAR

datasets further facilitates the development and evaluation of state-of-the-art algorithms. Con-

tinued advancements in LiDAR technology and dataset availability contribute to the progress of

autonomous driving systems, bringing us closer to realizing safe and efficient self-driving vehicles.
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2.3 3D Object detection models

3D object detection plays a pivotal role in ensuring safe and efficient navigation. It seeks to predict

important objects’ positions, dimensions, and types. Unlike 2D methods, which have uniformly

distributed pixels, range images are sparse and asymmetric 3D representations. Therefore, using

traditional CNNs directly to point clouds may not be the best action. Adding to this, there needs to

be an inference process capable of use in real-time. As a result, the research community continues

to face the issue of creating a model that efficiently manages point cloud data [24].

This section will explain the main approaches for LiDAR-based 3D object detection models,

which essentially can be divided into how the data is represented: point-based, grid-based, or

point-voxel based.

2.3.1 Point cloud-based methods

As the name indicates, this method processes raw point cloud data without voxelization or grid-

based representations, as represented in figure 2.9. These models leverage the inherent geometry

and spatial relationships of the point cloud to detect objects in a 3D space. They first take the

point cloud through a backbone network that continues downsampling the points and extracting

low-dimensional features [25], which are aggregated to obtain high-dimensional features. 3D

bounding box predictions are then made in the final stage. Some works based on this method are

PointNet [26], PointRCNN [27], and IPOD [28].

Figure 2.9: Simple structure of a point based detection model [24].

Point-based models also face certain limitations and challenges. They are exceptionally com-

putationally intensive since they act separately on each point. Processing a lot of points might

make computing more complex, need more memory, and be very time-consuming [29].

2.3.2 Grid based methods

Unlike Point cloud-based methods that take raw data as input, these involve converting raw point

clouds into structured grids like voxels and pillars. This saves memory resources since this dramat-

ically reduces the point cloud’s dimension. Then, features are extracted from the points enclosed

in each structure instead of each point individually. Examples of this architecture, as represented

in figure 2.10, are PointPillars [30], Voxel R-CNN [31], CenterPoint [32], and SECOND [33].
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Figure 2.10: Simple structure of a grid-based detection model (adapted from [24]).

Although grid-based models offer advantages in capturing spatial relationships, they have

drawbacks. When using voxels and pillars, which are like voxels but with unlimited vertical size,

most will be empty because of the point cloud’s sparse nature. Therefore, some strategies have to

be used to extract features only from the non-empty voxels. Another problem is the grid size since

it can significantly impact memory consumption.

2.3.3 Point-Voxel based methods

Point-Voxel-based models have emerged as a hybrid approach that combines the strengths of point-

based and voxel-based techniques for 3D object detection. Extracting features from point clouds

and voxel grids allows for a comprehensive scene representation. These can be divided into two

frameworks, single-stage, and double-stage detection [24].

While this method represents a promising direction with better accuracy, they still have a

significant time problem when fusing voxel and point features. Some examples of this architecture

are PV-RCNN [34], SA-SSD [35], and STD [36].

2.4 Field-Programmable Gate Array

While state-of-the-art deep learning (DL) models have achieved remarkable performance in ob-

ject detection, their computational demands pose significant challenges for real-time applications

like the ones for AD. This is where the integration of Field-Programmable Gate Arrays (FPGAs)

becomes crucial. FPGAs offer unique advantages in terms of parallel processing, flexibility, low

power consumption, and hardware customization, making them well-suited for accelerating com-

plex neural network computations. This section overviews FPGAs, their architecture, design flow,

and their application in accelerating neural networks.

FPGAs comprise programmable logic blocks (PLBs), configurable interconnects, and I/O in-

terfaces. Flip-flops, lookup tables (LUTs), and specialized hardware blocks are among the re-

sources found in PLBs that make it possible to create customized digital circuits [37]. The con-

figurable interconnects allow for flexible routing of signals, facilitating complex interconnections
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within the FPGA.

The hardware description process for FPGAs involves employing hardware description lan-

guages (HDL) like VHDL or Verilog, synthesis, placement, and routing. There is also the possi-

bility of using high-level synthesis (HLS) to translate C code to HDL. Designers can specify the

behavior and structure of their digital circuits using HDL. The hardware description is transformed

into a gate-level representation during the synthesis phase, which is then inserted and routed on

the FPGA to establish the physical connections [38].

FPGA-based neural network accelerators leverage specialized architectures using pipelined

designs to exploit parallelism and improve computational efficiency. These accelerators can sig-

nificantly speed up neural network inference tasks [39], making them suitable for applications

with real-time or low-latency requirements.

2.4.1 Versal architecture

The Versal architecture is the first Adaptive Compute Acceleration Platform (ACAP) device de-

veloped by Xilinx. It offers a highly integrated and adaptable system-on-a-chip (SoC) platform

for various applications. Besides having conventional FPGA logic fabric, it offers a processing

system and intelligent engines hardened in the board, making it unique. Connecting all this is a

hardened network-on-chip (NoC) [40]. Figure 2.11 shows an overview of this structure.

Figure 2.11: Structure overview of the Versal Series [41].

The scalar engines have a dual-core Arm® Cortex-A72 and a dual-core Arm® Cortex-R5F.

This programmable software system is optimal for scalar and sequential processing.
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The Adaptable Engines are formed of next-generation fast programmable logic and local mem-

ory cells. So this structure can support previous designs and newer customizations, being excellent

at flexible parallel computations [42].

Regarding intelligent engines, they can be divided into two blocks: artificial intelligence (AI)

and digital signal processing (DSP) engines. AI engines were developed because of the increase

in ML applications that demand high parallel computing volume. This engine, shown in figure

2.12, is composed of AI tiles that have a single instruction multiple data (SIMD) and very long

instruction word (VLIW) processors as well as dedicated memory [43]. Fixed point, floating point,

and sophisticated multiply–accumulate (MAC) operations are all handled by DSP engines [44].

Figure 2.12: Illustration of the AI engines composition [43].

Different versions of the Versal Series have been released with minor differences that target

various applications. In table 2.1 are some resources regarding each series. The Edge series fo-

cuses on the relationship between AI performance and power efficiency for real-time systems and

meets essential security and safety standards. The Versal Core series has a significantly improved

AI inference acceleration using AI engines. Prime is the mid-range of this series with a broad

range of services. The Premium series offers ground-breaking heterogeneous integration. Lastly,

the HBM (High Bandwidth Memory) series provides high memory capabilities with high capacity

and memory bandwidth [45].

Table 2.1: Main resources and capabilities of each Versal series (adapted from [46]).

Resources AI Edge Series AI Core Series Prime Series Premium Series HMB Series

System Logic Cells (k) 44-1139 540-1968 329-2233 933-7352 3837-5631
DSP Engines 90-1312 928-1968 464-3984 1140-14352 7392-10848
AI Engines 8-304 128-400 N/A 0-472 N/A
I/O 114-530 478-770 316-770 132-780 780

This project will utilize a VCK190 board from AI Core Series.
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2.5 Vitis AI framework

HDL and HLS tools enable designers to express their designs at different levels of abstraction.

