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Introduction

De nos jours, les bandes du spectre d'un réseau sans �l sont a�ectées pour l'usage exclusif
d'un opérateur particulier et pour un objectif précis. Souvent, les opérateurs n'exploitent
pas d'une façon e�cace la bande de fréquence a�ectée pour eux tandis que d'autres
fréquences sont à peine utilisées. Maintenant cette approche monopolistique est sou-
vent critiquée car amène à une utilisation non optimale du spectre. Pour cette raison,
on aimerait considérer le cas pour lequel certains opérateurs doivent partager la même
bande de fréquence. Cette situation pourrait alors être représentée comme un jeu dans
lequel chaque opérateur cherche à maximiser une certaine fonction d'utilité (comme par
exemple l'espace de couverture). En termes de théorie des graphes, les sommets pour-
raient représenter les stations de base et les arêtes une certaine mesure de connectivité qui
re�éterait l'interférence.

But du projet

Le but de ce projet est de modéliser le problème sous forme mathématique et en particulier
sous forme de graphes et de chercher à résoudre le jeu en utilisant les notions d'équilibre
de Nash et d'optimum de Pareto.
Le travail commencera par une recherche de littérature qui déterminera les directions que
le candidat pourra développer ainsi que les voies non encore explorées dans le domaine.
Par la suite, un travail de modélisation mettra en évidence les di�érents problèmes de
théorie des graphes que le candidat étudiera en détail. A côté des résultats théoriques
montrant nos limites et nos possibilités d'apporter une solution au problème formulé, il
est important de pouvoir fournir en un temps raisonnable des solutions su�sament bonnes
pour être utilisées en pratique. C'est pour cela que l'étudiant proposera des heuristiques
pour une résolution approchée.
L'utilisation de la théorie des jeux paraissant prometteuse pour le problème en question, les
notions telles que l'équilibre de Nash et les optima de Pareto seront discutées et comparées
avec la modélisation par les graphes. Un jeu pourra éventuellement être simulé pour des
di�érentes stratégies des deux joueurs a�n de discuter les résultats obtenus.
Les points principaux du projet sont les suivants:
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• Modéliser le problème en termes de théorie des graphes.

• Discuter la complexité algorithmique du problème.

• Résoudre le problème à l'aide des algorithmes heuristiques développées.

• Modéliser le problème en termes de théorie des jeux et discuter les di�érentes notions
qui y sont liées.

• Simuler un jeu en �xant une stratégie pour chaque joueur et commenter les résultats
obtenus.

Rapport et présentation orale

Le candidat suivra les indications du professeur et des collaborateurs responsables et les
mettra au courant de l'avancement du projet au moins une fois par semaine. Une
présentation intermédiaire du travail sera �xée ultérieurement.

Chaque phase du projet sera détaillée dans un rapport à remettre en 4 exemplaires le
vendredi 24 février 2006 à midi au plus tard. Le rapport contiendra les points suiv-
ants:

1. la présente donnée du sujet;

2. une introduction didactique et motivée du travail;

3. une explication détaillée des résultats mis en évidence ainsi que leur intérêt.

4. les performances obtenues par les méthodes développées avec interprétation des
résultats et comparaison avec d'autres méthodes le cas échéant.

5. des suggestions pour une extension et un approfondissement du sujet.

6. une bibliographie (avec des références précises).

7. un CD ou une disquette contenant la version électronique du rapport, les sources
LATEX, ainsi que les codes sources des programmes développés.

Références

• Magnus H. Halldorson, Joseph H. Halpern, Li (Erran) Li, Vahab S. Mirrokni: "On
Spectrum Sharing Games", Proc. ACM Symposium on Principle of Distributed
Computing (PODC), pages 107-114, St.John's, Newfoundland, Canada, July 2004.

• Mark Felegyhazi, Jeaan-Pierre Hubaux: "Wireless Operators in a Shared Spec-
trum", EPFL IC Technical Report (IC/2005/040)
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Abstract

Due to the increasing number of radio technologies, the available

frequency spectrum becomes more and more utilized, hence its clever

use becomes a critical issue. Among many proposed solutions, the

formulation of the problem as the control of the power of the base

stations, also known as the Power Control problem, seems a promising

idea.

In the present work, we propose to study this problem by �rst de�n-

ing a theoretical model. Then, we design a family of non-cooperative

games that hopefully stop at a Nash equilibria close to the optimal so-

lution for the network, as well as a few simple tabu search heuristics.

We �nally developed a java library and a program, in order to experi-

mentally study the behavior of the proposed games and heuristics.
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1 Introduction

Due to the increasing number of radio technologies, the available frequency
spectrum becomes more and more utilized, and therefore we need to �nd new
and original solutions to satisfy everybody's need, using only a limited range
of available frequencies. For instance, today's cellular operators have each
a di�erent and non-overlapping frequency band and do their best to use it
in an e�cient way. However, although widely used, this a�ectation globally
leads to a non-negligible amount of frequency ranges being wasted.

In the present work, we propose to solve this problem by allowing all
operators to use the same frequency range. Since this approach leads to
interferences between emitting base stations, it is necessary to �nd a way
to limit the interferences by only controlling each existing base station's
emission power, while keeping a good coverage of the network. In our paper,
we will refer to this problem as the power control problem. For this purpose,
we �rst de�ne a model. Then, we propose games where the base stations
are non-cooperative players, as well as simple tabu search heuristics that
could be used by an organizing entity having the authority to set each base
station's power. We �nally study the behavior and e�ciency of these games
and heuristics through a set of simulations.

Here is a brief summary of the topics covered in the present work:

Section 2: Previous works in closely related �elds are presented.

Section 3: Fundamental components of our model, namely the network and
the interference, are de�ned.

Section 4: The �rst modeling attempt, using edge-deletion, is described.

Section 5: The second modeling attempt, using node-deletion, is described.

Section 6: The �nal model, used throughout the rest of this work, is pre-
sented and discussed.

Section 7: Our game theoretical approach to this problem is explained.

Section 8: A global description of the developed program is given, as well
as informations on some of its key features.

Section 9: The set of the performed simulation is described

Section 10: The results of the simulations are discussed

Section 11: Proposals for further research are developed.

Section 12: A broader and �nal look at the present work is proposed.

Appendices: Extra information on the programs developed during the course
of this project is given.
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2 State of the Art

Recent technological developments have opened up new telecommunication
possibilities. This has crowded the available range of frequencies allocated
to operators. Saturation of available frequencies lead to new research for a
better use of radio frequency. As the �eld is very innovative and telecommu-
nication technologies are constantly improving, many papers exist on various
new ways to tackle the numerous problems encountered.

This present work studies the Power Control problem in a brand new way.
But this problem has already been approached from many di�erent angles,
for instance in [1] where the point of interest is to determine where in the
architecture the Power Control problem is to be situated, to determine the
appropriate power level by studying its impact on several performance issues
and �nally to provide a software architecture for realizing the solution.

On the other hand, [2] proposes an optimization of the pilot power through
a mathematical programming approach of this problem, in particular when
subject to full coverage. It achieves to show that optimized power levels yield
substantial savings in total power consumption when compared to using a
uniform pilot power.

In the context of a di�erent problem, [3] also studies the assignment of
users to base stations and the power at which they need to emit in order
to connect to their respective base stations. A survey of di�erent network
design problems and methods is provided in [4].

Furthermore, some researchers are interested in applying problems from
graph theory on the �eld of wireless communications system, such as the
Maximum Independent Set problem [5] and the Facility Location problem [6].
This is also the case in [7] where the Power Control problem is tackled by
formalizing it as a Minimum Membership Set Cover problem. That article
proves that the optimal solution of their problem cannot be approximated
in polynomial time closer than with a factor ln n. It also presents an algo-
rithm exploiting linear programming relaxation technique which asymptoti-
cally matches this lower bound.

It is also of interest to cite [8], which gives us insights on the complexity of
some of the models that we develop. That article shows that for properties
that are hereditary on induced subgraphs and several of their restrictions,
the node-deletion problem is NP-complete. However, edge-deletion problems
seem to be less amenable to such generalizations, although for some common
properties (planar, outer-planar, line-graph, transitive digraph) it has been
proved to be NP-complete.
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Finally, some researchers use game theory to study the behavior of play-
ers in the network (usually the service providers), as in [10] or in [9]. In
the latter one, the service providers decide the power of the pilot signal of
their base stations. That article �rst identi�es possible Nash equilibria in a
theoretical setting in which all base stations are located on the vertices of a
two-dimensional lattice. It also shows that when this topological assumption
is relaxed, �nding the Nash equilibria is an NP-complete problem. Finally,
it proves that a socially optimal Nash equilibrium exists and that it can be
enforced by using punishments.

