1,191 research outputs found

    Drawings of Planar Graphs with Few Slopes and Segments

    Get PDF
    We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on nn vertices has a plane drawing with at most 5/2n{5/2}n segments and at most 2n2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). In a companion paper, drawings of non-planar graphs with few slopes are also considered.Comment: This paper is submitted to a journal. A preliminary version appeared as "Really Straight Graph Drawings" in the Graph Drawing 2004 conference. See http://arxiv.org/math/0606446 for a companion pape

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal k/2\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k2k \leq 2 and equals k+1k+1 if k3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    Aligned Drawings of Planar Graphs

    Get PDF
    Let GG be a graph that is topologically embedded in the plane and let A\mathcal{A} be an arrangement of pseudolines intersecting the drawing of GG. An aligned drawing of GG and A\mathcal{A} is a planar polyline drawing Γ\Gamma of GG with an arrangement AA of lines so that Γ\Gamma and AA are homeomorphic to GG and A\mathcal{A}. We show that if A\mathcal{A} is stretchable and every edge ee either entirely lies on a pseudoline or it has at most one intersection with A\mathcal{A}, then GG and A\mathcal{A} have a straight-line aligned drawing. In order to prove this result, we strengthen a result of Da Lozzo et al., and prove that a planar graph GG and a single pseudoline L\mathcal{L} have an aligned drawing with a prescribed convex drawing of the outer face. We also study the less restrictive version of the alignment problem with respect to one line, where only a set of vertices is given and we need to determine whether they can be collinear. We show that the problem is NP-complete but fixed-parameter tractable.Comment: Preliminary work appeared in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The Complexity of Drawing Graphs on Few Lines and Few Planes

    Full text link
    It is well known that any graph admits a crossing-free straight-line drawing in R3\mathbb{R}^3 and that any planar graph admits the same even in R2\mathbb{R}^2. For a graph GG and d{2,3}d \in \{2,3\}, let ρd1(G)\rho^1_d(G) denote the minimum number of lines in Rd\mathbb{R}^d that together can cover all edges of a drawing of GG. For d=2d=2, GG must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For d{2,3}d\in\{2,3\}, we prove that deciding whether ρd1(G)k\rho^1_d(G)\le k for a given graph GG and integer kk is R{\exists\mathbb{R}}-complete. - Since NPR\mathrm{NP}\subseteq{\exists\mathbb{R}}, deciding ρd1(G)k\rho^1_d(G)\le k is NP-hard for d{2,3}d\in\{2,3\}. On the positive side, we show that the problem is fixed-parameter tractable with respect to kk. - Since RPSPACE{\exists\mathbb{R}}\subseteq\mathrm{PSPACE}, both ρ21(G)\rho^1_2(G) and ρ31(G)\rho^1_3(G) are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to ρ21\rho^1_2 or ρ31\rho^1_3 sometimes require irrational coordinates. - Let ρ32(G)\rho^2_3(G) be the minimum number of planes in R3\mathbb{R}^3 needed to cover a straight-line drawing of a graph GG. We prove that deciding whether ρ32(G)k\rho^2_3(G)\le k is NP-hard for any fixed k2k \ge 2. Hence, the problem is not fixed-parameter tractable with respect to kk unless P=NP\mathrm{P}=\mathrm{NP}

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Drawing Planar Graphs with Few Geometric Primitives

    Get PDF
    We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let nn denote the number of vertices of a graph. We show that trees can be drawn with 3n/43n/4 straight-line segments on a polynomial grid, and with n/2n/2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with (8n17)/3(8n-17)/3 segments on an O(n)×O(n2)O(n)\times O(n^2) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n/23n/2 edges on an O(n)×O(n2)O(n)\times O(n^2) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only (5n11)/3(5n - 11)/3 arcs. This is significantly smaller than the lower bound of 2n2n for line segments for a nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017
    corecore