FPGA-specific libraries and frameworks like Xilinx Vitis AI offer pre-optimized functions and

APIs for efficient neural network acceleration.

Figure 2.13: Overview of Vitis AI integrated development environment [47].

The Vitis AI workflow, as represented in figure 2.13, simplifies the development and deploy-

ment of AI models on FPGAs, using a specialized processor (Deep Learning Processing Unit -

DPU) on the FPGA [48]. Developers can leverage the Vitis AI quantizer from model development

to quantize and optimize their models, reducing their size while maintaining acceptable accuracy

levels. Later it is possible to compile the model and deploy it on the target board. The Vitis AI

Runtime provides an execution environment that enables efficient inference on FPGA devices.

This end-to-end workflow streamlines the deployment process and ensures seamless integration of

AI models with FPGA platforms.

The main components of the Vitis AI platform are:

• DPU is a hardware IP (Intellectual Property) block designed specifically for accelerating

CNN tasks on Xilinx FPGAs. An IP block is a pre-designed and pre-characterized reusable

unit that can be integrated into electronic systems.

• The Model Zoo is a repository with multiple DL model examples ready to be deployed.

• Model Inspector makes it possible to analyze the model before deployment on the board.

• Optimizer is a tool that makes it possible to prune a neural network but is commercially

licensed.

• Quantizer can quantize and calibrate the model.

• Compiler compiles the quantized model.
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• VART or Vitis AI Runtime is a unified set of APIs to make the deployment on embedded

devices quick and efficient.

• Profiler can analyze the performance and efficiency of a model running on the PDU.

• Library is a collection of high-level APIs and packages designed for effective AI inference

using DPUs.

The following sections will go more in-depth about the most critical components.

2.5.1 Vitis AI workflow

Vitis AI has a set of multiple tools, models, and libraries that lets the developer choose different

paths accordingly to his objectives [47]:

• ML and Data Science - Popular frameworks like PyTorch and Tensorflow are supported,

making evaluating ML models accessible.

• Software Development for Embedded Devices - Creating custom software for the embed-

ded CPU is possible.

• Hardware and IP Development - Developing PL IP blocks for the hardware platform, PL

kernel development, functional simulation, and Vivado® for timing, resource utilization,

and power.

• System Validation - Test the model’s performance, timing, and resource usage.

The theme of this dissertation fits in the first and last topics. It is an ML model that needs to

be tested and evaluated for all parameters like performance, time, and resource usage.

2.5.2 Deep Learning Processing Unit (DPU)

The DPU is a specialized hardware IP block explicitly designed to accelerate DL inference on

FPGAs and is the main component of Vitis AI. At its core, the DPU comprises processing el-

ements (PEs) optimized for matrix multiplication and convolution operations, which are funda-

mental building blocks of deep neural networks. Each DPU has its unique set of instructions, so it

executes the compiled instructions in the xmodel file generated by the compiler. This design does

not require the construction of a new hardware platform or loading a new bitstream whenever the

network is changed [49]. At a very high level, it is possible to say that Vitis AI converts an AI

application to a series of DPU instructions.

The naming of the DPU follows the scheme illustrated in figure 2.14.

For the Versal series, the DPUCVDX8G is the general processing engine. This DPU comprises

PL and AI Engines that can be configured [50]. Xilinx provides the TRD files, which can be later

used to configure different parameters like the number of batch handlers, the number of CUs

(Compute Unite), and the frequency of the PL. A top-level diagram is in figure 2.15. Depending
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Figure 2.14: DPU naming scheme [47].

on the architecture of the DPU, there is different resource utilization and peak performance. AI

engine cores, LUTs, FFs, and memory usage vary from architecture. A table with this data is in

appendix A.

Figure 2.15: DPUCVDX8G top-level block diagram [50].

2.5.3 Model Zoo

In the Model Zoo of Vitis AI, users gain access to a comprehensive collection of pre-trained

deep-learning models covering a wide range of tasks and application domains. To facilitate AI

development and deployment, the Model Zoo offers diverse models for image classification, object

detection, semantic segmentation, and more [47].

Each model in the Model Zoo is accompanied by detailed descriptions, providing insights

into their architectural design, key features, and performance characteristics. These models un-

dergo rigorous evaluation and benchmarking, with evaluation metrics encompassing factors like
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accuracy, inference speed, and memory utilization.

Researchers and developers can leverage the models from the Model Zoo for their projects,

deploying them in the Vitis AI framework or integrating them into specific hardware platforms.

The Model Zoo is a dynamic repository, constantly evolving with community contributions and

updates. Through the Model Zoo, Vitis AI empowers users with a valuable resource to accelerate

their AI development journey and explore the full potential of deep learning.

2.5.4 Quantizer

The Quantizer tool offered by Vitis AI enables efficient and accurate quantization of deep learning

models for deployment on FPGA platforms. Quantization is a technique that reduces the precision

of model parameters and activations, allowing for lower bit-width representations, like represented

in figure 2.16. By employing the Quantizer, developers can convert higher-precision models, such

as those trained with 32-bit floating-point precision, into lower-precision representations like the

8-bit fixed-point format. This reduction in precision brings several benefits, including reduced

memory footprint, faster inference times, and improved energy efficiency, with an impact on ac-

curacy commonly lower than 1% [51].

Figure 2.16: Simple representation of the quantization process in an ANN [49].

Before the quantization process, inspecting the model using the Vitis AI Inspector is possible.

This tool was released in version v3.0 of Vitis AI and is of good value for developers. With this,

we can check if Vitis AI supports all the layers and parameters in a CNN and if they will run on

the DPU or the CPU. The main objective is to have all, or the maximum number, of operators on

the DPU.

After that, the Quantizer has to do a calibration step. It leverages a subset of the dataset (100-

1000 images) used to perform inference to calibrate the activations. This subset does not need to

be labeled since no backpropagation will happen.

Following calibration, the model can be effectively quantized into a compiled instructions

model called "deploy_model.pb" for TensorFlow and "model_name.xmodel" for Pytorch.
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2.5.5 Compiler

As the name suggests, Vitis AI Compiler aims to compile the model generated from the Quantizer

to a specific DPU series, as represented in figure 2.17. It transforms the quantized neural network

into a list of instructions readable by the DPU. In this process, the Compiler tries to fuse layers

and perform some optimizations on the model. An important note is that this process is done to a

specific DPU architecture, so other DPUs can not execute the compiled instruction set.

Figure 2.17: Simple representation of the compilation process in an ANN [49].

The compiled xmodel can be represented as a Xilinx Intermediate Representation (XIR). This

is a graph-based representation of the model to facilitate the deployment of the DPU. When com-

piling the model, which can use different frameworks, it is first transformed into the XIR format,

presenting a unified representation of the model. Several subgraphs are generated depending on

the support of the DPU.

2.5.6 Profiler

The Vitis AI Profiler is a powerful tool to analyze and optimize the performance of the running

models. By leveraging the Profiler, developers can gain valuable insights into the execution char-

acteristics of their models, enabling them to identify performance bottlenecks, optimize resource

utilization, and fine-tune their implementations for maximum efficiency. It is a unique tool that

doesn’t need to edit any code or recompile the program. It offers comprehensive profiling in-

formation, including latency, throughput, memory usage, and resource utilization for different

sub-graphs of the running model. Developers can use these metrics to assess their model’s effi-

ciency and identify improvement areas, specifically, the time of execution between the CPU and

the DPU.

