3 research outputs found

    Automatic enhancement of vascular configuration for self-healing concrete through reinforcement learning approach

    Get PDF
    Vascular self-healing concrete (SHC) has great potential to mitigate the environmental impact of the construction industry by increasing the durability of structures. Designing concrete with high initial mechanical properties by searching a specific arrangement of vascular structure is of great importance. Herein, an automatic optimization method is proposed to arrange vascular configuration for minimizing the adverse influence of vascular system through a reinforcement learning (RL) approach. A case study is carried out to optimize a concrete beam with 3 pores (representing a vascular network) positioned in the beam midspan within a design space of 40 possibilities. The optimization is performed by the interaction between RL agent and Abaqus simulation environment with the change of target properties as a reward signal. The results illustrates that the RL approach is able to automatically enhance the vascular arrangement of SHC given the fact that the 3-pore structures that have the maximum target mechanical property (i.e., peak load or fracture energy) are accessed for all of the independent runs. The RL optimization method is capable of identifying the structure with high fracture energy in the new optimization task for 4-pore concrete structure.</p

    Deep Reinforcement Learning-based Project Prioritization for Rapid Post-Disaster Recovery of Transportation Infrastructure Systems

    Get PDF
    Among various natural hazards that threaten transportation infrastructure, flooding represents a major hazard in Region 6\u27s states to roadways as it challenges their design, operation, efficiency, and safety. The catastrophic flooding disaster event generally leads to massive obstruction of traffic, direct damage to highway/bridge structures/pavement, and indirect damages to economic activities and regional communities that may cause loss of many lives. After disasters strike, reconstruction and maintenance of an enormous number of damaged transportation infrastructure systems require each DOT to take extremely expensive and long-term processes. In addition, planning and organizing post-disaster reconstruction and maintenance projects of transportation infrastructures are extremely challenging for each DOT because they entail a massive number and the broad areas of the projects with various considerable factors and multi-objective issues including social, economic, political, and technical factors. Yet, amazingly, a comprehensive, integrated, data-driven approach for organizing and prioritizing post-disaster transportation reconstruction projects remains elusive. In addition, DOTs in Region 6 still need to improve the current practice and systems to robustly identify and accurately predict the detailed factors and their impacts affecting post-disaster transportation recovery. The main objective of this proposed research is to develop a deep reinforcement learning-based project prioritization system for rapid post-disaster reconstruction and recovery of damaged transportation infrastructure systems. This project also aims to provide a means to facilitate the systematic optimization and prioritization of the post-disaster reconstruction and maintenance plan of transportation infrastructure by focusing on social, economic, and technical aspects. The outcomes from this project would help engineers and decision-makers in Region 6\u27s State DOTs optimize and sequence transportation recovery processes at a regional network level with necessary recovery factors and evaluating its long-term impacts after disasters
    corecore