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Characterizing heterogeneity in cooperative
networks from a resource distribution view-point

Waseem Abbas and Magnus Egerstedt

A network of agents in which agents with a diverse set of resources
or capabilities interact and coordinate with each other to accom-
plish various tasks constitutes a heterogeneous cooperative net-
work. In this paper, we investigate heterogeneity in terms of re-
sources allocated to agents within the network. The objective is to
distribute resources in such a way that every agent in the network
should be able to utilize all these resources through local interac-
tions. In particular, we formulate a graph coloring problem in which
each node is assigned a subset of labels from a labeling set, and a
graph is considered to be completely heterogeneous whenever all
the labels in the labeling set are available in the closed neighbor-
hood of every node. The total number of different resources that
can be accommodated within a system under this setting depends
on the underlying graph structure of the network. This paper pro-
vides an analysis of the assignment of multiple resources to nodes
and the effect of these assignments on the overall heterogeneity of
the network.

1. Introduction

Heterogeneity has emerged as an important aspect of multiagent and cooper-
ative networks in which agents with assorted functionalities and capabilities
interact with each other to accomplish complex tasks. Agents with various
capabilities and properties when integrated together in the framework of
heterogeneous networks, become specialized to achieve sub-goals which may
not be accomplished by a team of homogeneous agents efficiently. Several
applications of such heterogeneous systems have been studied in the liter-
ature. For instance, it is shown in [1] that the reliability and lifetime of a
sensor network can be increased by introducing nodes in the network that
are different in terms of power consumption and communication capabili-
ties. In [2], it is shown that heterogeneity can be exploited to reduce the
number of sensors required in a sensor network without compromising on
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the coverage and the broadcast reach of the network. Heterogeneity among
agents is explored to make a decentralized system more stable and efficient
in [3]. Several other applications are also reported in other domains includ-
ing multirobot systems (e.g., [4, 5, 6, 8]), and wireless sensor networks (e.g.,
[9, 10]) to name a few.

One of the challenges in heterogeneous networks is to optimally dis-
tribute agents having different capabilities and resources within a network.
A part of the challenge is to articulate the notion of heterogeneity in order
to guide the analysis and design of heterogeneous networks in a systematic
way. Heterogeneity in cooperative networks can be understood along a num-
ber of dimensions. We can broadly classify the studies in this area into two
categories; one that quantify heterogeneity from agents’ perspectives, includ-
ing functional or behavioral dissimilarities among individual agents (e.g.,
[11, 12, 13, 14]), and the relative number of non-homogeneous agents (e.g.,
[15, 16, 17]); second that measures heterogeneity in terms of the underlying
graph structure of the network with an aim to quantify degree distribution
among the nodes while treating all the nodes similar1 (e.g., [18, 19, 20]).
Despite their merits, all these studies address one of the two attributes of
a cooperative network at a time, either agents’ classification or the topo-
logical properties of the underlying graph structure. However, to obtain a
holistic overview of heterogeneity, a unified framework incorporating agents’
classification as well as network topology is needed.

In this paper, we extend our initial work in [7, 8], and investigate a
resource assignment problem over a graph in the context of heterogeneous
cooperative networks. The objective is to provide a framework for a net-
work topology based characterization of heterogeneity in cooperative net-
works while distinguishing among agents. We investigate interactions among
various types of agents, which are distributed throughout a heterogeneous
network, by formulating a graph coloring problem. A network is modeled by
a graph, in which vertices represent agents and edges abstract interactions
among agents. Vertices corresponding to agents of a similar type are as-
signed a distinct color. An agent interacts locally with other types of agents
to perform some task. The goal is to maximally exploit heterogeneous re-
sources available within the network through these local interactions. Using
the graph coloring formulation, we examine an inter-relationship between
network topology and distribution of agents with various capabilities in het-
erogeneous networks. This framework also provides a way to characterize
various network topologies in terms of their capabilities to incorporate het-
erogeneous entities under constraints on interactions among various types

1I.e., there is no distinction among the nodes to account for their functional or
behavioral differences.
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of agents. The role and significance of individual agents and interactions on
the overall heterogeneity of the network is also explored.

The paper is organized as follows: In Section 2, a graph coloring based
model of heterogeneous networks is given. Using this model, distribution of
resources among nodes within a network is analyzed in Section 3. In Sec-
tion 4, the issue of maximum number of resources that can be incorporated
within a network under the constraints of the model is addressed. A re-
source assignment problem in R-disk proximity graphs, which is a widely
used inter-connection model in multiagent, multirobot, and sensor networks
is investigated in Section 5. The paper is concluded in Section 6 along with
some future directions of the work.

