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Abstract— In each country today, cellular networks operate on
carefully separated frequency bands. This separation is imposed
by the regulators of the given country to avoid interference
between these networks. But, the separation is only valid within
the borders of a country, hence the operators are left on their own
to resolve cross-border interference of their cellular networks. In
this paper, we focus on the scenario of two operators, each located
on one side of the border. We assume that they want to fine-tune
the emitting power of the pilot signals (i.e., beacon signals) of
their base stations. This operation is crucial, because the pilot
signal power determines the number of users they can attract
and hence the revenue they can obtain. In the case of no power
costs, we show that there exists a motivation for the operators to
be strategic, meaning to fine-tune the pilot signal powers of their
base stations. In addition, we study Nash equilibrium conditions
in an empirical model and investigate the efficiency of the Nash
equilibria for different user densities. Finally, we modify our
game model to take power costs into account. The game with
power costs corresponds to the well-known Prisoner’s Dilemma:
The players are still motivated to adjust their pilot powers, but
their strategic behavior leads to a sub-optimal Nash equilibrium.

Index Terms— Wireless networks, shared spectrum, pilot
power control, cooperation, game theory, Nash equilibrium

I. INTRODUCTION

Today’s cellular networks operate on separate frequency
bands to avoid interference between them. The operators of
these networks obtain an exclusive right to use a given fre-
quency band in their respective country. However, the division
based on frequency bands does not apply across national
borders. The operators have to resolve their conflicts across
the borders themselves. One of the issues is when mobile
users of one operator attach to the network of the operator
of the other country while still being in their own country.
This problem is referred to as accidental roaming [15], [20].
The problem is significant, because there exist many examples
of cities residing close to a national border such as Geneva,
Basel or Aachen in Europe; San Diego and Detroit in the USA;
or Hongkong and Singapore in Asia. Often, the operators
make mutual agreements to resolve these problems, but these
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agreements are difficult to enforce, because they require the
mutual cooperation of the operators.

In this paper, we consider the problem of strategic be-
havior of operators on the border of their cellular networks.
We consider 3G cellular networks, such as the Universal
Mobile Telecommunication System (UMTS) for example, that
are based on the Code Division Multiple Access (CDMA)
technology [13], [27], [28]. Note however, that the problem we
highlight in the paper applies to any CDMA network. In these
networks, the base stations emit pilot signals to help users to
assess the available channel quality and to attach to the base
station with the best offered quality. According to the current
definition in the UMTS standard, the pilot power for the base
stations is determined at the network dimensioning phase and
remains fixed afterward. However, as the number of users
changes, the operators may adjust the network parameters.
This slow adaptation of the pilot signal power is part of the
network re-dimensioning process and hence it exists on a large
time scale. On the other hand, the technology enables the base
stations to quickly adapt their pilot signals to the actual usage.
This fast adaptation technique is commonly referred to as cell
breathing [13], [27], [28].

In this work, we assume that the operators want to adjust
the power of the pilot signal of their base stations to attract
more users over time. Several methods (e.g., cell-breathing
[27], [28]) have been proposed to implement fast adaptation
in CDMA networks. We survey them in Section II. In our
paper, however, we focus on the slow adaptation problem.
We study how the network operators can fine-tune their pilot
power in the presence of other operators given a certain user
distribution. We investigate whether this situation leads to a
game and we study the properties of the equilibria of power
control strategies.

The remainder of the paper is organized as follows. Sec-
tion II surveys related work. In Section III, we present the
system model and the corresponding game-theoretic concepts.
In Section IV, we study whether the operators have an
incentive to be strategic or not if there is no power cost. In
Section V, we propose a distributed convergence algorithm
to achieve the identified Nash equilibria. In Section VI, we
extend the power control game to include the notion of power
cost. We conclude in Section VII.
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II. RELATED WORK

Power control has been extensively studied in the context
of cellular networking. Baccelli et al. [2] consider downlink
power allocation and admission control in CDMA networks
relying on stochastic geometry. Hanly and Tse [12] as well
as Catrein et al. [4] consider power control and capacity in
CDMA networks. But, there are only a few papers about pilot
power optimization [18], [31].

Game theory is used to study the power control of user
devices in wireless networks, notably in cellular systems as
studied in [1], [11], [14], [17], [21], [23], [24], [32] and [34]. A
general framework for resource allocation in wireless network
is addressed in [5].