Another problem, the Channel Assignment problem of access points in a
WiFi network, is viewed in [12] as a game. That article provides bounds on
the price of anarchy depending on assumptions on the underlying network
and the type of bargaining allowed between service providers. The key tool
in the analysis is the identi�cation of the Nash equilibria with the solutions
to a maximal coloring problem in an appropriate graph.

Finally, [11] surveys the recent literature on game theoretic analysis of ad
hoc networks, highlighting its applicability to power control, medium access
control, routing and node participation, among other subjects.
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3 De�nition of the Power Control Model's Fun-

damental Components

In order to construct a good model, we need to identify clearly the building
blocks with which we are going to work.

3.1 Network and Base Station

We make the following assumptions with respect to the communication sys-
tem. We �rst assume that there exists a cellular wireless system (the network)
with a few operators. Each operator controls a set of base stations. There
also exists a set of users, each controlling a wireless device. These users want
to use the wireless communication service provided by the base stations of
the operators, and are able to attach to any base station of any operator.
The radios of the users and the base stations are compatible. Furthermore,
the users have the possibility to freely roam across the base stations, inde-
pendently of the operators.

For example in Lausanne's cellular network, the base stations would be
the antennae laid by the three usual operators (Swisscom, Orange and Sun-
rise), and a user would be anyone using a mobile phone within that area.

Every base station has a �nite service area around it, within which its sig-
nal can be received and used. Outside of this area, the signal is so weakened
that it just blends in the ambient noise. In this project, this area is mod-
eled as a circle centered on a base station and having a �xed radius named
threshold distance dthresh .

Figure 1 presents an example of a network1, where each color represents
a di�erent operator. Moreover, the edges represent the potential interactions
between neighbor base stations, i.e. base stations that are closer than the
threshold distance and hence can alter each other's transmission quality,
depending on their respective emission power.

3.2 Interference

We also need to de�ne a way to measure the quality of a transmission. The
Signal to Interference plus Noise Ratio (SINR) is widely accepted as the
standard measure of the quality of the signal originating from base station A
and received by user u, which is being disturbed by other base stations Bi

(see [9]). Note that u is in the range of A and all the Bi. In the following

1This image is a screenshot of a network randomly generated with our program and
displayed in a window.
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Figure 1: Example of a network with three operators.

formula, PA is the emission power of a base station A, du,A is the distance be-
tween the user and base station A. The Gaussian thermal noise constant N0

is almost negligible. The path loss constant α is between 2 and 5. In fact,
both constants depend of the radio signal propagation property of the envi-
ronment.

SINRu(A) :=
PA · d−α

u,A

N0 +
∑

i PBi
· d−α

u,Bi

In this present work, unlike in [9, 10], we do not model the users. Hence,
it is necessary to de�ne a new way to measure the e�ect of the signal of one
base station on the transmission of another, without using the quality of the
signal received by an explicit user.

We propose to introduce the notion of individual interference of base
station B over base station A (where A and B are neighbors), de�ned as
follows:

I(PB, PA, dB,A) :=
PB · d−α

B,A

PA · d−α
ref

This expression can be interpreted as the inverse of the SIR 2 of an imag-
inary user at a very short theoretical reference distance (dref) from the base
station A from which it is trying to receive a signal, while being disturbed
by the emission of B. In a cellular network for instance, the distance from

2The SIR is the SINR with N0 = 0.
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the imaginary user u to A (= du,A = dref) would be 1 meter, compared to
the distance to B (= du,B) which would be in hundreds of meters. Therefore,
here we approximate du,B = dB,A (see �gure 2).

Figure 2: Individual interference of base station B over base station A, with
imaginary user u.

The interference thus de�ned has also the following expected behavior: it
increases when either PB increases, PA decreases or when the distance dB,A

increases.
In addition, for a given allocation of power s to each base station, we

de�ne the Interference over A, written Is(A), which is the sum of all the
individual interferences over A from the neighbor base stations Bi, plus a
noise factor.

Is(A) :=
∑

i

I(PBi
, PA, dBi,A) +

N0

PA · d−α
ref

We also get the following property for an imaginary user u at a reference
distance dref of A:

Is(A) =
∑

i

I(PBi
, PA, dBi,A) +

N0

PA · d−α
ref

=

∑
i PBi

· d−α
Bi,A

+ N0

PA · d−α
ref

'
∑

i PBi
· d−α

u,Bi
+ N0

PA · d−α
u,A

=
1

SINRu(A)

One can now clearly see the relation that is being established with the
SINR. The advantage of the Interference over the SINR is that it can be
decomposed into contributions from all interfering base stations.
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For example, in a graph representation of this network with directed
edges between neighbor base stations, the edge (A, B) could have a weight
of I(PB, PA, dB,A). Suppose also that an auxiliary node X is added, with an
outgoing edge toward each base station A of the network with a weight N/PA

and no incoming edges (see �gure 3). You �nally obtain a graph where the
sum of the incoming edges to a node A is equal to Is(A). And if you add the
weight of all edges in the network, you get the sum of all the interferences in
the network. You can relate this representation to the �nal model described
later in section 6.

Figure 3: Directed weighted graph, with edges representing the non-null
interference between base stations and an auxiliary node X for the noise
factor.

3.3 Power Control and Setting

In our case, the base stations are already positioned and we are consequently
not interested in the facility location problem (although we also propose later
on to study the e�ect of the placement in space of the base stations). Our
optimization of the global quality of the transmissions in a given network
will only be through the control of the emitting power of each base station.

In order to simplify our task, we de�ne a �nite set of power levels P that
can be chosen by each base station. Moreover, to compensate partially the
signal decay3 that is in 1/dα, we de�ne an exponential sequence of r power

3Recall that α is between 2 and 5
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levels P = {P1, . . . , Pr}, ending with a given maximum power level Pmax:

P1 =
Pmax

2(r−1)

...

Pi =
Pmax

2(r−i)

...

Pr = Pmax

We �nally introduce the term setting, which corresponds to allocating an
emission power from the set P to every base station.
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4 Early Models: First Attempt (based on Edge-

Deletion)

In this section and the following one, we present two models that we designed
in the early stages of our research. They propose a formulation of our problem
expressed as either an edge-deletion or a node-deletion problem. But as we
were not fully satis�ed with both designed models, we eventually decided to
try a di�erent approach (see the �nal model in section 6). For this reason,
we did not study any of the theoretical properties of these early models, but
preferred to move on to something that looked more promising.

4.1 De�nition of the Edge- and Node-Deletion Problem

The node-deletion (resp. edge-deletion) problem can be stated as follows:

De�nition 1 (node-deletion problem, edge-deletion problem)
Given a graph G (directed or not), �nd a set of nodes (resp. edges) of mini-
mum cardinality, whose deletion results in a subgraph satisfying a given prop-
erty π.

A property that is satis�ed by a single node, but not by any possible
graph, is said to be non-trivial . Also, if there exists arbitrarily large graphs
satisfying that property, it is called interesting .

An other kind of property worth of studying are the ones that are heredi-
tary on induced subgraphs , i.e. for a graph satisfying property π, the deletion
of any node does not result in a graph violating π. A detailed study of the
complexity of such properties is presented in [8].

4.2 Mutual Disturbance

Our very �rst model uses a virtualmutual disturbance function m(PA, PB, dA,B).

De�nition 2 (mutual disturbance function, value)
We de�ne the mutual disturbance value between to base stations as the result
of a function m

m : (0, Pmax]× (0, Pmax]× R∗
+ −→ R∗

+

(PA, PB, dA,B) 7−→ m(PA, PB, dA,B)

satisfying:

1) m(PA, PB, d) = m(PB, PA, d)
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2) m(PA, PB, d) ≤ m(P
′

A , PB, d) if PA ≤ P
′

A

3) m(PA, PB, d) ≥ m(PA, PB, d
′
) if d ≤ d

′

4) if m(PA, PB, d) ≤ m(PA, PC , d) then
m(P

′
A , PB, d) ≤ m(P

′
A , PC , d) ∀P ′

A ∈ (0, Pmax]

This means that by lowering one or both emission powers of a pair of
base stations, their mutual disturbance value would eventually fall below a
given threshold δ.