2. Graph coloring based model of heterogeneous networks

Graph theoretic tools are frequently applied to model and analyze various
cooperative networks including sensor networks, multiagent, and multirobot
networks. In this paper, a network is modeled by a graph G(V,E) in which
the vertex set V represents agents and the edges in the edge set E corre-
spond to interactions among agents. In the case of heterogeneous networks
in which agents may be different from each other in terms of their resources
or capabilities (for instance, sensing, actuation, dynamics, capabilities, re-
sources, hardware, or software etc.), heterogeneity is modeled by associating
a unique color (or label) with each resource type available in the network.
Moreover, all of the vertices in an underlying graph of the network are as-
signed colors (or labels) in accordance with the resources contained by the
corresponding agents. A vertex may have multiple labels if the correspond-
ing agent has multiple types of resources. In heterogeneous cooperative net-
works, agents interact and utilize each others’ resources to accomplish tasks
such as surveillance, coverage, data analysis, and computation to name a few.
The availability of resources of different types in the local neighborhood of
an agent determines the agent’s overall capability to perform various tasks.
Correlation between network topology and distribution of agents with vari-
ous types of resources can be studied by casting a graph coloring formulation
of the problem in which vertices are assigned labels in accordance with the
resources contained by the agents.

Throughout this paper, a graph G(V,E) with a vertex set V and an
edge set E, is a simple undirected graph. An edge between nodes vi and vj
is denoted by vi ∼ vj . The open neighborhood of a vertex v ∈ V (G), denoted
by N (v), is the set of vertices adjacent to v. Its closed neighborhood, denoted
by N [v], is N (v) ∪ {v}. The degree of a vertex v, deg(v), is the cardinality



4 Waseem Abbas and Magnus Egerstedt

of N (v). The minimum degree of a graph, δ(G), is min{deg(v) | v ∈ V } and
the maximum degree of a graph, Δ(G), is max{deg(v) | v ∈ V }. The terms
color and label are used interchangeably.

Let r = {1, 2, · · · , r} be a set of labels representing r different types of
resources (or capabilities) available within a heterogeneous network. Fur-
thermore, vertices are assigned labels according to the map,

f : V −→ 2r

Here, 2r is the set of all subsets of r. f(v) is a subset of resources con-
tained by agent v, which interacts and utilizes the resources of its neighbors
to perform some task. Thus, the heterogeneity of an agent v within the
network depends on the resources (or capabilities) contained by v and its
neighbors, and is defined as

(1) H(v) =
⋃

u∈N [v]

f(u)

Moreover, an agent ismaximally heterogeneous within the network when-
ever H(v) = r, as v can exploit all different functionalities and resources
available within the network by interacting with its neighbors. Thus, from
the the network topological view-point, a completely heterogeneous graph is
defined as

Definition 2.1. A graph G(V,E) in which every v ∈ V is assigned a subset
of labels f(v) from the set r = {1, 2, · · · , r}, is completely heterogeneous with
r labels if

H(v) = r, ∀v ∈ V

Note that in a completely heterogeneous network as defined above, every
agent is capable of exploiting a complete set of resources and functionality
available within the network to perform various tasks by working in con-
junction with its neighbors.

2.1. Examples

Consider an industrial location in which some manufacturing process de-
pends on environmental conditions, including temperature (t), light (�), hu-
midity (h), and air pressure (p). A specific environmental condition that
depends on all of the above parameters is needed to be maintained to get a
desired yield. Let this condition be denoted by ω(t, �, h, p). Sensors for each
of the above parameters t, l, h and p are mounted at various data collec-
tion points, which are inter-connected with each other and exchange data.
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Figure 1: G1 is a completely heterogeneous graph with four labels {t, h, l, p}.
In G2, label p is missing from the closed neighborhoods of the circled nodes.
Thus, G2 is not completely heterogeneous.

The environmental condition ω(t, �, h, p) is computed at every such data
collection point. The distribution of sensors with assorted sensing capabili-
ties constitutes a heterogeneous network. It is further assumed that owing
to some constraints (e.g., hardware, power, economical etc.), only a subset
of sensors can be mounted at each data collection point. Since all four pa-
rameters are needed for the computation of ω(t, �, h, p), sensors need to be
distributed in such a way that all of the four types of sensors are available
in the closed neighborhood of every data collection point. In other words,
underlying graph of the network needs to be completely heterogeneous with
the set of labels {t, l, h, p} as shown in Fig. 1.