Recently, the coexistence of multiple Internet Service
Providers (ISPs) was studied by Shakkottai and Srikant in
[30]. They consider both transit and customer prices for the
ISPs. They show that if the number of ISPs competing for
the same customers is large, then it can lead to price wars. In
another paper [29], Shakkotai et al. consider the problem of
non-cooperative multi-homing in WLANs. Zemlianov and de
Veciana [33] study a scenario in which users are able to choose
between a cellular network and a Wi-Fi network. They show
that congestion sensitive strategies are better than proximity-
based strategies. Félegyházi and Hubaux [7] consider the
competition between different operators in terms of pilot
power control of their base stations. They show that in the
pilot power control game a socially desirable Nash equilibrium
exists and that it can be enforced by punishments.

III. MODEL

A. System Model

We consider a scenario with two cellular network operators
A and B. We assume that their networks are separated by a
national border. The operators operate their network based on
the principles of the CDMA method. We assume that the two
operators acquired the same frequency band for their networks
in their respective country. This means that their networks
interfere along the border. We assume that each operator
controls a set of base stations (BS) Bi, where i ∈ {A, B}.
We refer to the set of all base stations as B =

⋃
i Bi.

We also assume a set of users M equipped with wireless
devices who access the communication network. For the sake
of convenience, we assimilate the operators with their base
stations and the users with their devices. In order to get an
insight, we study the case in which each operator has one
BS and we refer to the BS-s by the letters of their operators
(i.e., base station A and B). This single-cell model is often
considered in the literature [16], [22]. The network scenario
is shown in Figure 1.

We assume that the radios of the base stations and the
mobile devices are compatible, meaning that any user is able
to access the network via any of the base stations. We further
assume that the antennas of the BS-s and wireless devices are
omnidirectional. Note that the results derived in this paper
are still valid if the operators use sectorized antennas that
point towards the national border. Sectorized antennas have
more impact in the general scenario, where the operators have
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Fig. 1. Network scenario with two base stations.

several base stations each. The study of this general scenario
is the main focus of our ongoing work.

Throughout this paper, we assume that the users are not
associated with any of the operators (i.e., they are roaming
users) and thus they attach to the base station with the best
signal quality.

In CDMA networks, power control is used to mitigate the
near-far effect [27], to optimize the transmission power of the
devices and to reduce interference. In this paper, we focus
on the downlink (or forward link) power control of the pilot
signals emitted by the base stations. The pilot signal helps the
wireless devices to perform the following tasks:
• detection of the available base stations,
• synchronization with them and
• estimation of the channel quality and handover decision

based on this estimation.
In particular, we focus on the problem of how the network
operators can determine the pilot signal power that will
potentially attract the highest number of users. We leave the
study of the competitive fast adaptation problem as a future
work.

In the remainder of this section, we present the physical
model of CDMA. As mentioned earlier, the pilot signal is used
to attract users. If several users attach to a given base station,
their transmissions are performed on different channels. In
CDMA-based cellular networks, unlike GSM networks, chan-
nels are not separated in different frequencies, but use different
codes. Hence each transmission uses the same frequency band.
In theory, the codes from one base station are orthogonal,
meaning that the transmissions to different receivers do not
interfere with each other. In practice, there exists some inter-
ference between concurrent transmissions from a given base
station because of multipath propagation. This interference
is called the own-cell interference. In addition, there is an
interference caused by the transmissions of other base stations,
called the other-cell interference.

Let us consider the scenario shown in Figure 1. According
to the physical model of signal propagation in a CDMA system
[13], we can write the signal-to-interference-plus-noise ratio
(SINR) of the pilot signal of base station i ∈ {A,B} to user
v ∈M as:
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SINRpilot
iv =

Gpilot
p · Pi · d−α

iv

N0 ·W + Ipilot
own + Ipilot

other

(1)

where Gpilot
p is the processing gain for the pilot signal, Pi is

the power of the transmitted pilot signal of BS i, div is the
distance between BS i and user v, α is the path loss exponent,
N0 is the noise spectral density, W is the available bandwidth,
and Ipilot

own as well as Ipilot
other are the own-cell and the other-cell

interferences that affect the pilot signal of BS i.
Let us first express the own-cell interference Ipilot

own :

Ipilot
own = ζ · d−α

iv (
∑

w∈Mi

Tiw) (2)

where ζ is the orthogonality factor (also called the own-
cell interference factor) that expresses the non-orthogonality
between the different transmissions from BS i. Furthermore,
Mi is the set of users at BS i and Tiw is the traffic power
assigned to user w ∈Mi by BS i.