2.5.7 Library

The Vitis AI Library [52] is a comprehensive collection of optimized software functions and li-

braries provided by Xilinx. It offers a range of pre-built functions specifically designed to acceler-

ate deep learning workloads on FPGA devices. By leveraging the Vitis AI Library, developers can
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streamline their development process, improve performance, and speed up their AI application de-

velopment. It provides a high-level interface that abstracts the underlying FPGA implementation

details, allowing developers to focus on the AI model and application logic.

It is built on Xilinx Runtime Library (XRT) and VART and can be split into four main parts,

as shown in figure 2.19:

• Base libraries give the developer a fundamental programming interface with the "cpu_task"

and "dpu_task. These libraries provide an interface to DPU and CPU operations, respec-

tively. To implement post-processing routines, the "xnnpp" library has several functions

optimized for each model.

• Model libraries aggregates a range of open-source deployment code for various networks

using the most popular frameworks like PyTorch and TensorFlow. These code and header

files use the foundational Base Libraries to enable inference on DPU and CPU and facilitate

post-processing routines.

• Library samples can be used to test the networks present at the Model Library. This sim-

plifies evaluating the models and getting values relative to performance and accuracy.

• Application demos is a collection of more complicated applications that best show the Vitis

AI toolkit’s full capability. It works with multiple neural network models in real-time.

• Graph runner examples is a group of example programs designed to demonstrate using the

Graph Runner API. It simplifies the process of deploying models with multi-unit execution

graphs. This API unifies the model into a single graph, so it is unnecessary to implement

CPU functions and create a DPU runner for each DPU subgraph.

Figure 2.18: Diagram of Vitis AI programming APIs [52].

Four different APIs are available in this toolkit, as shown in figure 2.18. Their usage depends

on the specific needs of a CNN and its similarity with other pre-trained models supported by

Xilinx.
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API_0 is based on VART. It is recommended for more advanced users of AI algorithms. All

the pre and post-processing functions must be implemented using this API. Besides that, the tensor

objects have to be manually loaded in the DPU runner for inputs and outputs of the several graphs

the model might have.

API_1 is based on the Vitis AI Library Sample. It is suggested for a beginner user leveraging

AI models that want a good performance. It is a quick way to build applications since it has models

and pre and post-processing functions.

API_2 is recommended when a user wants to develop custom pre or post-processing algo-

rithms. Users can write their code using "cpu_task," "dpu_task," and "xnnpp" libraries.

API_3 is proposed when a model that will be deployed is split into several subgraphs. GraphRun-

ner was developed to implement these subgraphs and custom OPs quickly.

In this work, API_1 will be used for the PointPillars implementation and API_0 for the Voxel

R-CNN.

2.6 Summary

The Vitis AI workflow will be used to implement and run the chosen neural network models.

These implementations will be carried out in a Versal AI Core VCK190 board. The data used

comes from the KITTI dataset, and the performance of the models will be measured using the

GPU and the Versal ACAP. Timing and accuracy measurements will be made, as well as power

consumption.

The evaluation of the implementation using different datasets and the steps that must be made

to run the networks present a good starting point for studying the effectiveness of FPGA-based

acceleration. It will be possible to take several conclusions from these implementations’ obstacles.

In addition to that, the Vitis AI tool from Xilinx and the DPU performance will be studied.
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Figure 2.19: Block Diagram of Vitis AI Library [52].



Chapter 3

Design and Implementation

This chapter provides a comprehensive overview of the approaches and techniques employed in

conducting the research. The software and hardware utilized will be described in depth.

3.1 Setup and tools used

The board used in this work was a Versal AI Core Series VCK190, part of the core series as

specified in section 2.4.1. The main core of this board is a Versal VC1902 with the following

characteristics represented in this table 3.1:

Table 3.1: Main characteristics of Versal AI Core VC1902 [53].

AI Engines 400
DSP Engines 1968
System Logic Cells (k) 1968
LUTs 899840
Application Processing Unit Dual-Core Arm Cortex-A72
Real-Time Processing Unit Dual-Core Arm Cortex-R5F
Maximum I/O Pins 770
Programmable NoC Ports 28
Integrated Memory Controllers 4

The board setup was relatively straightforward. The boot mode for SYSCTRL and the Versal

part was done by switching SW11 and SW1 into the following order (ON, OFF, OFF, OFF). Figure

3.1 shows the board setup and main components. After that, a PetaLinux image provided by Xilinx

was passed to the SD Card of the Versal part. To connect to the board, a serial connection was

made using a USB-C connector, and after defining an IP, an ssh connection was made using an

ethernet cable.

This work also used a desktop computer with an AMD Ryzen Threadripper 1920X 12-Core

Processor, GeForce RTX 2070 GPU, and 64GB of RAM. The system runs CentOS Linux version

7 as the operating system, CUDA Version 11.8, and NVIDIA driver version 470.161.03.

23
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Figure 3.1: Versal VCK190 setup.

Vitis AI was used as the framework to implement and accelerate the ANN on the VCK190.

The setup of the docker environment was simple using the provided pre-built docker. The version

of Vitis AI is v3.0. The DPU used was the DPUCVDX8G with the architecture C32B6CU1L2S2,

which has 32 AI Engines per batch handler, 6 batch handlers, and 1 compute unit. 333 MHz

PL frequency and 1.25 GHz AI Engine frequency, making 61.44 Peak Theoretical Performance

(TOPS).

As a first contact with the board, the PointPillars algorithm was implemented, taking advan-

tage of the Model Zoo. After that, to measure how easy it is to accelerate a custom CNN using

Vitis AI, Voxel R-CNN was chosen to go through all the steps that need to be taken from a bare

representation using PyTorch to a running model in the board. OpenPCDet was used to build the

Voxel R-CNN model. It is an open-source project focused on point cloud-based object detection

in 3D environments. It provides a framework and toolkit for developing and benchmarking object

detection algorithms using point cloud data.

3.2 PointPillars acceleration

PointPillars is a state-of-the-art grid-based 3D object detection network. It can be divided into

three main blocks as represented in figure 3.2.

The "Pillar Feature Net" part converts the point cloud into a pseudo image so that 2D CNN

from the backbone can be used. It utilizes a pillar-based approach for the grid structure. This
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efficiently encodes spatial information from point clouds. After that, the pillars are organized into

a tensor of size (D, P, N). D represents each point’s (N) values regarding its pillar (P). Due to the

sparsity nature of point clouds, some limits were imposed on the number of points per sample and

the number of non-empty pillars. Some ReLU functions are then performed, followed by a max

pooling operation to generate the learned features. There will then form the pseudo image.

The backbone part is a CNN that processes the pillar-based features extracted by the Pillar

Feature Net. It has two main parts: the top-down network and another that upsamples and con-

catenates the features from the top-down.

The Single Shot Detector (SSD) [54] model is used for the detection head. It performs object

detection using diminishing convolutional layers.

Figure 3.2: Overview of the PointPillars network [30].