As another example, consider a society of some ‘species’ in which each
member of the society has been assigned a specific role. Some members are
food providers, some are shelter providers, while others hold the task of pro-
viding security to the members they interact with. In such a society, every
member depends on other members to ensure the availability of all the fa-
cilities. For instance, a food providing member must interact with a shelter
provider and a security provider for shelter and security respectively. This
kind of cooperation constitutes a heterogeneous network in which availability
of all the resources to each member of the society is possible if the under-
lying graph of the network is completely heterogeneous with three distinct
labels.

2.2. Major issues related to the notion of completely
heterogeneous graph

In the context of heterogeneous cooperative networks, the notion of com-
pletely heterogeneous graph has three major aspects. First, given a colored
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Figure 2: G1 can not be made completely heterogeneous with five labels
by assigning at most two distinct labels to each node. In the case of G2,
although it is possible to assign two colors to each vertex and obtain a
completely heterogeneous graph with five colors, under the given labeling
v6 is missing label 2 in its closed neighborhood. In G3, each vertex has a
complete set of five labels in its closed neighborhood.

graph, how can we analyze the distribution of colors to nodes, i.e., determine
in a systematic way which nodes are missing colors in their closed neigh-
borhoods? what is the most deficient color in the network? which edges or
nodes are relatively more ‘crucial’ or significant? This analysis will provide a
way to transform a given coloring of a graph to a completely heterogeneous
one through simple graph operations, such as adding or removing certain
edges.

Second, given a coloring set r and a constraint on the maximum num-
ber of colors each node can have, is it possible to color the nodes to get a
completely heterogeneous graph? For instance, in Fig. 2, it is impossible to
color G1 to get a completely heterogeneous graph with five colors if each
node is allowed to have at most two colors. This issue is significant in char-
acterizing network topology in terms of its overall capability to incorporate
heterogeneous resources.

Third, once we know that a labeling scheme exists to make a graph
completely heterogeneous with a certain number of labels and constraint on
the number of labels each node can have, how can we assign colors to nodes
to achieve such a labeling scheme? An example is illustrated in Fig. 2.

3. Analyis of the distribution of heterogeneous agents within
a network

In this section, distribution of resources or capabilities in heterogeneous
cooperative networks is analyzed using the model introduced in Section 2.
Various tasks performed by individual agents in such networks depend on
the resources available locally to agents. Thus, information regarding missing
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resources in the closed neighborhoods of agents along with the interactions
needed to make these resources available is crucial. In this section, these
issues are addressed.

Given a graph with n nodes, in which every node vi is assigned a subset
of colors (labels) f(vi) from the set of colors r = {1, 2, · · · , r}. We define a
color matrix, denoted by C, as a binary matrix with dimensions n × r as
follows:

(2) Cij =

{
1 if j ∈ f(vi), where f(vi) ⊆ r
0 otherwise.

In (2), f(vi) indicates the colors assigned to the vertex vi. The column
index of C indicates the color, thus Cij = 1 means that color j has been
assigned to the vertex vi.

Using the color matrix C, and the adjacency matrix A of the graph,
another integer matrix of dimensions n × r is defined and named as the
color distribution matrix as follows:

(3) Φ = AC,

where A = (A+ I). Here, I is the identity matrix of dimensions n× n.
The color distribution matrix gives information regarding the distribu-

tion of various colors within the network. In fact, it describes the exact
number of different colors available in the closed neighborhood of any node.

Lemma 3.1. Φij is the number of nodes with the color j in the closed
neighborhood of node vi.

Proof. The entries in the ith row matrix A, denoted by Ai, are 1 only for the
vertices inN [vi] and 0 otherwise. The entries in the jth column of C, denoted
by Cj , are 1 only for the vertices with the color j and 0 otherwise. Thus,
AiCj is the number of vertices that have color j in the closed neighborhood
of vertex vi.

The color distribution matrix turns out to be a useful object in char-
acterizing the distribution of colors to vertices in a graph. For instance, it
allows to determine the extra edges required to transform a given labeling
of a graph into a completely heterogeneous one. In fact, Φij = 0 means
that vi is missing color j in its closed neighborhood. Thus, an extra edge is
needed to connect vi to some vu with a color j. Upper and lower bounds on
the number of extra edges required to get a completely heterogeneous graph
with r labels from a given coloring of G are presented in the following result.
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Theorem 3.2. Let s be the maximum number of labels assigned to any

vertex in a graph G. The number of extra edges E, needed to get a completely

heterogeneous graph with r labels from a given coloring of G is

(4)

⌈
z(Φ)

2s

⌉
≤ E ≤ z(Φ),

where z(Φ) is the number of 0’s in the color distribution matrix Φ.