Similarly, we can write the interference Ipilot
other:

Ipilot
other = η ·

∑

j 6=i

d−α
jv (Pj +

∑

w∈Mj

Tjw) (3)

where η is the other-to-own-cell interference factor, djv is the
distance between BS j and user v. Furthermore Pj is the pilot
signal power of BS j, whereas Mj is the set of users at BS
j and Tjw is the traffic power assigned to user w ∈ Mj by
BS j.

Similarly to (1), we can express the SINR for the traffic
signal Tiv:

SINRtr
iv =

Gtr
p · Tiv · d−α

iv

N0 ·W + Itr
own + Itr

other

(4)

where Gtr
p is the processing gain for the traffic signal, W is

the available bandwidth, and Itr
own as well as Itr

other are the
own-cell and the other-cell interferences that affect the traffic
signal of BS i to user v.

Let us write the own-cell interference Itr
own for the traffic

signal as:

Itr
own = ζ · d−α

iv (Pi +
∑

w 6=v,w∈Mi

Tiw) (5)

and the interference from other BS-s j as:

Itr
other = Ipilot

other = η ·
∑

j 6=i

d−α
jv (Pj +

∑

w∈Mj

Tjw) (6)

Furthermore, we can express the carrier-to-interference
ratio (CIR) as a function of SINR:

CIRpilot
iu =

SINRpilot
iv

Gpilot
p

(7)

Similarly, we can write the CIR of the traffic signal:

CIRtr
iv =

SINRtr
iv

Gtr
p

(8)

where Gtr
p is the processing gain for the traffic signal from

BS i to user v.

In UMTS systems, the processing gain for the pilot signal
is Gpilot

p = 256 ≈ 14.3dB. The processing gain of the traffic
signal Gtr

p depends on the bitrate of the application running
on the user device. In this paper, we refer to different types of
communication as the traffic type, namely audio (12.2 kbps),
video (144 kbps) and data (384 kbps) flows.1 Accordingly, we
distinguish different requirements for different traffic types as
presented in [13]. We summarize these parameters in Table I.

TABLE I
UMTS PARAMETERS (FROM [13], SECTION 8.2.1).

traffic type required SINR processing gain required CIR
pilot ≈ -6 dB 14.3 dB -20 dB

audio, 12.2 kbps 5 dB 25 dB -20 dB
video, 144 kbps 1.5 dB 14.3 dB -12.8 dB
data, 384 kbps 1 dB 10 dB -9 dB

In wireless networks, the authorities impose a transmission
power limit to the devices. In UMTS networks, the base
stations must emit their signal below 43dBm = 20W [13].
This limit is called the downlink power budget. In addition,
this power budget must be split between the control channel
signals, such as the pilot signal, and the traffic channel
transmissions. The actual utilization of the power budget is
called the load of the base station. As the load increases, the
bit-error-rate (BER) at the user devices increases exponentially
[13]. Hence, the BS load is typically kept such that the BER
does not exceed a certain threshold, for example 10−3. In this
paper, we assume that the BS load is kept below 10W .

In order to determine the average usage of the two net-
works, we developed a numerical simulator in MATLAB. We
summarize the parameters of our simulation in Table II. In
each simulation run, we distribute the users according to
the uniform distribution2 and calculate the number of users
that attach to each of the BS-s based on the physical model
developed in this section (i.e., using Equations (1)–(8) and
the requirements shown in Table I). We repeat this experiment
several times for each power setting and we obtain the average
number of users at each BS.

B. Game-theoretic Concepts

We model competitive power control using game theory
[6], [9], [10], [26]. Game theory is appropriate to model the
strategic behavior of wireless devices or networks [3]. We
define a two-player non-cooperative power control game G
with the operators as players. In this game, the strategies of
the operators determine the pilot transmission power of their
base stations. Formally, we can write the strategy of operator
i as the pilot signal power value of his BS:

si = Pi (9)

where 0W < Pi < 10W is the pilot signal power of BS
i. According to the UMTS standard, the BS-s transmit their
pilot signal with approximately 33dBm = 2W . We denote

1For simplicity, we consider only constant bitrate traffic.
2Note that we use a random uniform user distribution in our study, but our

qualitative results hold for any user distribution.
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TABLE II
SIMULATION PARAMETERS (BASED ON [13]).

