580 research outputs found

    3-Factor-criticality in double domination edge critical graphs

    Full text link
    A vertex subset SS of a graph GG is a double dominating set of GG if N[v]S2|N[v]\cap S|\geq 2 for each vertex vv of GG, where N[v]N[v] is the set of the vertex vv and vertices adjacent to vv. The double domination number of GG, denoted by γ×2(G)\gamma_{\times 2}(G), is the cardinality of a smallest double dominating set of GG. A graph GG is said to be double domination edge critical if γ×2(G+e)<γ×2(G)\gamma_{\times 2}(G+e)<\gamma_{\times 2}(G) for any edge eEe \notin E. A double domination edge critical graph GG with γ×2(G)=k\gamma_{\times 2}(G)=k is called kk-γ×2(G)\gamma_{\times 2}(G)-critical. A graph GG is rr-factor-critical if GSG-S has a perfect matching for each set SS of rr vertices in GG. In this paper we show that GG is 3-factor-critical if GG is a 3-connected claw-free 44-γ×2(G)\gamma_{\times 2}(G)-critical graph of odd order with minimum degree at least 4 except a family of graphs.Comment: 14 page

    Distances and Domination in Graphs

    Get PDF
    This book presents a compendium of the 10 articles published in the recent Special Issue “Distance and Domination in Graphs”. The works appearing herein deal with several topics on graph theory that relate to the metric and dominating properties of graphs. The topics of the gathered publications deal with some new open lines of investigations that cover not only graphs, but also digraphs. Different variations in dominating sets or resolving sets are appearing, and a review on some networks’ curvatures is also present

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    Characterizing Heterogeneity in Cooperative Networks From a Resource Distribution View-Point

    Get PDF
    © by International Press. First published in Communications in Information and Systems, Vol. 14, no. 1, 2014, by International Press.DOI: http://dx.doi.org/10.4310/CIS.2014.v14.n1.a1A network of agents in which agents with a diverse set of resources or capabilities interact and coordinate with each other to accomplish various tasks constitutes a heterogeneous cooperative network. In this paper, we investigate heterogeneity in terms of resources allocated to agents within the network. The objective is to distribute resources in such a way that every agent in the network should be able to utilize all these resources through local interactions. In particular, we formulate a graph coloring problem in which each node is assigned a subset of labels from a labeling set, and a graph is considered to be completely heterogeneous whenever all the labels in the labeling set are available in the closed neighborhood of every node. The total number of different resources that can be accommodated within a system under this setting depends on the underlying graph structure of the network. This paper provides an analysis of the assignment of multiple resources to nodes and the effect of these assignments on the overall heterogeneity of the network

    Recent results and open problems on CIS Graphs

    Get PDF
    corecore