4,824 research outputs found

    Drift robust non-rigid optical flow enhancement for long sequences

    Get PDF
    It is hard to densely track a nonrigid object in long term, which is a fundamental research issue in the computer vision community. This task often relies on estimating pairwise correspondences between images over time where the error is accumulated and leads to a drift issue. In this paper, we introduce a novel optimization framework with an Anchor Patch constraint. It is supposed to significantly reduce overall errors given long sequences containing non-rigidly deformable objects. Our framework can be applied to any dense tracking algorithm, e.g. optical flow. We demonstrate the success of our approach by showing significant error reduction on 6 popular optical flow algorithms applied to a range of real-world nonrigid benchmarks. We also provide quantitative analysis of our approach given synthetic occlusions and image noise.Comment: Preprint version of our paper accepted by Journal of Intelligent and Fuzzy System

    Video Interpolation using Optical Flow and Laplacian Smoothness

    Full text link
    Non-rigid video interpolation is a common computer vision task. In this paper we present an optical flow approach which adopts a Laplacian Cotangent Mesh constraint to enhance the local smoothness. Similar to Li et al., our approach adopts a mesh to the image with a resolution up to one vertex per pixel and uses angle constraints to ensure sensible local deformations between image pairs. The Laplacian Mesh constraints are expressed wholly inside the optical flow optimization, and can be applied in a straightforward manner to a wide range of image tracking and registration problems. We evaluate our approach by testing on several benchmark datasets, including the Middlebury and Garg et al. datasets. In addition, we show application of our method for constructing 3D Morphable Facial Models from dynamic 3D data

    Inverse depth for accurate photometric and geometric error minimisation in RGB-D dense visual odometry

    Full text link

    Robust Registration of Dynamic Facial Sequences.

    Get PDF
    Accurate face registration is a key step for several image analysis applications. However, existing registration methods are prone to temporal drift errors or jitter among consecutive frames. In this paper, we propose an iterative rigid registration framework that estimates the misalignment with trained regressors. The input of the regressors is a robust motion representation that encodes the motion between a misaligned frame and the reference frame(s), and enables reliable performance under non-uniform illumination variations. Drift errors are reduced when the motion representation is computed from multiple reference frames. Furthermore, we use the L2 norm of the representation as a cue for performing coarse-to-fine registration efficiently. Importantly, the framework can identify registration failures and correct them. Experiments show that the proposed approach achieves significantly higher registration accuracy than the state-of-the-art techniques in challenging sequences.The research work of Evangelos Sariyanidi and Hatice Gunes has been partially supported by the EPSRC under its IDEAS Factory Sandpits call on Digital Personhood (Grant Ref.: EP/L00416X/1)

    MFT: Long-Term Tracking of Every Pixel

    Full text link
    We propose MFT -- Multi-Flow dense Tracker -- a novel method for dense, pixel-level, long-term tracking. The approach exploits optical flows estimated not only between consecutive frames, but also for pairs of frames at logarithmically spaced intervals. It selects the most reliable sequence of flows on the basis of estimates of its geometric accuracy and the probability of occlusion, both provided by a pre-trained CNN. We show that MFT achieves competitive performance on the TAP-Vid benchmark, outperforming baselines by a significant margin, and tracking densely orders of magnitude faster than the state-of-the-art point-tracking methods. The method is insensitive to medium-length occlusions and it is robustified by estimating flow with respect to the reference frame, which reduces drift.Comment: accepted to WACV 2024. Code at https://github.com/serycjon/MF

    Automatic Structural Scene Digitalization

    Get PDF
    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.Comment: paper submitted to PloS On
    • …
    corecore