4.3 Representation

In this model, we �x a δ ∈ R∗
+ and we initially have an undirected graph

GE(VE, EE) where the nodes in VE represent the base stations, and there is
an edge in EE between two nodes if and only if the mutual disturbance value
of the corresponding pair of base stations with power Pmax for both of them
is higher than δ.

4.4 Objective

We �rst start with a solution where all the base stations are set to the
maximum power Pmax. Our objective is to have a graph with every node's
degree being at most k, k being a integer that we have chosen. This can be
achieved by iteratively choosing lower power settings (not necessarily in the
set P , which is not used in this model) for the base stations, resulting in a new
graph with mutual disturbance values between pairs of base stations lower
than previously, some being now below the threshold δ and thus not requiring
to be represented by an edge between the corresponding base stations.

This means that we try to limit the number of very high disturbance in
the network that each base station takes part in.

4.5 Edge-Deletion Formulation

One problem we face when we try to express our problem as an edge-deletion
problem is that we cannot delete any edge at any time. In fact, for the
obtained solution to make sense, we can delete an edge (A, B) if and only if

B = argmin
C∈N (A)

m(PA, PC , dA,C) (1)

or

A = argmin
C∈N (B)

m(PB, PC , dB,C) (2)

20



where N (A) represents the set of all the nodes connected to A by an edge.
If (1) is true, then we lower base station A's power until its mutual dis-

turbance value with B is lower than δ, but its mutual disturbance value with
the other base stations in N (A) is still higher than δ (this is possible because
of (1) and the fourth condition in the de�nition of the mutual disturbance
function). Conversely, if (2) is true, we should lower B's power in the same
way. Finally, if both (1) and (2) are true, we can choose which base station's
power we decide to lower.

For this reason, we cannot call our problem a true edge-deletion problem,
because we need to generate at every step a subset of edges that we are
allowed to delete.

4.6 Other Drawback of this Model

The idea of an undirected mutual disturbance between two base stations,
although conceptually pleasant, is hard to interpret or justify in the case of
a cellular wireless system. Consequently, we decided to abandon this model
(without doing any analysis of its complexity) and preferred to search for a
more realistic and satisfying one.

21



5 Early Models: Second Attempt (based on

Node-Deletion)

In this section, we present the second model that we designed, this time using
node-deletion (de�ned in section 4.1) and the notions developed in section 3.

5.1 Representation

In this model, we �x a β ∈ R∗
+ and we use the set of power levels P =

{P1, . . . , Pr} de�ned in section 3.3. We have a directed graph GN(VN , EN),
where for each base station A, we have r power nodes A1 through Ar, each of
them representing the corresponding power level P1 through Pr. There are
two kinds of edges between power nodes of VN (see also �gure 4):

1) Between power nodes associated with di�erent base stations, if the
distance d between base station A and B is smaller than the thresh-
old distance, then there exists a directed edge (Ai, Bj) if and only if
I(Pi, Pj, d) > β.

2) Between power nodes associated with the same base station A, for every
pair of power nodes Ai and Aj, we put n directed edges (Ai, Aj) and n
directed edges (Aj, Ai), where n is the number of base stations in our
network.

Figure 4: Network with two base stations (n = 2) and three power levels
(r = 3).
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5.2 Objective and Node-Deletion Formulation

We �rst choose an integer k between 0 and n−1. Our objective is to have an
induced subgraph with every power node's number of incoming edges being
at most k. As k < n, such a solution would naturally have at most one power
node Ai per base station, because of the second type of edges. We consider
the base stations that have no power node left in the solution's subgraph to
be inactive, i.e. not used in the obtained network.

This means that we try to limit, for each base station, the number of base
stations interfering over it with an interference value above β.

In this case, we clearly see that this problem can be formulated as �nding
the minimum number of power nodes to delete in order to have the subgraph
satisfying our condition.

5.3 Other Bounds Considered

We also considered other bounds for each power nodes, such as:

• The number of outgoing edges (to power nodes associated with di�erent
base stations) must be at most k.

• The number of incoming edges must be at most k− and the number of
outgoing edges must be at most k+.

• the sum of the number of incoming and outgoing edges must be at
most k. In this case, we need to put 2n edges in each direction between
power nodes associated with the same base station.

5.4 Complexity

The node- and edge-deletion problem have been thoroughly studied in [8],
depending on particular aspects of the property π. We present here one
important result:

Theorem 1 (theorem 1, page 254 in [8])
The node-deletion problem for a non-trivial, interesting property π that is
hereditary on induced subgraphs is NP-complete.

As the property "with maximum incoming degree k" (or the three other
bounds on degrees proposed in section 5.3) is clearly non-trivial, interest-
ing and hereditary on induced subgraphs, this theorem holds for our node-
deletion problem.
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5.5 Main Drawback of this Model

Although we managed to express this problem truly as a node-deletion prob-
lem, it also has a problem with the way we use to describe how the base
stations disturb one another's transmission.

For instance, suppose that a base station A has many neighboring base
stations with their interference a little lower than the threshold. In this
case, A has no incoming edges although there is a huge interference over it.
Conversely, a base station B with a single neighbor which has an interference
over B that is slightly higher than the threshold, has an incoming edge from
his neighbor and appears to be in a worse position than A, although this is
not the case in reality. Thus, �xing a threshold β is not always useful.

Therefore, in the following and �nal model, we decided not to use anymore
a threshold, but preferred directly expressing the interference of one base
station over an other one by a weighted directed edge. Unfortunately, with
such a model we could not �nd anymore a formulation based on either node-
or edge-deletion.
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6 Final Model

After several attempts, we �nally decided to forget the node- or edge-deletion
formulation, because they seemed to necessitate the use of some kind of
threshold in the relation between pairs of base stations, which usually gave
us an unrealistic model. We therefore present this �nal model which we think
is much more applicable and close to a real-life network situation than the
two previous ones.

6.1 Preliminary De�nitions

In order to express the �nal model in a precise mathematical way, we �rst
need to de�ne a few symbols:

• P = {P1, . . . Pr} is the set of available power levels,

• R = {1, . . . r} is the set of exponents used to de�ne power levels

• V = {A, B, . . . } is the set of all base stations in the network,

• xA,i ∈ {0, 1} , which represents base station A with a power setting
of Pi when xA,i = 1,

• wxA,ixB,j
=

{
I(Pi, Pj, dA,B) if A and B are neighbors,
0 else.

• ni = N0/Pi

Note that a base station is not considered to be its own neighbor.
With these notations, we have a setting s for our network when for each

base station A, exactly one xA,i equals 1 and the rest equals 0. When we
have such a setting, the Interference over A can be expressed by the following
formula:

Is(A) =
∑
B ∈V

∑
i,j ∈R

wxB,ixA,j
xB,i xA,j +

∑
j ∈R

nj xA,j

6.2 Formulation

We now propose two di�erent objective functions for our problem. The �rst
one tries to minimize the sum of the Interference over each base station. It
also makes the problem a quadratic binary program. On the other hand, the
second one optimizes an equally justi�able idea: maximizing the sum of the
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inverse of the Interference over each base station, which can be related to the
signal quality (SINR) of a user nearby that station and attached to it.

The second objective function was formulated based on the preliminary
series of tests that were carried out using only the �rst one. These tests and
their results are discussed in section 6.4.

1) First Version: Interference Minimization (IMin)
or minimization of the sum of the Interferencesobjective functions)

min z1 =
∑

A ∈V

 ∑
B ∈V

∑
i,j ∈R

wxB,ixA,j xB,i xA,j +
∑
j ∈R

nj xA,j



s.t.
∑
i∈R

xA,i = 1 , ∀A ∈ V

∑
B ∈V

∑
i,j ∈R

wxB,ixA,j xB,i xA,j +
∑
j ∈R

nj xA,j ≤ β , ∀A ∈ V

xA,i ∈ {0, 1} , ∀A ∈ V and

∀ i ∈ {1, . . . , r}

2) Second Version: Signal Maximization (SMax)
or maximization of the sum of the SINRs

max z2 =
∑

A ∈V

1(∑
B ∈V

∑
i,j ∈R wxB,ixA,j xB,i xA,j +

∑
j ∈R nj xA,j

)

s.t.
∑
i∈R

xA,i = 1 , ∀A ∈ V

∑
B ∈V

∑
i,j ∈R

wxB,ixA,j xB,i xA,j +
∑
j ∈R

nj xA,j ≤ β , ∀A ∈ V

xA,i ∈ {0, 1} , ∀A ∈ V and

∀ i ∈ {1, . . . , r}

Any feasible solution to one of these program should at least be a setting,
which corresponds to picking an emission power from the set P for each base
station. This is enforced by the essential constraint:∑

i∈R

xA,i = 1 , ∀A ∈ V (3)

26



There is also an upper-bound constraint β on the value of the Interference
at each base station:∑

B∈V

∑
i,j∈R

wxB,ixA,j
xB,i xA,j ≤ β , ∀A ∈ V (4)

which equivalently means that the quality of the signal quality should be
higher than a minimum value. One can optionally set β = ∞, the problem
being then called unconstrained.

