14,163 research outputs found

    Compact Floor-Planning via Orderly Spanning Trees

    Full text link
    Floor-planning is a fundamental step in VLSI chip design. Based upon the concept of orderly spanning trees, we present a simple O(n)-time algorithm to construct a floor-plan for any n-node plane triangulation. In comparison with previous floor-planning algorithms in the literature, our solution is not only simpler in the algorithm itself, but also produces floor-plans which require fewer module types. An equally important aspect of our new algorithm lies in its ability to fit the floor-plan area in a rectangle of size (n-1)x(2n+1)/3. Lower bounds on the worst-case area for floor-planning any plane triangulation are also provided in the paper.Comment: 13 pages, 5 figures, An early version of this work was presented at 9th International Symposium on Graph Drawing (GD 2001), Vienna, Austria, September 2001. Accepted to Journal of Algorithms, 200

    Canonical ordering for graphs on the cylinder, with applications to periodic straight-line drawings on the flat cylinder and torus

    Get PDF
    We extend the notion of canonical ordering (initially developed for planar triangulations and 3-connected planar maps) to cylindric (essentially simple) triangulations and more generally to cylindric (essentially internally) 33-connected maps. This allows us to extend the incremental straight-line drawing algorithm of de Fraysseix, Pach and Pollack (in the triangulated case) and of Kant (in the 33-connected case) to this setting. Precisely, for any cylindric essentially internally 33-connected map GG with nn vertices, we can obtain in linear time a periodic (in xx) straight-line drawing of GG that is crossing-free and internally (weakly) convex, on a regular grid Z/wZ×[0..h]\mathbb{Z}/w\mathbb{Z}\times[0..h], with w≤2nw\leq 2n and h≤n(2d+1)h\leq n(2d+1), where dd is the face-distance between the two boundaries. This also yields an efficient periodic drawing algorithm for graphs on the torus. Precisely, for any essentially 33-connected map GG on the torus (i.e., 33-connected in the periodic representation) with nn vertices, we can compute in linear time a periodic straight-line drawing of GG that is crossing-free and (weakly) convex, on a periodic regular grid Z/wZ×Z/hZ\mathbb{Z}/w\mathbb{Z}\times\mathbb{Z}/h\mathbb{Z}, with w≤2nw\leq 2n and h≤1+2n(c+1)h\leq 1+2n(c+1), where cc is the face-width of GG. Since c≤2nc\leq\sqrt{2n}, the grid area is O(n5/2)O(n^{5/2}).Comment: 37 page

    Straightening out planar poly-line drawings

    Full text link
    We show that any yy-monotone poly-line drawing can be straightened out while maintaining yy-coordinates and height. The width may increase much, but we also show that on some graphs exponential width is required if we do not want to increase the height. Likewise yy-monotonicity is required: there are poly-line drawings (not yy-monotone) that cannot be straightened out while maintaining the height. We give some applications of our result.Comment: The main result turns out to be known (Pach & Toth, J. Graph Theory 2004, http://onlinelibrary.wiley.com/doi/10.1002/jgt.10168/pdf

    Drawing Planar Graphs with Few Geometric Primitives

    Get PDF
    We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let nn denote the number of vertices of a graph. We show that trees can be drawn with 3n/43n/4 straight-line segments on a polynomial grid, and with n/2n/2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with (8n−17)/3(8n-17)/3 segments on an O(n)×O(n2)O(n)\times O(n^2) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n/23n/2 edges on an O(n)×O(n2)O(n)\times O(n^2) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only (5n−11)/3(5n - 11)/3 arcs. This is significantly smaller than the lower bound of 2n2n for line segments for a nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≤19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Placing Arrows in Directed Graph Drawings

    Full text link
    We consider the problem of placing arrow heads in directed graph drawings without them overlapping other drawn objects. This gives drawings where edge directions can be deduced unambiguously. We show hardness of the problem, present exact and heuristic algorithms, and report on a practical study.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore