1,123 research outputs found

    Precoding and multiuser scheduling in MIMO broadcast channels

    Get PDF

    Robust scheduling algorithm for Guaranteed Bit Rate services

    Full text link
    This paper proposes a novel packet scheduling algorithm to overcome detrimental effects of channel impairments on the quality of service of delay-sensitive Guaranteed Bit Rate (GBR) services. The proposed algorithm prioritises the packets that require retransmission of Hybrid Automatic Repeat Request (HARQ) users compared to the packets of new users. The packets of new users are scheduled according to the Channel Quality Information (CQI), average throughput and packet delay information. Computer simulations have demonstrated that the proposed algorithm has 22.7% system capacity improvement over a well-known algorithm. It also tolerates for up to 200% delay of CQI and reduces the uplink signalling overhead by 150% compared to the well-known algorithm without compromising the quality of service requirements of the GBR services. Copyright © 2013 Inderscience Enterprises Ltd

    Transmission Rank Selection for Opportunistic Beamforming with Quality of Service Constraints

    Full text link
    In this paper, we consider a multi-cell multi-user MISO broadcast channel. The system operates according to the opportunistic beamforming framework in a multi-cell environment with variable number of transmit beams (may alternatively be referred as the transmission rank) at each base station. The maximum number of co-scheduled users in a cell is equal to its transmission rank, thus increasing it will have the effect of increasing the multiplexing gain. However, this will simultaneously increase the amount of interference in the network, which will decrease the rate of communication. This paper focuses on optimally setting the transmission rank at each base station such that a set of Quality of Service (QoS) constraints, that will ensure a guaranteed minimum rate per beam at each base station, is not violated. Expressions representing the achievable region of transmission ranks are obtained considering different network settings. The achievable transmission rank region consists of all achievable transmission rank tuples that satisfy the QoS constraints. Numerical results are also presented to provide further insights on the feasibility problem.Comment: To appear in IEEE ICC 2014, Sydney, Australi

    Spectrally and Energy Efficient Radio Resource Management for Multi-Operator Shared Networks

    Get PDF
    Commercial mobile communication systems are mainly based on licensed frequency spectrum, and the license is very expensive as the spectrum is a sparse wireless resource. Therefore, sharing this wireless resource is an essential requirement not only at the present but also in the future considering trends like connectivity for everybody and everything. In this thesis, we study the sharing of wireless resources with different approaches for realizing fair, efficient, and predictable sharing solutions in a controlled manner. The efficient use of wireless channel resources is an important target to reduce the costs of network operation and deployment. To achieve this, we need practical scheduling algorithms for wireless resources, out of which several of them will be presented and analyzed in this work. Different optimization frameworks for the spectral efficiency utility are presented, with an individual focus on guaranteeing resource or rate fairness among the operators in a network with shared radio resources. Thus, the presented proposals will help the mobile network operators to overcome the issues of losing network control and traceability of used wireless resources in a shared environment. Besides this, emerging vertical industries, such as automotive, healthcare, industry 4.0, internet of things (IoT) industries will put a certain burden on the wireless networks asking for guaranteed service level requirement from the mobile network operators. In this regard, this thesis provides the necessary methods addressing these challenges with the help of scheduling methods which are based on the joint optimization of spectral and energy efficiency. Thus, wireless networks will be enabled as a service function in a controlled and scalable way for new emerging markets. Furthermore, the presented solutions t well with the requirements of fifth generation (5G) network slicing
    corecore