Parameter Value
simulation area size 1 km2

BS positions (250m,500m) and
(750m,500m)

default distance between BS-s, d 500m
user distribution random uniform
number of simulations 500
default path loss exponent, α 4
BS max power 43dBm = 20W
BS max load 40dBm = 10W
BS standard power, P s 33dBm = 2W
BS min power 20dBm = 0.1 W
power control step size, Pstep 0.1W
orthogonality factor, ζ 0.4
other-to-own-cell interference factor, η 0.4
user traffic types: audio (12.2 kbps)

video (144 kbps)
data (384 kbps)

required CIR (audio, video, data): -20 dB, -12.8dB, -9dB
expected incomes (θaudio, θvideo, θdata): 10, 20, 50 CHF/month

this standard pilot power by P s. We call the set of strategies
of all players a strategy profile s = {s1, s2}.3 In our game,
the players have the same strategy set S.

The operators define their strategies in order to maximize
their expected payoff ui:

ui =
∑

v∈Mi

θv (10)

where θv is the expected income obtained by serving user
v of a certain traffic type. Suppose that each user has the
same traffic type, for example audio. Then the expected payoff
obtained at BS i is:

ui = |Mi| · θaudio (11)

We further assume that the income4 per user increases accord-
ing to the data rate of the given service, thus θaudio < θvideo <
θdata. We obtain the expected income by performing several
simulation runs with various pilot power settings as described
in the previous section. This results in an expected payoff
matrix for the two players. We apply the classic game-theoretic
concepts on this payoff matrix. We express the payoffs of
the players in Swiss francs (CHF) to emphasize the monetary
advantage.

In order to get an insight into the strategic behavior of the
operators, we apply the following game-theoretic concepts.
First, let us introduce the concept of best response. We can
write bri(sj), the best response of player i to the opponent’s
strategy sj as follows.

Definition 1: The best response of player i to the profile of
strategies sj is a strategy si such that:

bri(sj) = arg max
si∈S

ui(si, sj) (12)

3Note that one can easily extend the definitions in the power control game
to several BS-s and operators.

4Note that the income is defined by the total amount of downloaded data,
which can vary according to the length of communication sessions. If we
change these income values, our results only change quantitatively, but not
qualitatively.

One can see that if two strategies are mutual best responses
to each other, then no player has a motivation to deviate from
the given strategy profile. To identify such strategy profiles in
general, Nash introduced the concept of Nash equilibrium in
his seminal paper [25]. We can formally define the concept of
Nash equilibrium (NE) as follows.

Definition 2: The pure-strategy profile s∗ constitutes a Nash
equilibrium if, for each player i,

ui(s∗i , s
∗
j ) ≥ ui(si, s

∗
j ),∀si ∈ S (13)

where s∗i and s∗j are the Nash equilibrium strategies of player
i and j, respectively. In other words: In a Nash equilibrium,
none of the players can unilaterally change his strategy to
increase his payoff.

We use the concept of Pareto-optimality to characterize the
efficiency of different strategy profiles.

Definition 3: The strategy profile s is Pareto-optimal if
there does not exist another strategy profile s

′
such that for

each player i:
ui(s

′
i, s

′
j) ≥ ui(si, sj) (14)

with strict inequality for at least one player.
In other words, one cannot increase the payoff of a player
without hurting the other player.

We present our results using a symmetric scenario of
the base stations and assuming that the users are uniformly
distributed in the simulation area. For other base station place-
ments or user distributions, the Nash equilibrium strategies and
payoffs are going to be asymmetric.

IV. IS THERE A POWER CONTROL GAME?
In this section, we study the behavior of the operators in a

single-stage game. We first assume that one of the operators
does not play and show that the other operator has an incentive
to be strategic.5 Second, we consider the case in which both
operators have the possibility to adjust their pilot power and
show that they are better off by doing so. We obtain our
simulation results using the simulation environment described
in Section III-A.

A. Only player A is strategic

First, we consider the case where only operator A is
strategic and adjusts the pilot power of his BS to attract more
users, whereas operator B operates his BS according to the
standard pilot power of P s = 2W . To quantify the advantage
of the strategic player, we define the concept of normalized
payoff difference ∆i.

