502 research outputs found

    Fundamental Limits in Correlated Fading MIMO Broadcast Channels: Benefits of Transmit Correlation Diversity

    Full text link
    We investigate asymptotic capacity limits of the Gaussian MIMO broadcast channel (BC) with spatially correlated fading to understand when and how much transmit correlation helps the capacity. By imposing a structure on channel covariances (equivalently, transmit correlations at the transmitter side) of users, also referred to as \emph{transmit correlation diversity}, the impact of transmit correlation on the power gain of MIMO BCs is characterized in several regimes of system parameters, with a particular interest in the large-scale array (or massive MIMO) regime. Taking the cost for downlink training into account, we provide asymptotic capacity bounds of multiuser MIMO downlink systems to see how transmit correlation diversity affects the system multiplexing gain. We make use of the notion of joint spatial division and multiplexing (JSDM) to derive the capacity bounds. It is advocated in this paper that transmit correlation diversity may be of use to significantly increase multiplexing gain as well as power gain in multiuser MIMO systems. In particular, the new type of diversity in wireless communications is shown to improve the system multiplexing gain up to by a factor of the number of degrees of such diversity. Finally, performance limits of conventional large-scale MIMO systems not exploiting transmit correlation are also characterized.Comment: 29 pages, 8 figure

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201

    Short-Term Power Constrained Cell-Free Massive-MIMO Over Spatially Correlated Ricean Fading

    Get PDF
    This paper considers short-term power constrained cell-free massive multiple-input multiple-output (MIMO) scenarios where a large set of multi-antenna access points (APs) provide service to a group of single-antenna mobile stations (MSs) on a spatially correlated multipath environment. Based on a probabilistic approach, the spatially correlated propagation links are modeled using either Ricean or Rayleigh fading channel models that combine a deterministic line-of-sight (LOS) propagation path with a small-scale fading caused by non-line-of-sight (NLOS) multipath propagation. Assuming the use of minimum mean square error (MMSE) channel estimates, closed-form expressions for the downlink (DL) achievable spectral efficiency of a cellfree massive MIMO network with short-term power constraints (i.e., a vector normalized conjugate beamformer (NCB)) are derived and benchmarked against that provided by the conventional cell-free massive MIMO network with long-term power constraints (i.e., the conventional conjugate beamforming (CB)). These expressions, encompassing the effects of spatial antenna correlation, Ricean/Rayleigh fading and pilot contamination, are then used to derive both pragmatic and optimal max-min peruser power allocation strategies and to gain theoretical insight on the performance advantage provided by the use of short-term power constraints instead of the conventional long-term power constrained approach.This work was supported in part by the Agencia Estatal de Investigacion (AEI) of Spain under Grants TEC2017-90093-C3-2-R and TEC2017-90093-C3-3-R, and in part by the European Regional Development Fund (ERDF) funds of the European Union (EU) (AEI/FEDER, UE)
    corecore