PointPillars was chosen because it has a reasonable compromise between detection accuracy

and calculation complexity. It is also used in multiple studies and is supported by the Vitis AI

Library, making it a good starting point for this project.

3.2.1 Implementation description

Since this was the first approach to the Vitis AI framework, API_1 was utilized as it already has

PointPillars and its pre/post-processing routines implemented. It significantly reduces engineering

expenses for the intended platform benchmarking and experimentation tasks. This allows an im-

plementation with a significant level of abstraction that can still achieve high-performance levels.

The first step was downloading the corresponding docker environment for this work. Vitis AI

has multiple versions of pre-built docker depending on the framework (PyTorch or TensorFlow)

and the platform acceleration (CPU, GPU, or ROCm). Pulling a pre-built docker image or building

the container from Xilinx recipes is possible.

The second option was chosen, and the environment for PyTorch and GPU was created using

the "docker_build.sh" script. This unified script facilitates generating a docker image meeting

the developer’s requirements. After the download, the container can be run using the shell script

"docker_run.sh".
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Inside the docker container, and because PointPillars is one of the various models supported

in the model zoo, it is possible to download the network and all the associated functions. The

model has the following nomenclature pt_pointpillars_kitti_12000_100_11.2G_3.0. This means

it uses the PyTorch framework, Kitti as the dataset, has an input size of 12000*100 per image, a

computational cost of 11.2G floating-point operations (FLOPs), and uses the Vitis AI version v3.0.

That said, with the help of the Python script "downloader.py," it is straightforward to download

either the compiled xmodel file or all the code related to implementing PointPillars on the GPU.

The structure of this directory is shown in figure 3.3.

Figure 3.3: Overview of the model zoo PointPillars directory.

The "code" folder contains the code for testing and training the network. It encompasses

creating the kitti data info, as well as quantization of the model.

In "data" sits the Kitti dataset that has to be manually downloaded. Kitti has 14999 test images

and point clouds, making 80256 labeled objects. This translates to 12 GB of pictures and 29 GB

of Velodyne point clouds.

In the "float" folder goes the trained floating-point model.

"Qat" and "quantized" are the destination of the quantization results. These are the quantized

model and other vital files generated in the process.

The "requirements.txt" file has all the Python packages needed, and the "README.md" file

has the step-by-step procedure to train, quantize, test, and compile the network.

3.2.2 Inference on the board

After all the initial setup and the installation of petalinux on the Versal ACAP, the board was

ready to be tested. Usually, when a custom ANN is compiled using Vitis AI and the xmodel file is

generated, it has to be transferred to the evaluating board to be tested. However, since the model

to be evaluated is PointPillars, supported by the model zoo, the compiled PointPillars xmodel is

already on the board. This is because the board image already includes Vitis AI Runtime packages,

VART samples, Vitis AI Library samples, and models. The only thing transferred to the board was

a package provided by Xilinx, holding example images and Velodyne point clouds (Velodyne is a

leading company specializing in developing and manufacturing LiDAR sensors). This was done
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to test the VAI Library, more precisely PointPillars, using the performance and accuracy tests of

the "Library Sample."

These Sample Tests are written using C++ and the Model Library as a base foundation, which

uses the Base Libraries like "cpu_task" and "dpu_task." Summarizing, they start to generate the

network using the supplied compiled models.

1 auto net = vitis::ai::PointPillars::create(argv[1], argv[2]);

Listing 3.1: Creation of PointPillars network.

The point-cloud data is then stored in an object previously resized to hold the values. These

are fed to the network that runs them and then displays the final values.

1 auto res = net->run(PointCloud);

2 //...

3 net->do_pointpillar_display(res, flag, g_test, rgbmat, bevmat, rgbmat.cols

, rgbmat.rows, annoret);

Listing 3.2: Run of PointPillars network.

3.3 Voxel R-CNN acceleration

Although implementing the PointPillars using Vitis AI Library is a simple, quick way, and a good

starting point for building an application, it does not provide the developer with many options

regarding the implementation of the network. In addition, making the application this way does

not give a good understanding of how the underlying code is implemented.

Figure 3.4: Overview of the Voxel R-CNN structure [31].

With that in mind, the next objective was to accelerate a custom ML model and test the main

tools provided by Vitis AI. For this purpose, Voxel R-CNN [31] was chosen. It has good results on

the KITTI dataset and is well situated in its ranking [55]. Besides that, it served as the base code
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for some top 10 ranked models on the KITTI ranking, like SFD [56], VirConv-S [56], VirConv-T

[56], and TED [57].

Voxel-RCNN, represented in figure 3.4, combines the strengths of both voxel-based represen-

tation and region proposal-based methods to achieve accurate and efficient object detection. The

network begins by dividing the point cloud into equally spaced voxels, creating a voxel grid rep-

resentation. Each voxel encodes spatial occupancy and semantic information. These are fed to the

3D backbone to extract features. Voxel-RCNN then employs the 2D backbone and later 3D Re-

gion Proposal Network (RPN) to generate candidate object proposals. These proposals are refined

using a fully connected network and classified into specific object categories.

The open-source framework OpenPCDet [58] was used to represent this network most effi-

ciently and quickly. OpenPCDet is designed explicitly for 3D object detection tasks using point

cloud data and is Pytorch based. It supports a variety of popular 3D detection architectures, includ-

ing the official implementation of Voxel R-CNN. The framework provides efficient data loaders,

data augmentation techniques, and evaluation metrics for accurate and reliable model training

and evaluation. Its user-friendly interface and extensive documentation prove to be a flexible and

accessible framework for developing and benchmarking ML algorithms.

3.3.1 Implementation setup

Figure 3.5: Top view of OpenPCDet working directory inside Vitis AI’s environment.

The first step was implementing and integrating both OpenPCDet and Vitis AI environments.

For this, the OpenPCDet main folder was placed inside the one from Vitis AI. This had to be

done to access the tools provided by OpenPCDet inside the running container of Vitis AI. In-

stall the "pcdet" library was done relatively quickly. However, since we were working inside the

"xilinx/vitis-ai-pytorch-gpu:latest" container, some package dependencies emerged, making the
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need to troubleshoot these. After solving these incompatibilities, our working directory was set as

demonstrated in figure 3.5.

In the same way, it was made for the PointPillars network, the Kitti dataset was transferred

to the "data" folder, and the data info was generated. The "tools" folder has the main scripts for

model benchmarking and training, such as the files "test.py" and "train.py." In "checkpoints," the

pre-trained Voxel R-CNN model provided by OpenPCDet with 28 MB size is present. "pcdet"

is the main library folder and holds the PyTorch code for the model definition of multiple neural

networks and various essential utilities.

3.3.2 Implementation description

In this section, it will be explained step by step how the quantization and compilation of Voxel R-

CNN were done. It will describe the main parts of the implementation, the problems that showed

up, and all the methods that had to be taken to bypass them.

A Python file was made to implement all the steps related to quantizing and compiling of Vitis

AI flow. We started to import all the necessary Python packages. "pcdet" makes possible the

dataset and model setup, and "pytorch_nndct" has all the required APIs provided by Vitis AI.