Definition 4: The normalized payoff difference ∆i is the
normalized difference between the maximum payoff of player
i and his payoff using the standard power P s assuming that
the other player j uses P s.

∆i =
maxsi (ui(si, P

s))− ui(P s, P s)
ui(P s, P s)

(15)

Suppose that there are on average 10 users of the data traffic
type in the simulation area. We show the payoffs of players

5Due to symmetry, we only show the results for player A.
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Fig. 2. Payoffs of the players as a function of the pilot power of player A: (a) for α = 2 and (b) for α = 4. We also show the normalized payoff difference
∆A as a function of (c) the path loss exponent α and (d) the distance d between the two BS-s.

A and B as a function of the pilot signal power PA as well
as the sum of their payoffs in Figure 2. Figure 2a shows these
payoffs for α = 2, whereas Figure 2b presents the same results
for α = 4. We observe that in both cases the operators are able
to serve all users in the area using certain power values. If all
users are served, then the game is a zero-sum game. In the
zero-sum game, if player A adjusts his pilot power and obtains
the increase of ∆A, he causes the decrease of ∆A in the payoff
of the non-strategic player B. Furthermore, the payoff function
of operator A has a unique maximum point. It is interesting to
observe that the maximum payoff point requires a higher pilot
power than P s = 2W . Hence, we conclude that operator A
has an incentive to adjust his pilot signal. Note that we obtain
qualitatively the same result for different user traffic types.

Figures 2a and Figure 2b show that the value of the
normalized payoff difference ∆A depends on the parameter α.
We show this dependency in Figure 2c. One can observe that
∆A increase as α decreases. The reason is that by low α values
the pilot signals propagate more easily giving a higher gain to
A if he uses higher pilot power. The value of ∆A also depends
on the distance d between the two BS-s as shown in Figure 2d.
As the distance decreases, ∆A increases exponentially. The
reason for this increase is the same as discussed before. In
the remainder of the paper, we choose the conservative default
values α = 4 and d = 500m for the simulations. We will show
that even with these conservative values, the players have an

incentive to fine-tune their pilot powers.

B. Both operators are strategic

In the second set of simulations, we assume that both
operators adjust their pilot power. We still consider 10 data
users in the simulation area. We provide the payoff of player
A as a function of his pilot power PA in Figure 3a. We obtain
different payoff curves as the pilot power of the other BS PB

increases. We can observe that each of the payoff functions
has a unique maximum point for PA. Moreover, this maximum
point depends on the pilot power of the other BS, PB . For
low values of PB , the maximum payoff value decreases as
PB increases. In Figure 3b, we show the payoff surface for
operator A as a function of the pilot power values of the two
BS-s.

Using the two payoff surfaces, we derive the best response
functions (i.e., the set of maximum payoff points) for the
operators as shown in Figure 4 for two different user den-
sities. Based on the concept of best responses introduced in
Section III-B, we can identify the Nash equilibria in the power
control game as shown in Figures 4a for 10 data users and
Figures 4b for 100 data users. We see that there exists a unique
Nash equilibrium point defined as the crossing point of the two
best response functions. Note that for 10 data users the Nash
equilibrium strategy profile defines PA = PB = 6W , which
are higher than the standard pilot powers. For 100 data users
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Fig. 3. Payoff of player A as a function of his pilot power. Both operators are strategic, hence we present this payoff for various values of PB in (a). We
show the complete payoff surface in (b).
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Fig. 4. Best response functions for the two players with (a) 10 data users, (b) 100 data users.

the Nash equilibrium strategy profile defines PA = PB =
0.5W . The reason is that the capacities BS-s saturate by using
a relatively small power and hence there is no motivation for
them to go above these pilot power values.

Next, we study the pilot power values in the Nash equi-
librium as a function of the number of users. We show the
results in Figure 5. Due to symmetry in the user distributions,
the Nash equilibrium pilot power is the same for both players.
We observe that the Nash equilibrium pilot powers decrease
as the number of users increases. For high user densities, the
Nash equilibrium pilot powers stabilize at the value of 0.5W .

In the following set of experiments, we study the efficiency
of the system in a Nash equilibrium with respect to the case
in which the players both use the standard power P s. To
this end, we investigate the payoff region, i.e. the payoff
values for various pilot power levels. We identify the payoffs
corresponding to the Nash equilibrium, the standard pilot
power setting using P s and the payoffs that correspond to
Pareto-optimal strategy profiles. In particular, we can define
the Pareto boundary as the set of Pareto-optimal payoff points.
In our case, the Pareto-optimal payoff points characterize the
system-efficient solutions.