6.3 Possible Graph Representation

We can represent this problem in a graph GF (VF , EF ), where VF is the set
of power nodes corresponding to each base stations (as in the node-deletion
model in section 5.1). If base station A and B are separated by a distance d
smaller than the threshold distance, than there exists a weighted directed
edge (Ai, Bj) in EF between the pairs of power nodes of these two base
stations, with the value I(Pi, Pj, d). We also include the auxiliary X node of
the previous model, for taking into account the noise factor.

In this context, a setting corresponds to an induced subgraph where every
base station is represented by exactly one power node, and the X node is
present. Consequently, the sum of all the weights of the edges present in
this subgraph is equal to the value of that setting with the �rst objective
function.

Also note that we do not allow base stations to be turned o� (for reasons
explained in the following section), a property expressing this would therefore
not be hereditary, and thus is beyond the scope of [8].

6.4 Preliminary set of Results and their Implications

It is very interesting to analyze the preliminary set of tests that led us to these
two non-equivalent formulations of the problem, with two di�erent objective
functions.

When we �rst designed this model, we only considered the Interference
minimization objective function, and we also incorporated an additional con-
straint for maintaining a good coverage everywhere. We also allowed some
base stations to be turned o� (and hence have no interference over them),
as long as the area around them was covered in a satisfactory way by other
neighboring base stations.
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6.4.1 Uniform Setting of Power

After running a series of test with a brute force algorithm �nding an optimal
solution on a few randomly generated networks with 5 base stations and 3-4
levels of power, we observed that:

- in the unconstrained case, the best solution is obtained by setting some
of the base stations to Pmax, and the others are turned o�.

- when we progressively lowered the upper-bound, the network tended
to react by chunks, meaning that base stations that were close to each
other would act similarly, i.e. change together to the same level.

This is partially due to the following property: consider a network com-
posed of only two base stations that are set at the same power setting Pi and
where we neglect N0. We get an objective function value of

Is(A) + Is(B) =
PB · d−α

B,A

PA · d−α
ref

+
PA · d−α

A,B

PB · d−α
ref

=
Pi · d−α

B,A

Pi · d−α
ref

+
Pi · d−α

A,B

Pi · d−α
ref

= 2 ·
d−α

A,B

d−α
ref

When we move away from this uniformly distributed power setting solu-
tion, for example by setting the power of B one power level lower (i.e. by
dividing its power by two, see section 3.3), we get

Is′(A) + Is′(B) =
Pi/2 · d−α

B,A

Pi · d−α
ref

+
Pi · d−α

A,B

Pi/2 · d−α
ref

= (2 +
1

2
) ·

d−α
A,B

d−α
ref

which is higher than our previous solution, and thus less good. This lead
us to the intuition that the uniform maximum power level is the optimal
solution in the unconstrained case for Interference Minimization.

We �rst tried to prove mathematically that intuition, but all our attempts
have remained unsuccessful so far. Then, we tried to use �ner power level
sequences, as well as other sequences, without managing to �nd better solu-
tions that would di�er from the uniform one, thus giving some more credits
to our �rst observations. Therefore, we propose this as an open question for
further research on this topic.

This also motivated us to consider an alternative objective function which
would have another less trivial optimal solution in the unconstrained case.
We chose the Signal Maximization objective function, because it makes equally
sense in the context of our problem and it uses the same notions as the previ-
ous objective. However, the �rst objective remains much easier to understand
and interpret in the context of a graph.
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6.4.2 (Almost) Equivalent Solutions

One can easily show that given a setting, an almost equivalent but better
solution is obtained by setting each base stations' power one level higher
(only when this is possible for all base stations, of course). The two solutions
di�er only by a very tiny value, due to the noise component, and are even
exactly equal when N0 = 0.

Another related e�ect worth of noticing is that when only one base sta-
tion's power is lowered one level, the Interference over this base station dou-
bles.

6.4.3 Coverage Constraint and inactive Base stations

We also tried to include an extra constraint on the coverage of the area.
However, we could not come up with a satisfactory expression of the quality
of the coverage around a base station, and we �nally gave up that idea after
a few series of tests.

In solving Interference Minimization problems, having a base station
turned o� is very interesting, since the interference over it is de�ned as null.
In fact, the extreme case of all base stations being turned o� constitutes
the absolute best solution when there is no coverage constraint. Therefore a
coverage constraint is necessary if turning o� some base stations is allowed.
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7 Game Theory

We present general notions of game theory and we describe the game we use
with our model.

7.1 General Game Theory De�nitions

We de�ne a strategic-form game as follows:

De�nition 3 (strategic-form game)
A very general de�nition of a strategic-form game is any Γ of the form

Γ =
(

N, (Ci)i∈N , (ui)i∈N

)
where N is a non-empty set of players in the game and Ci is the non-empty
set of strategies available to the player i. A strategy pro�le c = (cj)j∈N

is a combination of strategies that the players in N might choose in C =
×j∈N Cj . The utility function ui of player i is a function ui : C −→ R
representing the utility payo� for the player i for this pro�le.

To play the game, each player simultaneously chooses a strategy (usually
the strategy that maximizes its expected utility payo�), resulting in a strategy
pro�le c. The outcome of the game for each player is the value of its utility
function for the strategy pro�le c.

We also de�ne an additional notion very common in game theory.

De�nition 4 (Nash equilibrium, stable strategy pro�le)
A strategy pro�le c is a Nash equilibrium (or is called stable) if and only if no
player can improve his utility by unilaterally deviating from c and choosing
an other strategy for himself while the other players keep their initial strategy.

Finally, we also de�ne:

De�nition 5 (price of anarchy)
The price of anarchy is the ratio between the quality (from a global point
of view) of the strategy pro�le obtained with the worst Nash equilibrium of
the game, and the best quality that would be obtained with a strategy pro�le
chosen by a central authority.

7.2 Game Played in Our Model

In the game we design for our model, the players are the base stations, and
the set of available strategies for each player is the set of emission power P at

30



which this base station can emit4. Therefore, a strategy pro�le is equivalent
to a power setting, and we will by extension say that a setting is stable if
its corresponding strategy pro�le is stable. The utility functions we use are
described in the next sections.

However, we do not play exactly as in the de�nition of a strategic-form
game, but rather sequentially pick more or less randomly a player (i.e. base
station) and try to maximize its utility value by changing only its strategy
in the global strategy pro�le. We repeat this process in�nitely unless a Nash
equilibria is reached, in which case we stop the game. This can also be
considered as a Nash-program, used to �nd Nash equilibria in a strategic-
form game.

7.3 Utility Functions Used

We present here �ve di�erent utility functions, three of which we will test in
our simulations.

First of all, we need to de�ne the positive increasing function f for a given
upperbound constraint β < ∞:

f(x) =

{
log(x · β) if x ≥ 1

β

0 else

When β = ∞, we de�ne this function as f(x) = log(1 + x). The para-
meter x here is meant to represent an estimation of the quality of the signal
with 1/Is(A), and if this value is below the threshold of 1/β, the value of the
function f should be zero (see �gure 5).

Figure 5: Graph of the function f with β < ∞.

We also de�ne g(y) = f(1/y) and F(A) as the set of neighbor base
stations of A that also belong to its operator.

Given a strategy pro�le c (and its equivalent setting s), the utility func-
tions of a base station A should depend (at least partially) on the Interfer-
ence Is(A) over itself. The �rst two functions we de�ne are:

4An alternative game we could have designed would have the operators as the players.
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• SINR : u1,A(c) = 1/Is(A))
We directly use the estimation of the SINR of a user at 1m of the base
station.

• base : u2,A(c) = g(Is(A))
We use the function f to obtain a utility of zero if the Interference I(A)
is higher than β.

The following three functions try to also take into account for a base
station the e�ect of its strategy on the base stations that belong to the same
operator. Thus the next utility functions are not purely egoistical anymore.
The parameter γ is used to put the emphasis on either the base station or
its neighbors, its default value being γ = 1.