1 import torch

2 import torch.nn as nn

3

4 from eval_utils import eval_utils

5 from pcdet.config import cfg, cfg_from_yaml_file

6 from pcdet.datasets import DatasetTemplate, build_dataloader

7 from pcdet.models import build_network, load_data_to_gpu

8 from pcdet.utils import common_utils

9

10 from pytorch_nndct.apis import Inspector, torch_quantizer, dump_xmodel

11 from pytorch_nndct.apis import torch_quantizer, dump_xmodel

Listing 3.3: Importing of the most important packages.

The "build_dataloader" function was utilized to load the Kitti data, which presents a convenient

and easy way of building the data loader and dataset. The Voxel R-CNN model was then made,

loading the parameters from the previously downloaded and pre-trained checkpoint.

1 #Load dataset

2 test_set, test_loader, sampler = build_dataloader(

3 dataset_cfg=cfg.DATA_CONFIG,

4 class_names=cfg.CLASS_NAMES,

5 batch_size=batch_size,

6 dist=False,

7 workers=4, logger=logger, training=False

8 )

9

10 #Build the model
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11 model = build_network(model_cfg=cfg.MODEL, num_class=len(cfg.

CLASS_NAMES), dataset=test_set)

12 model.load_params_from_file(filename=args.ckpt, logger=None)

Listing 3.4: Daset loading and building of the network.

All the necessary steps were taken to initialize the Vitis AI flow. However, because of the

complexity level of the model implementation, it was impossible to quantize the entire model at

once. A dictionary object containing multiple data information is forwarded through the various

stages of the neural network. This is due to how the model was built using PyTorch. The Vitis AI

Quantizer expects to receive a torch model and a dummy input to quantize the network. However,

this dummy input has to be a torch tensor or a list of tensors, resulting in this incompatibility.

To solve this problem, we had to dive deep into the architecture of the torch implementation

of Voxel R-CNN. The model is divided into multiple sub-models. Each sub-model forwards the

data to the next one. A neural network test was made to determine which models were the slowest.

After forwarding the Kitti dataset, the conclusion was that the slowest parts were the 3D Backbone

Network and the 2D Backbone Network.

Afterward, knowing which parts of this network would be associated with the CPU or the DPU

using the Inspector was possible.

1 target = "DPUCVDX8G_ISA3_C32B6"

2 #Inspect the model

3 with torch.no_grad():

4 if inspect:

5 inspector = Inspector(target)

6 inspector.inspect(backbone_module, tensor, torch.device("cuda"

), image_format="png")

Listing 3.5: Inspection of the model regarding DPUCVDX8G.

While the 2D Backbone was positively inspected, the 3D one was not. This happened because

Vitis AI does not support sparse convolutions yet, which means that the 2D Backbone was the

only quantizable network of the two.

From the examination of the png image generated by the Inspector, it was possible to notice

that the padding and transpose functions were not supported by the DPU, resulting in a CPU

implementation. This execution is far from ideal and presents a significant bottleneck, making

the data be transferred between DPU and CPU because of two elementary functions. It was later

discovered that these functions were not being DPU-supported due to a Vitis AI bug.

Solving this problem made the entire neural network supported and able to run on the DPU.

Even though this bug was solved and fixed in the later stages of the project, we will still demon-

strate the two implementations since we could extract valuable conclusions from both.

That said, the next step was the calibration step. For this, we used the Quantizer and changed

the 2D backbone model the NN used to the quantized model. This step was done after 200 data
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samples were feed-forward, and two critical files for the following stages were generated. "Base-

BEVBackbone.py" is a converted vai_q_pytorch format model, and "quant_info.json" has infor-

mation about the quantization steps of the tensors.

1 #Quantizing calib

2 if calib:

3 quantizer = torch_quantizer(quant_mode=’calib’, module=

backbone_2d_module, input_args=tensor, device=torch.device("cuda"),

target=target)

4 quant_model = quantizer.quant_model

5

6 #Change module to quantized

7 model.module_list[3] = quant_model

8

9 #Forward pass with quantized module

10 model.cuda()

11 model.eval()

12 with torch.no_grad():

13 for i, batch_dict in enumerate(test_loader):

14 load_data_to_gpu(batch_dict)

15 with torch.no_grad():

16 pred_dicts, ret_dict = model.forward(batch_dict)

17 print(i)

18 if i>=200:

19 break

20

21 quantizer.export_quant_config()

Listing 3.6: Calibration of quantized model.

After the calibration, we were ready to test the accuracy of the quantized model. For this, the

whole dataset was used, and the benchmark tools from "eval_utils" were utilized, more precisely,

the function "eval_one_epoch." This function computes the model’s overall performance, logging

the evaluation metrics.

Afterward, the xmodel file for compilation can be generated. It is dumped into the output

folder using the "export_model" function:

1 #Run pcdet benchmark

2 logger.info(’**********************Start testing**********************

’)

3 gpu_list = os.environ[’CUDA_VISIBLE_DEVICES’] if ’CUDA_VISIBLE_DEVICES

’ in os.environ.keys() else ’ALL’

4 logger.info(’CUDA_VISIBLE_DEVICES=%s’ % gpu_list)

5

6 with torch.no_grad():

7 model.cuda()
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8 eval_utils.eval_one_epoch(

9 cfg, args, model, test_loader, 54, logger, dist_test=False,

result_dir=eval_output_dir

10 )

11

12 if deploy:

13 quantizer.export_torch_script()

14 quantizer.export_xmodel(deploy_check=True)

Listing 3.7: Integration of OpenPCDet benchmark tool with the quantized model.

After the xmodel file is exported to the "quantize_result" folder, it is ready to be compiled

by the Vitis AI Compiler. This is done using vai_c_xir in the command line. It takes as input the

directory of the DPU architecture configuration file in JSON format present in the docker container

and the directory for the xmodel to be compiled:

Listing 3.8: Shell command to run the compiler.

vai_c_xir \

--xmodel ./quantize_result/BaseBEVBackbone_int.xmodel \

--arch /opt/vitis_ai/compiler/arch/DPUCVDX8G/VCK190/arch.json

Finally, the model is compiled and ready to be implemented and tested on the VCK190 board.

3.3.3 Inference on the board

The model had to be inspected before developing the code to make the inference on the board.

This is because the quantized and compiled network might be split into some subgraphs running

on the CPU and others on the DPU. If this happened, the code for the unsupported functions had

to be developed in the board’s processor. As already stated, the first implementation had some

OPs running on the CPU, which meant the implementation of these functions on the processor.

Even though this problem was solved, this implementation will still be explained as it demon-

strates the steps to take when a model is split between hardware and the issues that it provokes. The

VART library was used and implemented using Python to run the compiled model on the board.

As a first step, the compiled model has to be deserialized and partitioned into several subgraphs.

After this, the DPU runners are created:

1 #Deserialize xmodel

2 g = xir.Graph.deserialize(model)

3

4 #Get subgraphs

5 subgraphs = g.get_root_subgraph().toposort_child_subgraph()

6

7 dpu_subgraph0 = subgraphs[0]

8 dpu_subgraph1 = subgraphs[1]

9 dpu_subgraph2 = subgraphs[2] #dpu
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10 dpu_subgraph3 = subgraphs[3]

11 dpu_subgraph4 = subgraphs[4] #dpu

12 dpu_subgraph5 = subgraphs[5]

13

14 #Create dpu runners

15 dpu_2 = vart.Runner.create_runner(dpu_subgraph2, "run")

16 dpu_4 = vart.Runner.create_runner(dpu_subgraph4, "run")

Listing 3.9: Desirialization of the model and creation of the DPU runners.

