14 research outputs found

    Interference-based dynamic pricing for WCDMA networks using neurodynamic programming

    Get PDF
    Copyright © 2007 IEEEWe study the problem of optimal integrated dynamic pricing and radio resource management, in terms of resource allocation and call admission control, in a WCDMA network. In such interference-limited network, one's resource usage also degrades the utility of others. A new parameter noise rise factor, which indicates the amount of interference generated by a call, is suggested as a basis for setting price to make users accountable for the congestion externality of their usage. The methods of dynamic programming (DP) are unsuitable for problems with large state spaces due to the associated ldquocurse of dimensionality.rdquo To overcome this, we solve the problem using a simulation-based neurodynamic programming (NDP) method with an action-dependent approximation architecture. Our results show that the proposed optimal policy provides significant average reward and congestion improvement over conventional policies that charge users based on their load factor.Siew-Lee Hew and Langford B. Whit

    Border Games in Cellular Networks

    Get PDF
    In each country today, cellular networks operate on carefully separated frequency bands. This separation is imposed by the regulators of the given country to avoid interference between these networks. But, the separation is only valid within the borders of a country, hence the operators are left on their own to resolve cross-border interference of their cellular networks. In this paper, we focus on the scenario of two operators, each located on one side of the border. We assume that they want to fine-tune the emitting power of the pilot signals (i.e., beacon signals) of their base stations. This operation is crucial, because the pilot signal power determines the number of users they can attract and hence the revenue they can obtain. In the case of no power costs, we show that there exists a motivation for the operators to be strategic, meaning to fine-tune the pilot signal powers of their base stations. In addition, we study Nash equilibrium conditions in an empirical model and investigate the efficiency of the Nash equilibria for different user densities. Finally, we modify our game model to take power costs into account. The game with power costs corresponds to the well-known Prisoner's Dilemma: The players are still motivated to adjust their pilot powers, but their strategic behavior leads to a sub-optimal Nash equilibrium

    Optimal pricing in a free market wireless network

    Get PDF
    We consider an ad-hoc wireless network operating within a free market economic model. Users send data over a choice of paths, and scheduling and routing decisions are updated dynamically based on time varying channel conditions, user mobility, and current network prices charged by intermediate nodes. Each node sets its own price for relaying services, with the goal of earning revenue that exceeds its time average reception and transmission expenses. We first develop a greedy pricing strategy that maximizes social welfare while ensuring all participants make non-negative profit. We then construct a (non-greedy) policy that balances profits more evenly by optimizing a profit fairness metric. Both algorithms operate in a distributed manner and do not require knowledge of traffic rates or channel statistics. This work demonstrates that individuals can benefit from carrying wireless devices even if they are not interested in their own personal communication

    Energy optimal control for time-varying wireless networks

    Full text link

    Cellular Operators in a Shared Spectrum

    Get PDF
    Due to the increasing number of radio technologies, the available frequency spectrum becomes more and more utilized, hence its clever use becomes a critical issue. Among many proposed solutions, the formulation of the problem as the control of the power of the base stations, also known as the Power Control problem, seems a promising idea. In the present work, we propose to study this problem by first defining a theoretical model. Then, we design a family of non-cooperative games that hopefully stop at a Nash equilibria close to the optimal solution for the network, as well as a few simple tabu search heuristics. We finally developed a java library and a program, in order to experimentally study the behavior of the proposed games and heuristics

    Pricing and efficiency in wireless cellular data networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 98-101).In this thesis, we address the problem of resource allocation in wireless cellular networks carrying elastic data traffic. A recent approach to the study of large scale engineering systems, such as communication networks, has been to apply fundamental economic principles to understand how resources can be efficiently allocated in a system despite the competing interests and selfish behavior of the users. The most common approach has been to assume that each user behaves selfishly according to a payoff function, which is the difference between his utility derived from the resources he is allocated, and the price charged by the network's manager. The network manager can influence user behavior through the price, and thereby improve the system's efficiency. While extensive analysis along these lines has been carried out for wireline networks (see, for example, [10], [7], [23], [29], [21]), the wireless environment poses a host of unique challenges. Another recent line of research for wireline networks seeks to better understand how the economic realities of data networks can impact the system's efficiency. In particular, authors have considered the case where the network manager sets prices in order to maximize profits rather than achieve efficient resource allocation; see [1] and references therein.(cont.) In this thesis, we make three contributions. Using a game theoretic framework, we show that rate-based pricing can lead to an efficient allocation of resources in wireless cellular networks carrying elastic traffic. Second, we use the game theoretic equilibrium notions as motivation for a cellular rate control algorithm, and examine its convergence and stability properties. Third, we study the impact of a profit-maximizing price setter on the system's efficiency. In particular, we show the surprising result that for a broad class of utility functions, including logarithmic and linear utilities, the profit maximizing price results in efficiency.by Shubham Mukherjee.S.M
    corecore