• baseWithFriends :

u3,A(c) = g(Is(A)) + γ ·
∑

B∈F(A) g(Is(B))

We add to the base of A the sum of the base for its friends.

• baseWithFriendsScaled :

u4,A(c) = g(Is(A)) + γ ·
P

B∈F(A) g(Is(B))

|F(A)|

We add to the base of A the average of the base for its friends.

• basePlusOperatorNeighbourhood :

u5,A(c) = g(Is(A)) + γ · g(Is(A))+
P

B∈F(A) g(Is(B))

1+|F(A)|

We add to the base of A the average of the base for its friends and
also its own.

7.4 Very Important Observation

It is crucial to realize that the �nal settings obtained do absolutely not depend
on whether we are trying to solve the Interference Minimization or the Signal
Maximization! It is only the utility function, in conjunction with the way
the next considered base station is chosen at each step during the game, that
hopefully guides the players to a Nash equilibrium.

Our main goal is to design good utility functions that hopefully reach Nash
equilibria close to the optimal setting for the network, either for Interference
Minimization or Signal Maximization.
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8 Program Implementation

In order to run a big number of simulations on our model, we developed
a library and some interfaces in Java. In this section, we will �rst give
some general information on the program and its components. Then, we
will explain how the games (or more precisely the Nash-programs) and some
other heuristics we implemented work.

8.1 General Information

8.1.1 Software and Hardware

The program we developed was written in java 1.5 (or equivalently java 5.0,
following the new terminology). The graphical possibilities o�ered by java
enabled us to easily visualize in a window the networks we were working
on. The simulations were performed on a Dell computer with a 600 MHz
Intel Pentium III processor and with 128 MB of RAM. Finally, the data was
processed using Matlab.

8.1.2 How to Use the Source Code on the CD

As there are many parameters that need to be set for a run, the option we
chose was to set all the parameters in the interfaces' source code and to
re-compile it each time. Therefore, in the case of MultipleRunLauncher, a
mechanism was included that copied the custom-edited source code of the
interface each time it was run so that one could reuse it.

The easiest way to use the provided source code would be to:

1. copy the whole content of the all folder on the CD to a new folder on
your hard-drive.

2. replace the default MultipleRunLauncher.java �le in that folder with
the MultipleRunLauncher.java of the run you wish to reproduce

3. compile all the �les WITH an up-to-date compiler for java 1.5

4. call the program with the command:
java -classpath . MultipleRunLauncher true

The reader is encouraged to edit the source code of the interfaces if he wants
to perform some runs of his own.5

5Please, feel free to e-mail me if you have any questions or concerns, at:
sivan.altinakar@ep�.ch
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The model representation and algorithm classes can also be used as li-
braries for other programs. A simple graphical interface is currently under
development. It will be used to present, during the �nal defense, small ex-
amples of what can be done with the tools that were created in the course
of this project.

8.2 Overview of the Classes

The source code is divided in 4 categories: model representation, algorithms,
interfaces and useful tools. The idea was to write some sort of a library
of objects and methods (i.e. model representation group), on which the
di�erent algorithms, namely games and heuristics (second group), would be
built. Finally, we wrote some speci�c programs (or interfaces) to use those
algorithms in the desired way. For instance, SharedSpectrumSolver is a
simple testing program, and on the other side, MultipleRunLauncher is a
very elaborate program capable of performing thousands of consecutive runs
with a set of con�gurations to test on a particular network, and which also
outputs the results in several di�erent formats, some meant to be understood
by humans, some others immediately ready to be processed in a program such
as Matlab.

In the appendices, we provide a complete list of the di�erent classes with
their speci�c features.

8.3 Games and Algorithms Implementation

In �gure 6, we explain how a game is implemented, as well as a parallel
simple heuristics that consists of keeping in memory the best strategy pro�le
encountered so far (with respect to one of our objective function)6.

In the rest of the text, we will call the act of one base station changing
its strategy a move.

In our procedure, there are three stopping criteria. The �rst one is the
usual maximum number of iteration that should be performed. The second
one is that the current strategy pro�le is a Nash equilibrium (i.e. after the
previous move, all the base stations had a chance to change their strategy,
but did not do it). The third one is a maximum number of iteration to
perform which do not result in a move after the last move.

The choice of the base station at each iteration can be done in di�erent
ways. The ones we used are discussed in section 8.5.

6This is done in the abstract superclass Algorithm.
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Program

Initialization: the parameters needed are

- the network on which to work
- the objective function, either Interference Minimization or Signal
maximization

- the upperbound constraint β (if de�ned)

- the initial strategy pro�le (=power setting)

- the parameters of the game and the heuristic (utility function,
choice of next base station,...)

Result:

- the �nal strategy pro�le reached (result of the game)

- the strategy pro�le encountered that had the best objective func-
tion value (result of the algorithm)

Procedure:
While a stopping criteria is not met, perform the steps

1. choose a base station
(using the selected procedure for choosing the next base station)

2. choose a strategy for this base station
(using the selected utility function)

3. update the best strategy pro�le encountered
(if necessary)

Figure 6: Overview of the program used for performing one simulation.

Finally, we also implemented a method7 that �nds the optimal solution
value for networks with at most 10 base stations and 7 power levels. This
allows us to compare the quality of the solutions we �nd with our games and
algorithms to the optimal one.

8.4 Additional Fine-Tuning Capabilities

We can further control and change the behavior of a game or heuristic by
limiting the number of strategies that a base station can move to. We do this
by de�ning a range which speci�es how many power levels below and above

7In the class BruteForce.
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its current level a base stations can use to try to maximize its utility. The
point of this would be to control the number of iterations needed for a base
station to change from a given strategy to an other one, because by changing
too fast (or immediately), it would maybe not allow the other base stations
to progressively adapt to its move, thus not allowing the group to globally
move to a good strategy pro�le.

Another option we implemented is the possibility to keep a tabu list in
which we put base stations after we have chosen them at an iteration. Base
stations are maintained in that list for a predetermined number of iteration
after they have been chosen, and they cannot be chosen for a future iteration
during that time. With this element, our heuristics becomes a very simple
tabu search.

8.5 Di�erent Ways to Choose the Next Base Station

We de�ned four di�erent procedures , or ways to choose a base station at
each iteration. The �rst two are oriented toward simulating games, while the
other two are more oriented toward very simple tabu searches8.

• RandomSearch

At each iteration, chooses randomly a non-tabu base station. Stops
when no move has been observed for more than n iterations, where n
is �ve times the total number of base stations.

• SequenceSearch

Orders randomly the base station in a sequence, and then cycles through
that sequence until no move has been performed for a whole cycle. This
results in a �nal solution that is a Nash equilibrium or stabilized.
(Note: a tabu list is meaningless in this case.)

• GlobalTabuSearch

At each iteration, chooses the non-tabu base station with the least util-
ity. Stops when no move has been observed for more than n iterations,
where n is size of the tabu list plus 3. This means that the algorithm
has started cycling in the tabu list.
(Note: this algorithm uses no random numbers, and thus when repeat-
edly applied on a network with the same initial solution, it will always
produce the same outcome.)

8These procedures are implemented in the class MultipleRunAlgorithmCore as sub-
classes of the TabuSearchCore class with some of its parameters set by default, in order
to get the expected behavior in each case.
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• DistributedTabuSearch

At each iteration, �rst chooses an operator randomly (respecting the
proportion of base stations owned by each operator), then chooses the
non-tabu base station with minimum utility that belongs to it. Stops
when no move has been observed for more than n iterations, where n
is 5 times the size of the tabu list times the number of operators.
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9 Simulations

The objective of these simulations is to study some of the numerous para-
meters individually. Our results can be used in future researches for limiting
the number of parameters to study.

9.1 General Hypothesis

Before doing any simulations, one �rst needs to specify some of the parame-
ters of our network.

9.1.1 Environment Parameters

We choose to simulate a cellular network and all the distances will be ex-
pressed in kilometers. It is important to note that the value of N and β
depend on the chosen unit. Here is our set of parameters:

• N = 0.0001
• α = 4

• dthresh = 10 km

9.1.2 Power Parameters

For the set of available powers, we chose arbitrarily a maximum value of 100
and decided to consider 5 power levels. We get the following set:

P = {6.25, 12.5, 25, 50, 100}

The choice of 5 levels is realistic enough in practice9.

9.1.3 Upper-Bound Constraint β

Finally, we decided to work with an unconstrained problem, i.e. β = ∞
(see 6.2 for the de�nition), although our program would allow us to set it a
�nite value. This parameter is really crucial, and it would most certainly re-
quire many tests to determine a good value. As this task would require more
time then we had at hand, we chose not to take it into account. However,
this would be an important topic to work on for anyone who wishes to do
some further research on this model.