The data input for the model to run has to be loaded. For this, several torch tensors from the

network running on the GPU were saved into numpy files and loaded into the board:

1 for i in range(runTotal):

2 # Check if the file is an npy file

3 if i==0:

4 filename = f"spatial_features_0_5.npy"

5 else:

6 filename = f"spatial_features_{i*6}_{6*i+5}.npy"

7 print(filename)

8

9 # Construct the full path to the file

10 file_path = os.path.join(input_folder, filename)

11

12 # Load the numpy array from the file

13 array = np.load(file_path)

14

15 # Append the array to the loaded_arrays list

16 loaded_arrays.append(array)

Listing 3.10: Loading of the input numpy arrays to be run in the DPU.

The DPU runners will then use this list of numpy arrays, executing them asynchronously via

the "execute_async" function for every input. Note that this input can be a batch size 6 for every

iteration. This is due to the natural structure of the DPUCVDX8G and related architecture used,

which has 6 batch handlers. Meaning it can process six samples of data in parallel. This execution

is represented in the following fragment of code:

1 #Run CPU1 to pad and transpose

2 out1 = transpose(pad2d_subgraph1(input))

3

4 #Run DPU2

5 execute_async(

6 dpu_2,

7 {"ModuleList_0__ZeroPad2d_0__input_1_swim_transpose_0_fix": out1,

8 "ModuleList_0__ReLU_18__1660_fix": out2}

9 )
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10 inp3 = out2.copy()

11

12 #Run CPU3 to pad

13 out3 = pad2d_subgraph3(inp3)

14

15 #Run DPU4

16 execute_async(

17 dpu_4,

18 {"ModuleList_1__ZeroPad2d_0__input_41_swim_transpose_1_fix": out3,

19 "ModuleList_0__ReLU_18__1660_fix": out2,

20 "BaseBEVBackbone__BaseBEVBackbone_1929_fix": out4}

21 )

Listing 3.11: Overview of "runDPU" subroutine where DPU runners are executed as well as CPU

functions.

Subgraphs 1 and 3 are running on the CPU with "pad2d_subgraph1", "pad2d_subgraph3", and

"transpose" being implemented. Another note is that the names of the input and output tensors are

added manually regarding the subgraph tree. These names can vary depending on the version of

the Vitis AI Compiler.

This implementation was relative to the model, having some layers not supported by the DPU.

The model that runs entirely on the DPU followed a similar implementation but without the need

to run functions on the CPU.

3.3.4 Evaluation

To draw some conclusions, some evaluations had to be made regarding the performance of the

implementations. To measure the execution time on the ARM processor of the VCK190 board,

the "time" Python package was used. To test the different execution times of the model running in

the GPU, we utilized the "torch.cuda.Event" class. Accuracy and performance benchmark of the

quantized model was done by the "eval_one_epoch" functions and the values saved.

1

2 if i==0:

3 # Record the start event

4 start_event.record()

5 x = self.blocks[i](x)

6 if i==0:

7 # Record the end event

8 end_event.record()

9

10 # Wait for the events to complete

11 torch.cuda.synchronize()

12

13 # Calculate the elapsed time in milliseconds
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14 elapsed_time = start_event.elapsed_time(end_event)

15

16 print("Elapsed time block 1:", elapsed_time, "ms")

Listing 3.12: Time evaluation of different parts of the model running in the GPU.

1 #Run DPU

2 print("")

3 print("run DPU")

4 time1 = time.time()

5 runDPU(dpu_2, dpu_4, loaded_arrays)

6 time2 = time.time()

7 timetotal = time2 - time1

8 print(f"Tempo run DPU: {timetotal}")

Listing 3.13: Time evaluation of the DPU run.

The Vitis AI Profiler was another helpful tool for acquiring performance and other valuable

results. Combining all these tools and benchmark results makes valuable data to be evaluated and

conclusions possible to be taken. The next chapter will summarize the main results obtained from

this project as well as their analysis.
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Chapter 4

Results and Evaluation

This chapter presents the results of implementing two state-of-the-art 3D object detection models:

PointPillars and Voxel R-CNN. The primary focus of our evaluation was to assess the performance

and efficiency of these models on different hardware platforms, specifically the Versal ACAP

device and GPU. For the PointPillars model, we leveraged the pre-trained models available in the

Vitis AI model zoo and utilized the Vitis AI library samples.

On the other hand, for Voxel R-CNN, we employed the Vitis AI Flow, which encompassed

the entire workflow from quantization to compilation. Additionally, we explored two deployment

scenarios: one utilizing the full support of the DPU and the other involving an execution approach

with the DPU and CPU.

4.1 PointPillars

Figure 4.1: Example of BEV detection of PointPillars using Vitis AI Library samples.

As PointPillars inference was the first interaction with Vitis AI Library, the main objective

was to get to know Vitis AI and its ready-to-go applications. The first test used was a simple

inference on an example point cloud. Besides getting the detected objects in an image file from

Bird’s-Eye-View (BEV) represented in figure 4.1, we also get the front camera as in 4.2. Output

37
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Figure 4.2: Example of 3D detection of PointPillars using Vitis AI Library samples.

is also written to the terminal with the labeling of the image, the coordinates of the corresponding

bounding boxes, and the probability associated with the detection. In this example, we have three

cars detected and one person, with an associated probability of 0.9099, 0.9047, 0.7981 for the cars,

and 0.8354 for the person.

The performance test was also executed on the VCK190, with each image taking 44.04 ms to

process. The total end-to-end time, which includes pre and post-processing, took an average of

39.504 seconds, while the DPU took 23.129 seconds to process. On the other hand, the float model

running on the GPU took 55.60 ms to infer each input. This data makes it possible to conclude

that the GPU took an extra 11 ms to process each image compared to the DPU. This is a promising

result for the implementation of ML model devices on the edge.

Vitis AI Profiler was utilized for more timing results and resource utilization. Table ?? has the

main resource consumption for each subgraph of the model on the DPU. It has also values for the

performance and the execution time. Table 4.2 has timing values for the CPU functions, which

include pre and post-processing and VART functions.

Table 4.1: Profiling summary of DPU while running a PointPillars performance test.

DPU SubGraph WL RT Perf LdWB LdFM StFM AvgBw
1 0.768 4.720 976.263 0.001 27.466 4.395 6912.242
2 10.159 18.178 3353.273 0.377 310.378 123.833 24481.763

Table 4.2: Profiling summary of CPU functions while running a PointPillars performance test.