Figure 6a shows the achieved payoffs as a function of
the pilot power values PA and PB for 10 data users. We
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Fig. 5. Nash equilibrium pilot power values as a function of the user density.

observe that in this case the Pareto boundary defines a straight
line, because in a Pareto-optimal strategy profile each user in
the system is attached to one of the BS-s. Furthermore, the
standard pilot powers and the Nash equilibrium strategy profile
result in the same payoffs for the players and in addition they
both lie on the Pareto boundary. This means that the players
achieve a desirable state from the system point of view. Recall,
however, that in this case the Nash equilibrium strategy profile
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Fig. 6. The payoff region with all possible payoffs for (a) 10 data users and (b) 100 data users. We highlight the Nash equilibrium, the payoff of the standard
powers and all Pareto-optimal points.

requires higher pilot powers than the standard setting.
We present the payoffs for 100 data users in Figure 6b.

In this case the Pareto-optimal points do not form a straight
line anymore, because some users cannot be served. Another
observation is that the Nash equilibrium is still close to Pareto-
optimality, but the standard solution becomes very inefficient.

Following the previous experiment, we formally express the
efficiency of the standard and the Nash equilibrium solutions
compared to the best Pareto-optimal point (i.e., the Pareto-
optimal strategy profile in which the sum of the payoffs for
the two players is maximized). To this end, let us define the
following two concepts:

Definition 5: The price of anarchy [19] is the ratio between
the total payoff achieved by the two players in the best Pareto-
optimal point and in the Nash equilibrium.

Definition 6: The price of conformance is the ratio between
the total payoff achieved by the two players in the best Pareto-
optimal point and when using the standard pilot powers P s

(i.e., being non-strategic).
We perform a set of experiments to measure these values

for increasing user densities. Figure 7 presents the price of
anarchy and the price of conformance as a function of the
user density assuming they have data traffic. We see that
both prices increase as the number of users increases. As we
have seen in Figure 6a, both the standard payoff point and
the Nash equilibrium achieve Pareto-optimality if there is a
small number of users. Hence, the two prices are very close
to one. As the user density increases, we observe that both
prices increase and then stabilize around a constant value.
Note, however, that the price of anarchy stabilizes close to
one, whereas the price of conformance stabilizes around 1.4.
This shows that for a high number of users, the players can
achieve a higher payoff if both of them are strategic.

V. CONVERGENCE TO A NASH EQUILIBRIUM

We have seen in the previous section that the expected
payoff function for a certain player is continuous and has
a unique maximum point. In this section, we propose a
distributed algorithm to achieve the Nash equilibrium in a
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Fig. 7. The price of anarchy and the price of conformance as a function of
the user density.

given scenario. The algorithm is similar to the better-response
dynamics [8], i.e., where each player tries to improve his
payoff in each step. We provide the pseudo-code as shown
in Algorithm 1.

Algorithm 1 Distributed convergence to the NE
1: for all player i do
2: set pilot power Pi = 0.1W
3: set the direction of optimization diri = +1
4: end for
5: set power control step size Pstep = 0.1W
6: while () do
7: for all player i do
8: update Pi with a probability 0 < q < 1
9: Pi = Pi + diri · Pstep

10: if ui decreased then
11: {the optimization passed the maximum payoff value}
12: diri = −diri
13: end if
14: end for
15: end while

Figure 8a shows the evolution of the pilot power values
applying Algorithm 1. We observe that the pilot power values
follow the linear increase defined in the algorithm. After reach-
ing the Nash equilibrium pilot power values, the algorithm
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Fig. 8. Convergence to the Nash equilibrium using Algorithm 1. We present (a) the evolution of the pilot power values and (b) evolution of the payoffs.

stabilizes after certain steps.
Figure 8b shows the evolution of the payoffs during the

convergence process. We see that the algorithm deviates from
the Nash equilibrium payoffs while the pilot powers increase.
As soon as the pilot powers reach the Nash equilibrium
strategies, the payoffs remain close to the Nash equilibrium
payoffs as well.