9It is also interesting to note that on a network with 10 base stations, the BruteForce
algorithm would take for instance 40 minutes for 7 levels, instead of 3 minutes with 5.
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9.2 Studied Networks

We studied two di�erent networks of 10 base stations, with 2 operators having
each 5 base stations. Some additional data for a few other networks generated
with the PredefinedNetworkLayout class is also available on the CD.

9.2.1 Random Network

A randomly generated connected network (see �gure 7).

Figure 7: Random Network in a square area of 25.65 km of side.

9.2.2 Pyramidal Network

A network with a pyramidal structure, and where the base stations have been
randomly attributed to each operator (see �gure 8).

Figure 8: Pyramidal Network with small triangles of 7 km of side.
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9.3 Experiment

In our experiment, we test for each of the four prede�ned procedures
(SequenceSearch, RandomSearch, GlobalTabuSearch and Distributed

TabuSearch) all the possible con�gurations created from the following para-
meter sets. Each individual con�guration is repeated 20 times, in order to
take the average of the results. For each parameter, the tested possibilities
are (see section 7 and 8 for detailed information):

• Objective Function: Interference Minimization and Signal Maxi-
mization

• Utility Function: base, baseWithFriendsScaled and
basePlusOperatorNeighbourhood utility functions, where the latter
two were tested with the following values of γ ∈ {0.2, 1.0, 5.0}. This
amounts in 7 utility functions.

• Initial Setting: every base station is set to the minimum power level
(PMin), to the maximum power level (PMax) or individually to a ran-
dom power lever (PRan)

• Range: free range (any power level can be chosen) and 1-step range
(the allowed levels are the current one, one level higher and one level
lower, when possible)

• Tabu List Size: without a tabu list and with a tabu list size of 1, 3,
5 and 7 (except for SequenceSearch)

This results in roughly 20 thousand runs. The best solution for both objective
functions is also found using Brute Force.
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10 Results

The data gathered from the simulations is in the following folders on the CD:

• serie_001 : Random network

• serie_002 : Pyramidal network

10.1 Duration and general number of performed itera-

tions

For both networks, the �rst essential result is that almost all runs stopped
either because they had reached a stability point or, in the cases of procedures
choosing base stations with minimum utility such as GlobalTabuSearch and
DistributedTabuSearch, also because they had started cycling among the
base stations with minimum utility. The few remaining ones stopped because
of the maximum number of iteration without move criteria. Moreover, the
run-time for a single run is usually less than half a second (see �gure 9).

Figure 9: Histograms of run-time for the Random (left) and Pyramidal (right)
network.

We can also observe that, although some parameters highly in�uence the
number of iterations needed, SequenceSearch (SEQ) and
GlobalTabuSearch (GTS) perform an average of 15-25 iterations, while
RandomSearch (RAN) and DistributedTabuSearch (DTS) perform an av-
erage of 25 to 35 iterations. This will be discussed again at the end, but
this time by �xing some parameters, in order to be really able to compare
the performances of these procedure. Also, for the sake of simplicity, in the
rest of this section we will refer to these di�erent ways to choose the next
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base station by these acronyms (their detailed de�nition can be found at
section 8.5).

One particular parameter worth of interest that a�ects these measures
is, as expected, the range of available strategies (or power levels) in which a
base station can pick its next move. Limiting this range to the actual power
level, the one right below and the one right above (1-step range as opposed
to a free range), usually doubles the number of iterations needed by GTS
and DTS.

10.2 Nash equilibria at the end of the games

In �gures 10 and 11, we illustrate the percentage of runs that ended at a
Nash equilibria for di�erent utility functions, procedures and ranges. We
studied seven utility functions, one being base (BA), and the other six being
baseWithFriendsScaled (BWFS) and basePlusOperatorNeighbourhood

(BPON), each with three values of γ (see sections 7.3 and 9.3). The re-
sults for γ ∈ {0.2, 1, 5} are represented in an increasing order by individual
bars for the free range (1) and the 1-step range (2). SEQ is not represented
here, because we de�ned it to only stop when it reaches a Nash equilibrium,
which always happened.

For RAN, we observe that it usually reaches a Nash equilibrium 99% of
the time, the remaining 1% being due to the procedure not randomly pick-
ing the remaining base stations that can improve their utility early enough,
and hence performing a number of iteration without a move larger than the
allowed limit.

For DTS and GTS, let us �rst only consider the case of a free range. In
the Pyramidal network, both of them reach a Nash equilibrium 80-90% of
the time. As said earlier, in the remaing cases they stop because they have
started cycling among the base stations with minimum utility. However, in
the Random network, this score drops to 60-75% for DTS and to 30-60% for
GTS. Then, we observe that a 1-step range diminishes the e�ciency of these
procedure, particulary in the case of the Pyramidal network.

This con�rms our intuition that a structured layout of the base stations
(such as in the Pyramidal network) is a special case which gives us system-
atically better results with these two procedures, but changing a parameter
such as the range immediately disturbs it and leads to a big drop in e�ciency,
GTS being more dependent of that factor than DTS.

We can also notice that BWFS with the highest value of γ systematically
gives much worse results than the other utility functions.

Finally, please note that at this point, these results are an average on the
di�erent initial solutions and tabu list lengths. We will progressively study
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Figure 10: Percentage of runs that ended at a Nash equilibria for di�erent
utility functions, procedures and ranges, in the Random network.

Figure 11: Percentage of runs that ended at a Nash equilibria for di�erent
utility functions, procedures and ranges, in the Pyramidal network.
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the e�ect of each of these parameters individually in the following sections.

10.3 Reached Nash Equilibira

In the Random network, for �ve out of seven utility functions, we only found
a unique Nash equilibrium where every base station sets its power to the
highest level allowed, named the PMax setting or strategy pro�le. The other
remaining two are BWFS and PBPON with the highest value of γ, and have
respectively one and two Nash equilibria composed of respectively 4 and
9 base stations at maximum power level, and the remaining others at the
minimum power level. Mixed solutions such as these, with either maximum
or minimum power levels, are named PMaxMin settings or strategy pro�les.

In the Pyramidal network, they all have a unique Nash equilibrium, six
at PMax and one at PMin (i.e. everybody at the minimum power level).
The latter one is again BWFS with the highest γ.

As expected, the more you take into account, not only the Interference
over yourself, but also the Interference over neighboring base stations which
belong to the same operator, the less likely you are to choose the maximum
power level as the best choice for you. In our case, this behavior is achieved
by choosing a high γ. We can also notice that in that sense, BWFS is much
more radical than BPON. This is most probably due to the fact that in the
part in�uenced by γ in BWFS, you do not consider yourself, as opposed to
that same part in BPON where you also include yourself. Note that in the
former, your utility drops signi�cantly when you do not have any "friends"
nearby, independently of your strategy choice.

Finally, it is very interesting to observe that by limiting the range, we
manage to create new additional Nash equilibria close to the usual ones,
while of course the usual ones still remain valid. Note that in our case, this
only worked for the Random network.

10.4 Initial Strategy Pro�le

As PMax is a Nash equilibrium for most of the utility functions, starting at
this strategy pro�le generally results in an immediate stop of the games.

In the other cases, all the games with the di�erent utilities reach their
Nash equilibrium 95-100% of the time with the RAN procedure, indepen-
dently of their starting point. For GTS and DTS, we observe that it is
strangely easier to reach their Nash equilibrium (usually PMax) starting
from PMin than from PRan.

However, when we limit the range to 1-step, the e�ciency we observe
drops tremendously, especially when starting from PMin, probably because
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it is not anymore possible to go all the way up with just a few iterations from
a uniform setting to another uniform one. This results in the total inability
for the games with certain utilities to reach a Nash equilibrium using GTS.

10.5 Tabu List Length

For the results discussed in this section, we only used the free-range and
PRan as the initial strategy pro�le. In �gures 12 and 13, we illustrate the
percentage of runs that ended at a Nash equilibria, depending on the absence
or length of the tabu list. We also do not need to consider SEQ, which does
not use a tabu list. We tested the following lengths: 0 (no list), 1, 3, 5 and 7,
in our two networks which had 10 base stations each. In the �gures, these
�ve lengths are grouped in an increasing order, and in the case of BWFS and
BPON, for γ = 0.2 (group 1), γ = 1 (group 2) and γ = 5 (group 3).