Function Device Runs AverageRunTime(ms)
xir::XrtCu::run CPU 1490 11.419
vitis::ai::DpuTaskImp::run CPU 1490 16.186
vitis::ai::ConfigurableDpuTaskImp::run CPU 1490 16.201
vitis::ai::PointPillarsPost::post_process CPU 745 1.168
vitis::ai::PointPillarsImp::run_2 CPU 745 39.877
vitis::ai::PointPillarsImp::run CPU 745 39.892

The labeling of table 4.1 and the others from this chapter goes this way:
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• Work Load (WL): This metric measures the computation workload in terms of GOP (Giga

Operations), where each MAC (Multiply-Accumulate) operations count as two operations.

• Software Run time (SW_RT): It refers to the execution time calculated by the software in

milliseconds (ms).

• Hardware Run time (HW_RT): It indicates the execution time of hardware operations in

milliseconds (ms).

• Efficiency (Effic): This metric represents the DPU’s actual performance divided by its peak

theoretical performance, expressed as a percentage (%).

• Performance (Perf): Represents the DPU’s actual performance in GOP/s.

• Load Size of Feature Map (LdFM): This metric measures the external memory load size of

the feature map in megabytes (MB).

• Load Size of Weight and Bias (LdWB): It represents the external memory load size of the

weight and bias in megabytes (MB).

• Store Size of Feature Map (StFM): This metric indicates the external memory store size of

the feature map in megabytes (MB).

• Average Bandwidth (AvgBw): It measures the average external memory bandwidth in

megabytes per second (MB/s).

Vitis AI Library proves to be a valuable tool with multiple evaluation programs written in C++

ready to use. The Model Zoo provides the developer with all information to implement a specific

model into different Xilinx boards. Regarding the profiling of PointPillars, the run-time for the two

DPUs was 22.898 ms, and the workload was 10.927 GOP/s. It is possible to deduce that the total

run-time of the model was almost twice the time of the DPU inference. The DPU performance

being more efficient than the GPU is an encouraging factor for the next implementation. The

timing characteristics and utilization will be deeper studied in Voxel R-CNN application.

4.2 Voxel R-CNN

The first result of this project was some accuracy results from running Voxel R-CNN in the GPU.

For that, the integrated OpenPCDet library was used. This benchmark resulted in these two tables

4.3 and 4.4.

Intersection over Union (IoU) measures the extent of overlap between the detected object and

its real location by calculating the ratio of their intersection area to their union area. It scores from

0 to 1, with 1 being a perfect match. By setting a specific IoU threshold, a minimum overlap value

can be defined for a detection to be considered a true positive. This way, setting a higher value for

the threshold means a more precise detection, but it can lead to undetected objects. In contrast,
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lower values of threshold can result in more lenient criteria, resulting in detections with broader

overlaps being considered as positives.

Average Precision (AP) is a commonly used evaluation metric in object detection tasks. It

measures the proportion of correct detections among all positive detections. Therefore AP values

for higher IoU thresholds tend to be lower than for higher thresholds.

Table 4.3: Accuracy of Voxel R-CNN using float model of 2D backbone part.

AP3D(%) APBBox(%) APBEV (%)

IoU Threshold Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
0.7 89.1421 84.5415 78.6853 97.8540 89.7324 89.3443 90.2107 88.2890 87.7709
0.5 97.8532 89.7274 89.3430 97.8540 89.7324 89.3443 97.8917 89.7398 89.3670

Table 4.4: Accuracy of Voxel R-CNN using quantized model of 2D backbone part.

AP3D(%) APBBox(%) APBEV (%)

IoU Threshold Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

0.7 88.6884 84.3910 78.4370 97.3706 89.6580 89.2450 90.0034 88.1876 87.6815

0.5 97.3789 89.6710 89.2636 97.3706 89.6580 89.2450 97.4286 89.6880 89.3000

From the evaluation of these values, we can say that the AP values are consistently lower in

the quantized model than in the float model. However, this difference is minimal. Relatively to the

inference time for each image, there was a slight decrease from the float model to the quantized

model: 61.1 ms to 55.3 ms.

The performance of the 2D backbone part of the Voxel R-CNN model on GPU was also mea-

sured. In this way, we could compare the running version of the DPU and the GPU. The average

time was 37.594 ms for an iteration of batch size 6. This value will be compared further on.

Afterward, the Vitis AI Inspector was used, and two images were generated. Depending on

the color of each function, it is possible to know which part was assigned to the CPU or to the

DPU (blue is given to the DPU, and red is given to the CPU). Examining the two, it is possible to

conclude that one is fully DPU-supported and the other partially supported with some functions

on the CPU. Both images are in appendix B.

If figure 4.3 is the cropped image from inspecting the model with some layers needing to

be implemented on the CPU. As it is possible to see, padding and a permuting operation were

assigned to the CPU. Additionally, the convolutional and ReLU functions were associated with

the DPU.

In addition, Inspector provides a detailed description of the model and the different layers in

text format. During the inspection of the model, some special logging messages are displayed on

the terminal. These messages describe Inspector’s several stages, from the inspector’s start-up, the

processing of the layers, to the association of the different subgraphs to either the DPU or CPU.

Combined, this makes the Vitis AI Inspector tool a fundamental mechanism. It helps the developer

to debug some problems before starting the quantization process.
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Figure 4.3: Cropped image from inspecting total DPU implementation of the 2D backbone of
Voxel R-CNN.

Since we have implemented this network with total DPU support and the other running on

CPU and DPU and got valuable results from both, we will split the results in two regarding each

implementation.

4.2.1 CPU and DPU implementation

This was the first model to be tested on the VCK190. The "runDPU" function of the Python

program takes 12.9246 seconds to process 102 sample data with a batch size of 6. This makes 760
ms for an iteration of batch size 6. This value of processing is more or less 20x higher than the

GPU, which is far from ideal.

Table 4.5: Profiling summary of CPU functions regarding the partial DPU compatible model.

Function Device Runs Average Run Time (ms)
vart::TensorBuffer::copy_tensor_buffer CPU 85 35.159
xir::XrtCu::run CPU 34 7.620

Table 4.6: Profiling summary of DPU resources regarding the partial DPU compatible model.

DPU SubGraph WL SW_RT HW_RT Effic LdWB LdFM StFM AvgBw
1 23.371 8.449 8.315 29.0 0.317 117.715 77.344 23495.946
2 16.020 6.924 6.803 24.3 0.845 64.591 90.234 22881.391

However, from analyzing the table 4.5, it is possible to notice that a massive part of the time

is consumed on processing data transfer between DPU and CPU. The function associated with

this transfer is "vart::TensorBuffer::copy_tensor_buffer", and is almost 5 times slower than the



42 Results and Evaluation

function associated to the DPU run (xir::XrtCu::run). The corresponding subgraphs running on

the DPU, and represented as 1 and 2 in table 4.6, in the GPU take, on average, 20.219 ms and

15.016 ms. This makes the DPU almost 2.4x and 2.2x faster than the corresponding layers on the

GPU.

4.2.2 Total DPU implementation

Regarding the inference with total DPU compatibility, the total run-time for the "runDPU" task

was 6.6998 seconds, making it 394 ms to process each iteration of batch size 6. It is almost 2

times faster than the previous implementation. This is because no CPU layers are associated, with

the data only needing to be transferred twice for each run. However, it is still very slow compared

to the GPU implementation.

Table 4.7: Profiling summary of DPU resources for the total DPU compatible model.