Proof. Let vi ∼ vj be an extra edge connecting vertex vi with colors κ1, · · · ,
κs, to vertex vj with colors τ1, τ2, · · · , τs. Since every vertex can have at

most s distinct colors, vi ∼ vj can add at most s missing colors in N [vi]

and also at most s missing colors in N [vj ]. This is possible whenever vi is

missing colors τ1, τ2, · · · , τs in N [vi] given by Φiτ = 0, ∀τ ∈ {τ1, · · · , τs},
and vj is missing κ1, κ2, · · · , κs in N [vj ], given by Φjκ, ∀κ ∈ {κ1, · · · , κs}.
In this case, vi ∼ vj edge will change 2s zero entries in the Φ matrix to

ones. In any other case, i.e., vi has at least one of the τ1, τ2, · · · , τs colors in

its closed neighborhood or vj has at least one of the κ1, κ2, · · · , κs colors in

N [vj ], the number of zeros in Φ that will be converted to 1 will be less than

2s. Thus, 	 z(Φ)
2s 
 ≤ E .

The upper bound is straight forward as Φiτ = 0 means that vi is missing

a color τ in N [vi], and the color τ can always be made available in N [vi]

by the addition of a single edge vi ∼ vj , where vj is any vertex with the

color τ .

As an illustration, consider G shown in Fig. 3. Every node has at most

two labels from the set of five labels given by {1, 2, 3, 4, 5}. The corresponding
C and Φ matrices are,

C =

⎛
⎜⎜⎜⎜⎝

1 0 1 0 0
0 0 0 1 1
0 1 0 0 1
1 1 0 0 0
0 0 1 1 0

⎞
⎟⎟⎟⎟⎠ , Φ =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 2
2 2 1 1 2
1 1 2 2 2
1 1 0 1 1
0 1 1 1 1

⎞
⎟⎟⎟⎟⎠ .

Since Φ43 = Φ51 = 0, v4 is missing label 3 in N [v4] and v5 is missing

label 1 in its closed neighborhood. By adding E number of edges, where

1 ≤ E ≤ 2 (by Theorem 3.2), G can be transformed into a completely het-

erogeneous graph. Note that by adding a single edge, v4 ∼ v5, a completely

heterogeneous graph with five labels is obtained.
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Figure 3: (a) A graph G has five vertices. (b) Two distinct labels are assigned
to each vertex of G from the labeling set, {1, 2, · · · , 5}. (c) As label 3 is
missing from N [v4], and label 1 is missing from N [v5], v4 ∼ v5 edge is
needed to make G completely heterogeneous with five labels.

3.1. Redundant edges

In dynamic networks, some edges may be lost. These edge deletions may take
away the availability of certain resources in the neighborhood of an agent.
Thus, we need to characterize edges whose deletion is not critical in the
sense that their removal will preserve the number of resources available in
the neighborhood of any agent. Let us define the deficiency of a node v as the
number of colors from the coloring set {1, 2, · · · , r} that are missing in N [vi].
Similarly, deficiency of a network is the sum of all the node deficiencies.
Based on this notion, we define a redundant edge to be the one whose deletion
does not increase the deficiency of the network.

Φij = 1 means that vi has only one neighbor with the color j. Thus, an
edge between vi and the j colored node is not redundant. Similarly, Φij > 1
implies that vi has multiple nodes with the color j in N [vi]. As a result,
there may be a redundant edge between vi and some of its neighbors.

Theorem 3.3. Let vi be a node with colors κ1, κ2, · · · , κs, and vj be its
neighbor with colors τ1, τ2, · · · , τs. An edge vi ∼ vj is redundant if and only
if Φiτ1 ,Φiτ2 , · · · ,Φiτs, and Φjκ1

,Φjκ2
, · · · ,Φjκs

are all greater than one si-
multaneously.

Proof. Let vi ∼ vj be a redundant edge, then by definition vi has at least
two neighbors for each of the colors τ1, τ2, · · · , τs in N [vi]. In other words,
Φiτ1 ,Φiτ2 , · · · ,Φiτs are all greater than 1. Similarly, for vj , the redundancy
of a vi ∼ vj edge implies that for each of the colors, κ1, κ2, · · · , κs, vertex vj
has at least two neighbors in N [vj ], implying that Φjκ1

,Φjκ2
, · · · ,Φjκs

are
all greater than 1.
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Figure 4: Every vertex is assigned two distinct labels from the set
{1, 2, · · · , 5}. v2 ∼ v3 edge is redundant and removing this edge will not
increase the deficiency of any node.