With the RAN procedure, all the games with the di�erent utilities reach
their Nash equilibrium 97-100% of the time, regardless of the presence or the
length of the tabu list.

In the case of GTS and DTS, the tabu list is used to prevent them from
cycling among a few base stations with minimum utility, as at each step, it
is the non-tabu base station with minimum utility that gets chosen, either in
the whole network for GTS or among the base stations of a randomly picked
operator for DTS.

Hence, we observe that with a length set lower than respectively 5 and
3, they are totally useless for the Random Network, meaning they never
reached a Nash equilibrium in our simulations. Furthermore, it seems that
the longer the list, the better the chances of reaching a Nash equilibrium.
This is con�rmed by the fact that in our case with a network of 10 base
stations, a longer list of length 9 would exactly be the SEQ procedure, which
globally achieves the best results in the minimum number of iterations, thus
being our best procedure so far for choosing the next base station at each
iteration. Also note that the initial order in which the base stations are
added to the list determines the order of the sequence.

We �nally remark that, regardless of the tabu list length, DTS reaches a
Nash equilibrium more often than GTS, the di�erence being more signi�cant
in the Random network than in the Pyramidal one. This is probably due to
the random element in DTS. Also, both DTS and GTS generally experience
di�culties in reaching a Nash equilibrium with BWFS utilities that have less
trivial Nash equilibria, due to a high value of γ.

45



Figure 12: Percentage of runs that ended at a Nash equilibria depending on
the tabu list length, in the Random network.

Figure 13: Percentage of runs that ended at a Nash equilibria depending on
the tabu list length, in the Pyramidal network.
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10.6 Objective Function Value

Our objective when we designed these games, was to de�ne some rules by
which each base station could play individually. These rules would also need
to eventually guide the whole network to a strategy pro�le, or equivalently a
power setting, with an objective function value (with either IMin or SMax)
that would be close to the optimal solution.

It is interesting to note that we obtain completely opposite results with
our two objective functions.

10.6.1 IMin: Interference Minimization

For this objective function, the BruteForce algorithm tells us that the op-
timal solution is in fact PMax, the unique Nash equilibrium for almost all
utility functions in both considered networks (see section 10.3). Therefore,
most of the games we designed are totally successful in guiding the base sta-
tions to the optimal solution and our Price of Anarchy is equal to one. This
also implies that our tabu search heuristics reach the optimal solution and
stop. This is a great achievement!

However, let us not forget that this PMax solution has only been observed
for β = ∞. In our preliminary series of test (see section 6.4), we remarked
that when we lower the value of β, we get more balanced and less trivial
solutions. The next step would most certainly be to study if the utility
functions are able to adapt to these new more complex optimal solutions, for
�nite values of β. Two principal points of interest to study for the games
would be to check if we still get a unique Nash equilibrium and if this Nash
equilibrium is still close to the optimal solution for the network (or at least
one among several Nash equilibria, in the case where the �rst point is false).

10.6.2 SMax: Signal Maximization

For this objective function in both considered networks, the optimal solution
is a PMaxMin setting, i.e. a setting where some base stations emit at the
maximum power level, while the others emit a the minimum power level. As
this solution is not at all a Nash equilibrium for any of our utility functions,
the results we get are really bad. The tabu search heuristics only encounters
the optimal solution (or comes close to it) on very rare and purely accidental
occasions, while the game is conducting the network to the PMax solution.
To compare with the previous objective where we almost always stopped at
the optimum, with the SMax objective we reached the optimum less than 20
times out of some ten thousand simulations.
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Obviously, our utility functions are not adapted to this objective function
and we need to design some new ones that are better suited for it. Moreover,
it is not interesting or relevant to consider the Price of Anarchy of the games
based on these utility functions, because these games are not even trying to
go close to the optimal solution. It is not as if in their attempt to guide the
networks toward their optimal solution, they were trapped in Nash equilibria
with lower objective function values.

10.7 Summary

We can summarize all our observations by studying the results we obtain
with a speci�c set of parameters and with with the BA, BWFS and BPON
utility functions, the latter two with only one value of γ.

• low value of γ
We choose for γ the lowest value of the three considered, because we
observed that higher values tend to give us Nash equilibria di�erent
than the unique PMax otherwise obtained. In that sense, BWFS is
also much more radical than BPON.

• free range
We do not restrict the range, as this tends to create additional unwanted
Nash equilibria.

• PRan
We decide to start from a random power setting, in order to observe
how the games manages to reach a Nash equilibrium.

• tabu list of length 5 for GTS and DTS
We set a value not too low, because otherwise these two procedures
tend to get trapped into cycling among a few solutions with a very low
utility value. For RAN, we choose not to use a tabu list, as this factor
does not seem to in�uence the procedure.

In the table below, we can see the average number of iterations needed
before the games stop, depending on the type of procedure for choosing the
next base station and the network. We performed 120 runs (40 for each utility
function) for each cell to obtain the average. In each case (except for GTS
in the Random network, marked with the * sign) the games always stopped
at the PMax strategy pro�le (or equivalently power setting), because it is a
Nash equilibrium for the three utility functions considered.
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Random network Pyramidal network

RandomSearch (RAN) 32 31

SequenceSearch (SEQ) 20 20

GlobalTabuSearch (GTS) 23∗ 18

DistributedTabu (DTS) 50 44

This example illustrates the following points of interest:

• IMin and SMax
For the IMin objective function, the unique Nash equilibrium of the
games at PMax is exactly the optimal solution for this network, there-
fore whenever the game and the corresponding heuristic stop, they do
it at the optimum.
For SMax, on the contrary, the optimal solution is a PMaxMin which
is composed of some base stations at the maximum power level and the
others at the minimum, and which is a Nash equilibrium for none of
the considered utility functions. Consequently our utility functions are
de�nitely not well suited for this objective, because the heuristics can
reach or come close to the optimal very rarely and purely accidentally,
while the game is wandering in the solution space toward the PMax
Nash equilibrium.

• Random and Pyramidal networks
The games with GTS and DTS (which choose at each iteration a non-
tabu base station with minimum utility, respectively in the whole net-
work and among the base stations of a randomly picked operator) ne-
cessitate signi�cantly less iterations in structured networks. However,
this factor seems not to a�ect RAN and SEQ (which choose at each
iteration the next base station respectively randomly and following a
prede�ned sequence).

• GTS and DTS
DTS works better than GTS, probably because its random component
helps it a little bit more to avoid cycling. However, when it does not
get trapped (as in the more structured Pyramidal network), GTS works
much faster than all the others.

• SEQ
This procedure can be considered the best one, because it consistently
stops at a Nash equilibrium and it achieves it usually faster than the
other ones.
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11 Suggestions for Further Research

11.1 E�ects of the upper-bound constraint β

Through the study of a theoretical case of our problem, where β = ∞, we
observed that for several studied networks, the optimal solutions of the two
objective functions we have de�ned seemed to follow a pattern. For this
reason, we propose the following two open questions:

Open Question 1: In the Interference Minimization case, does the maxi-
mum setting for all base stations always give us the optimal solution?

Open Question 2: In the Signal Maximization case, is the optimal setting
always only composed of maximum and minimum power levels?

Answering these questions would be a natural next step to take. But it
would also be of great interest to study the situations where β < ∞, for
which we have observed that the optimal solutions for the networks get more
complex and balanced. In that case, are the utility functions we de�ned still
e�cient and do the Nash equilibria at which they stabilized allow us to come
close to the system optimal for the Interference Minimization objective?

When our utility functions are not e�ective anymore, one would also need
to design new ones that better manage their relationship with their neighbors
and enforce a β < ∞, in order to stabilize at more balanced solutions. This
is also applicable to the Signal Maximization, for which our games do not
work at all. A possible way to do this would be to introduce a pricing on
the power levels used. And maybe the use of a limited range, allowing for
example any power level below the current one and limiting the available
power levels above (but not too much), could also help us.

11.2 Di�erent Modeling Approaches

In future works, it would surely be interesting to also consider new games.
For instance, we observed that the sequential choice of the base stations
gave us the best results. This could motivate us to try a game where at
each iterations, every base stations chooses simultaneously the strategy that
maximizes its utility. Moreover, we could also try to propose a game where
the players are the operators, instead of the base stations.

We also developed other models formulated as node- and edge-deletion
problems. These models were not perfectly adapted to the problem we pro-
posed to solve, mainly because they were based on thresholds of disturbance
or interference between only pairs of base station. However, we have strong
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con�dence in the fact that they can be useful for other problems or can still
be used in our problem. For example, one of their possible use could be to
provide us an approximation of the optimal power setting, and this way give
us a good starting point for our games and heuristics.