DPU SubGraph WL SW_RT HW_RT Effic LdWB LdFM StFM AvgBw
1 39.390 15.030 14.898 27.3 1.161 181.055 167.578 23479.874

Table 4.8: Profiling summary of CPU functions for the total DPU compatible model.

Function Device Runs AverageRunTime(ms)
vart::TensorBuffer::copy_tensor_buffer CPU 34 182.644

xir::XrtCu::run CPU 17 14.982

The output from the Profiler is in tables 4.7 and 4.8. As in the previous model, there is a sig-

nificant bottleneck when transferring the data between the DPU and the CPU. The data processing

in the DPU is more than 2x times faster than the GPU.

4.2.3 Power measurement

The power consumption from GPU and the Versal ACAP was also measured since these are rele-

vant topics in edge applications, specifically AV.

A Python script was made to measure the power intake of the GPU. This script used the

"pynvml" library to query the power usage of the GPU during the Voxel R-CNN forwarding. This

data was later plotted in figure 4.4.

To compute the power consumption of the Versal device, the Versal Adaptive Power Tool was

used. This instrument comes pre-installed on the system controller on the Pynq device. It consists

of a Python library, "poweradvantage.py," that provides a way to measure the power system of

the embedded platform. This way, the script calculates the power independently from the Versal

device, making it possible to execute programs on the Versal device and simultaneously measure

power statistics. It is possible to get multiple measurements for voltage, power, and current for

different parts of the ACAP. However, the device’s total power consumption during the model

forwarding was plotted and represented in figure 4.5.
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Figure 4.4: Power usage of GPU during Voxel R-CNN inference.

Figure 4.5: Power usage of Versal ACAP during inference.

Comparing both graphics, it is evident that the VCK190 uses less power than the GPU. When

making inferences, the GPU goes up to around 140 W, and the Versal device only consumes around

26/27 W and never exceeds the 29 W mark. For 30 seconds of inference time, the GPU consumes

around 4140 J of energy, while the ACAP only uses 804 J. This makes the Xilinx device far more

energy efficient.
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Chapter 5

Conclusion and Future Work

This work investigated the implementation of two ANNs on the Versal AI Core VCK190 board.

These were the PointPillars and Voxel R-CNN models, which are relevant in AD. Vitis AI work-

flow was used for this, and key findings and future directions can be given.

Implementing the PointPillars network was pretty straightforward using the Vitis AI Sample

Library. This provides a great starting point for developers that want to implement their appli-

cations on a Xilinx device. It includes support for multiple models and has some tests already

implemented. These implementations provide excellent results, as seen in the PointPillars appli-

cation.

The first problem encountered using Vitis AI was not supporting sparse convolutions. This

was a massive obstacle since the 3D backbone part of Voxel R-CNN was one of the slowest

parts. Besides that, a fully implemented 3D object detection model on edge becomes impossible.

A potential future work could be to implement an IP block capable of processing this type of

convolution on the PL hardware.

Regarding the Voxel R-CNN implementation, the quantizer proves to be an efficient tool. The

accuracy of the network was almost the same, and the performance slightly increased with the FPS

going to 18.083Hz from 16.366Hz on the GPU.

The 2D backbone part inference on the board got a massive increase in the time of processing

per data. This increase in time was 20 times higher than the identical part running on the GPU.

However, this performance difference was due to data transfer processing between the CPU and the

DPU. This was a significant bottleneck, as the average runtime of the total DPU implementation

was 14.982ms. This is two times faster than the GPU inference, which takes 37.594 ms. A

potential area to study and to be improved is finding a better way of data transferring between the

DPU and the CPU.

Comparing the two implementations regarding the Voxel R-CNN, the total DPU implemen-

tation was two times quicker. Total DPU compatibility is always an objective to aim for when

deploying an ANN.

The power consumption is an essential advantage of the Versal device over the GPU. While the

GPU consumes around 140W when running the model, the ACAP only uses around 27W, which
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is five times less. This utilization also translates to energy usage, with the GPU having 5x times

more.

The main objectives of this work were completed, which were the implementation of ANNs on

a Versal device and the study of their performance and energy efficiency. Vitis AI and DPU proved

to be reliable tools for accelerating DL models but with much room to improve. Some operations

might still not be supported, like sparse convolutions, and some bugs can be encountered, leading

to unsupported DPU OPs.



Appendix A

DPUCVDX8G Resource Utilization

Resources utilization and peak performance for the DPUCVDX8G regarding different architec-

tures.

Table A.1: DPUCVDX8G resource utilization depending on architecture used [50].

[HTML]FFFFFF Architecture AI Engine Cores LUT FF Block RAM UltraRAM DSP PL NMU
[HTML]FFFFFF C32B1CU1L2S2 32 82942 111248 0 136 139 8
[HTML]FFFFFF C32B1CU2L2S2 64 165721 222528 0 272 278 14
[HTML]FFFFFF C32B1CU3L2S2 96 248486 333805 0 408 417 20
[HTML]FFFFFF C32B2CU1L2S2 64 146223 190065 0 200 273 10
[HTML]FFFFFF C32B3CU1L2S2 96 209657 268933 0 264 407 12
[HTML]FFFFFF C32B4CU1L2S2 128 273736 348300 0 328 541 14
[HTML]FFFFFF C32B5CU1L2S2 160 338367 428383 0 392 675 16
[HTML]FFFFFF C32B6CU1L2S2 192 403866 507308 678 343 809 18
[HTML]FFFFFF C64B1CU1L2S2 64 93233 132511 0 136 139 8
[HTML]FFFFFF C64B1CU2L2S2 128 186387 265041 0 272 278 14
[HTML]FFFFFF C64B1CU3L2S2 192 280846 397732 0 408 417 20
[HTML]FFFFFF C64B2CU1L2S2 128 157744 215444 0 200 273 10
[HTML]FFFFFF C64B3CU1L2S2 192 222342 298513 0 264 407 12
[HTML]FFFFFF C64B4CU1L2S2 256 286802 381864 0 328 541 14
[HTML]FFFFFF C64B5CU1L2S2 320 355909 469409 0 392 675 16
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Table A.2: Peak theoretical performance of each DPUCVDX8G architecture [50].

Architecture Peak Theoretical Performance (TOPS)
C32B1CU1L2S2 10.24
C32B1CU2L2S2 20.48
C32B1CU3L2S2 30.72
C32B2CU1L2S2 20.48
C32B3CU1L2S2 30.72
C32B4CU1L2S2 40.96
C32B5CU1L2S2 51.20
C32B6CU1L2S2 61.44
C64B1CU1L2S2 20.48
C64B1CU2L2S2 40.96
C64B1CU3L2S2 61.44
C64B2CU1L2S2 40.96
C64B3CU1L2S2 61.44
C64B4CU1L2S2 81.92
C64B5CU1L2S2 102.4



Appendix B

Voxel R-CNN Inspect Result

Images output from inspecting the 2D backbone part model of Voxel R-CNN using Vitis AI In-

spector.

Figure B.1: Image result from inspecting the 2D backbone from Voxel R-CNN with total DPU not
supported.
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Figure B.2: Image result from inspecting the 2D backbone from Voxel R-CNN with total DPU
supported.
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