VI. POWER CONTROL GAME WITH POWER COST

We have seen that the operators are able to serve all users in
the area if the user density is low. We observe, however, that
the Nash equilibrium pilot powers are higher than the standard
value. Recall that the payoff function defined in (10) does not
include the possible cost due to the operation with high pilot
power. Let us now extend the expected payoff function defined
in (10) to capture this important aspect of the power control
game. We introduce two cost values for each player. The first
cost denoted by Cop

i shows the operating cost of a BS i.
This includes the aging of devices and hence the maintenance
costs. The other cost, Csubj

i , expresses the subjective cost
of player i. This covers every other aspect such as the risk
of lawsuits or potential bad reputation due to high emission
power. Without loss of generality, we assume that these costs
are an increasing function of the downlink transmission power
of the base stations.

According to the above description, we can extend the
notion of expected payoff as:

ui = (
∑

v∈Mi

θv)− Cop
i − Csubj

i (16)

We define a non-cooperative power control game with the
new expected payoff function introduced in (16) and denote
it by Ĝ. We assume that the players are able to calculate
the Nash equilibrium of the original game G. We define the
strategy in the extended game Ĝ as the choice between the
standard and the Nash equilibrium strategies. Formally, we can
write the strategies in Ĝ as:

si = {P ∗i , P s} (17)

Let us call U the expected payoff that the players obtain by
serving half of the total number of users. As we have seen in

Section IV-B, if they play the Nash equilibrium strategy profile
by low user densities, then it requires a higher pilot power from
each operator. Without loss of generality, we denote by C∗ the
additional cost imposed by the Nash equilibrium compared to
the standard pilot power setting P s. The cost C∗ includes
both the operating and the subjective costs. Recall that we
defined the normalized payoff difference ∆A in Section IV-A.
Due to the symmetry ∆A = ∆B and we denote it by ∆. In
the extended game Ĝ, we assume that the normalized payoff
difference is higher than the corresponding cost of using higher
pilot power, thus ∆ > C∗.

We present the payoff matrix of the game Ĝ in Table III. In
each payoff pair, the first payoff belongs to player A, whereas
the second to player B.

TABLE III
PAYOFF MATRIX OF THE GAME Ĝ.

Player B
P s P ∗B

Player A P s U ,U U −∆,U + ∆− C∗
P ∗A U + ∆− C∗,U −∆ U − C∗,U − C∗

To emphasize the structure of the payoff matrix, let us
substitute the values U = 3, ∆ = 2 and C∗ = 1. Substituting
these values in Table III, we obtain Table IV. From the payoff
matrix, one can realize that the game Ĝ is equivalent to the
well-known Prisoner’s Dilemma [9], [10], [26]. Analogously,
the strategy P s corresponds to cooperation, whereas the strat-
egy P ∗i corresponds to defection. This means that in the Nash
equilibrium, each player uses high power and the resulting
payoffs are lower than if both had complied.

TABLE IV
THE EXTENDED POWER CONTROL GAME Ĝ CORRESPONDS TO THE

PRISONER’S DILEMMA.

Player B
P s P ∗B

Player A P s 3,3 1,4
P ∗A 4,1 2,2
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VII. CONCLUSION

In this paper, we have studied the problem of competitive
pilot power control in two CDMA networks that reside on the
two sides of a national border. We have investigated whether
the operators of these networks have an incentive to adjust
their pilot signal powers or not. To get an insight into the
problem, we have considered the single cell-case with two
base stations. Initially, we have assumed that only one operator
can adjust the pilot signal power of his base station. We have
shown that he has an incentive to be strategic and quantified
the effect of various parameters on the increase of his payoff.
We have shown that if both operators are strategic and the user
density is low, then being strategic or not results in similar
payoffs. We have recognized that the two solutions require
different pilot powers. If the user density is high, then the
Nash equilibrium is more efficient than using the standard
pilot powers, which suggests that the operators again have an
incentive to be strategic. Finally, we have extended the payoff
function to include the cost of using high pilot powers. We
have established the analogy between the power control game
with power cost in case of low user densities and the well-
known Prisoner’s Dilemma.

In terms of future work, we will extend the study of the
single cell case to scenarios including several base stations.
Because this case is fairly complex, we will propose dis-
tributed algorithms to identify and achieve Nash equilibria.
Furthermore, we will consider power control games for sce-
narios, where users are associated with one of the operators.
Finally, we will study the enforcement of desirable power
signal levels through power pricing.
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