11.3 Experimental Research

The libraries and programs that were created during this project, although
perfectly running, could bene�t from a global optimization of the source
code. This could be partially achieved by improving (and maybe limiting)
the output o�ered to the user and by writing speci�c procedures for the
games and the algorithms, instead of a unique fully parameterizable method.

The simulation we performed investigated only a very limited range of
possible networks. Instead of having two operators with the same number of
base stations, one could consider either unbalanced repartitions of the users
among more than two operators, or a unique operator trying to �nd the
system optimal. Other factors to test would be the repartition in space of
the base stations, as well as their density and number.

Moreover, the experimental approach would be of great help to study
empirically the upper-bound and its e�ect on the network, as well as the
impact of other parameters on the behaviors of our games and heuristics.
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12 Conclusion

The problem we studied in this project is the optimization of the quality of
the transmissions in a wireless communication system, through the control
of the emission power of some base stations owned by operators, and with-
out explicitly considering the users of that system and the quality of their
transmissions.

We approached this problem by di�erent angles. We �rst designed several
models for it, and then concentrated on one for the rest of the project. Then,
we proposed a sequential game that could be played in a non-cooperative way
by the base stations. Our objective was that by playing this game, the base
stations would �nally stabilize in a situation which would not be too far
from the optimal solution for the network. In order to study the behavior of
this game, we developed a very comprehensive program in Java that could
simulate it, run some simple heuristics, as well as �nd the optimal solutions
for networks of small sizes.

The models that were formulated as either edge- or node-deletion prob-
lems proved to be di�cult to apply in real-life situations. For this reason, we
eventually settled for a more standard one that had the advantage of being
much more realistic and applicable. Then, we studied the properties of this
latter model and the associated game, under some special conditions, through
a set of simulations on two small networks: a random and a structured one.
We obtained that almost all our utility functions had a unique Nash equi-
librium, where everybody is emitting at the maximum allowed power. This
point was most of the time reached by our games, and as it is also the optimal
value for the objective function Interference Minimization, we managed for
this objective to reach the system optimal every time the games stabilized.
In the case of the other objective, we observed that the optimal solution was
composed of base stations emitting at either maximum or minimum power,
and hence the games and the algorithms were only purely accidentally pass-
ing by good solutions, but never stopped there on their way to the maximum
power setting for everybody.

Some further research on this Power Control problem can be done either
theoretically or experimentally. For instance, one could study mathemati-
cally some of the properties of the model, in particular the open questions
proposed and the e�ect of β, discussed at the end of this report. Another
very important aspect, as we have seen, is to propose new utility functions
that better manage to guide the base stations toward the various optimal
solution, possibly by introducing a pricing on the power level used. Finally,
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one could also fully take advantage of the already developed programs to
perform a very thorough set of simulations with many di�erent hypothesis,
and study their e�ect on the solutions we obtain.
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A Model Representation

The classes in this section are at the core of the pro-
gram. They allow to store models as well as compute
things such as the distance between two base stations or
the Interference over a base station. They are meant to
be used (with the classes of appendix B) as a library for
other programs, such as the interfaces of appendix C.

A.1 Class ModelParameters

Stores the general parameters of the network, such as:
environment constants α and N0, threshold distance,
network dimensions, number of power levels r and max-
imum power level Pmax. It also has functions for com-
puting the distance and the interference of a base sta-
tion oven an other one.

A.2 Class Network, Operator,

BaseStation, IncomingEdge

Store the fundamental components of the network, such
as: the network, operators, base stations and the rela-
tionships between them. These classes also de�ne func-
tions for constructing a random network and computing
the Interference over a base station.

A.3 Class PredefinedNetworkLayout

De�nes speci�c network layout constructors as sub-
classes of the Network class. The available prede�ned
layouts are (see simulation series on the CD for pic-
tures):

• Pyramidal Network

• Regular and Random Mono-Line Network

• Regular and Random Dual-Line Network

• Random Dual-Layer Network

• Triangular Network

They all construct networks with 10 base stations, ex-
cept the last one which can also construct networks with
20, 30 and 40 base stations.
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B Algorithms

B.1 Class Solution

De�nes a solution object, with information such as the
setting and the objective function's value corresponding
to it.

B.2 Class Algorithm

The abstract superclass of all algorithms. It de�nes the
general implementation of a game or a heuristic (see
also section 8.3). The following abstract methods need
to be de�ned in subclasses, in order to obtain a com-
plete and working algorithm:

• initializeSettingOfCurrentSol(...)

• performNextMove()

• stoppingCriteriaIsMet()

The parameters needed are:

• the network on which to work
• the objective function, either Interference Mini-
mization or Signal maximization

• the upperbound constraint, if de�ned (see sec-
tion 6.2)

• whether the violation of this constraint makes the
solution unfeasible or just less attractive but still
feasible

• the initial power setting (=strategy pro�le)

Moreover, this class encompasses methods for:

• evaluating and comparing solutions

• testing settings and their quality in several di�er-
ent ways.

B.3 Class BruteForce

Performs a brutal search of the best solution in the com-
plete space of solutions. This class is used mainly for
checking the e�ciency of our heuristics and compare
their results to the networks best solution.

B.4 Class TabuSearchCore

This procedure is meant to be very �exible and fully
parameterizable. It can behave as a game as well as a
tabu search heuristic. Its interesting features are:

• choosing the seed of the random number genera-
tor (for reproducibility)

• determining how to choose the next base station

• choosing the utility function

• choosing the range of the strategies around the
current one, among which to maximize the utility

• choosing whether to keep a tabu list or not, and
in the former case its length
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Some other parameters were also implemented, al-
though they were �nally not used for our research.
Those possibilities are:

• to update the utility of the neighboring base sta-
tions at only �xed timesteps, instead of immedi-
ately after changing the setting of a base station.

• to compute the utility of a base station, knowing
only the interference value at the present base
station and the settings of the other base sta-
tions from the same operator (but not knowing
the power setting of the base stations controlled
by other operators)

• to empty the tabu list when a move is performed
(i.e. when a base station changes its strategy)

• to specify a maximum number of iteration with-
out a move allowed for each operator, instead of
only specifying a global maximum number of it-
erations for the algorithm.

To be able to use this class more easily, four subclasses
of it (with some parameters already set) were written
in MultipleRunAlgorithmCore.

B.5 UtilityFunction

This class stores the following utility functions for the
TabuSearchCore class (see section 7.3 for a detailed de-
scription of each function):

• SINR

• base

• baseWithFriends

• baseWithFriendsScaled

• basePlusOperatorNeighbourhood

B.6 Class MultipleRunAlgorithmCore

De�nes 4 procedures as subclasses of TabuSearchCore
with some TabuSearchCore parameters set by default
in order to get the expected behaviour (see section 8.5
for more details):

• RandomSearch

• SequenceSearch

• GlobalTabuSearch

• DistributedTabuSearch

An extension to the BruteForce class, with extra ca-
pabilities for outputting results, is also de�ned in this
�le.
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C Interfaces

C.1 Class SharedSpectrumSolver,

DrawNetwork

A basic program to test and perform a single
run with an algorithm. DrawNetwork is used in
SharedSpectrumSolver and MultiRunLauncher to
give a visual representation of a network.

C.2 Class MultiRunLauncher

Allows the user to de�ne, for some custom algorithms, a
set of con�gurations to be repeatedly run on a network.
The particular procedures to be tested are de�ned in
MultipleRunAlgorithmCore. The variable parameters
are:

• Objective Function: either Interference Mini-
mization or Signal Maximization

• Utility Function: any of the utility functions de-
�ned in UtilityFunction

• Initial Setting: a random setting or any uniform
setting

• Range: a free range or any symmetrical range

• Tabu List Size: no tabu list or any tabu list size

This interface also manages to create a speci�c direc-
tory for each series of simulation, with the following
�les:

• copies of some of the java source code speci�c to
this series of simulation

• a log_file.txt with the condensed results of all
the performed runs, as well as its Matlab friendly
translation summary.txt

• for each run, the details of its usual console out-
put (det_XXXXXXXXX.txt)

• for each run, the evolution of the current solutions
value at each iteration (mat_XXXXXXXXX.txt)

This program was used to produce the data sets of our
simulations.

C.3 Class SSS (not included on CD)

This graphical interface is currently under development
and will be used for presenting the capabilities of the
developed library during the �nal defense.
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