If vi ∼ vj is not redundant, then at least one of the following is true. (a)
there exists a τ ∈ {τ1, τ2, · · · , τs}, such that vi has only vj as a τ colored
vertex in N [vi], i.e., Φiτ = 1 for some τ ∈ {τ1, τ2, · · · , τs}. (b) there exists a
κ ∈ {κ1, κ2, · · · , κs}, such that vj has only vi as a κ colored vertex in N [vj ],
i.e., Φjκ = 1 for some κ ∈ {κ1, κ2, · · · , κs}.

In both cases, Φiτ1 ,Φiτ2 , · · · ,Φiτs and Φjκ1
,Φjκ2

, · · · ,Φjκs
, are not all

greater than 1 simultaneously, proving the required result.

As an example, consider the graph in Fig. 4. Note that v2 has labels 4 and
5, while v3 has labels 2 and 5. In the color distribution matrix, Φ22,Φ25,Φ34,
and Φ35 are all greater than 1. By Lemma 3.3, v2 ∼ v3 edge is redundant
and its deletion is not increasing the deficiency of any node in the network.

3.2. Most deficient color and the effect of node deletion

The most deficient color in the network is the one that is missing from
the closed neighborhood of the maximum number of vertices in G. The
jth column of Φ tells about the availability of the color j in the closed
neighborhood of all the vertices in G. By Lemma 3.1, Φij = 0 means vi does
not have a color j in N [vi]. Thus, the column index of Φ with the maximum
number of zeros will be the most deficient color in the given labeling of G.

The deletion of a vertex from a graph may increase the deficiency of
the remaining vertices. If vertex vi is the only vertex with the color κ in
the closed neighborhood of vertex vj , deleting vi will make vj deficient in
κ. However, if vj has multiple vertices with the color κ in N [vj ], which is
indicated by Φjκ ≥ 2, removal of vi will not increase the deficiency of vj for
the color κ. Using this observation, we can write a matrix U in which Uiκ
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Figure 5: A graph G along with the labeling of its vertices from the set
{1, 2, · · · , 5}. Removal of v1 makes v2 deficient in color 3 and v3 deficient in
color 1. Thus, deletion of v1 will increase the deficiency of the network by
two, which is also indicated by the row sum of the first row of U .

is the number of vertices that will become deficient in the color κ upon the

deletion of vi from the graph G. If C is the color matrix, and Φ be the color

distribution matrix, then

Uiκ =

(
|{vj : vj ∈ N (vi), and Φjκ = 1}| , if Ciκ = 1

0 otherwise.

U is an integer matrix with dimensions n×r, where n is the total number

of vertices in G, and r is the total number of colors in the labeling of G. The

ith row sum of U indicates the increase in the deficiency of the network as

a result of the deletion of vi. If we define a critical node as the one whose

removal from the network maximizes the increase in the deficiency of the

remaining network, then the row index of U corresponding to the maximum

row sum indicates the most critical vertex.

As an example, consider G shown in Fig. 5. The U matrix for G is

U =

⎛
⎜⎜⎜⎜⎝

1 0 1 0 0
0 0 0 2 1
0 2 0 0 1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

U13 = 1, indicates that a single vertex will become deficient in color ‘3’

upon the removal of v1 from G. Note that both v2 and v3 are critical vertices

here as both second and third rows have the maximum row sum.
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4. Heterogeneity in terms of the maximum number of
resources available within the network

In this section, we address the second issue highlighted in Section 2.2, which
is related to the maximum number of resources’ types that can be incorpo-
rated within the system under the constraint that every node v can find every
resource type in N [v]. If r different types of resources are available within
the network and each agent is equipped with at most s of these resources,
then the maximum value of r, denoted by r∗, such that the the underlying
graph of the network can be made completely heterogeneous with r∗ labels
is a crucial attribute of heterogeneous cooperative networks. In fact, in a
completely heterogeneous network with r∗ different types of resources, ev-
ery agent can find all r∗ types of resources in its closed neighborhood to
accomplish various tasks. Thus, a higher value of r∗ implies that more types
of resources can be made available to agents in a completely heterogeneous
network. As a result, agents can perform tasks of higher complexity. It is to
be noted that, for a given graph G and a bound on the number of resources
an agent can have, i.e., | f(v) |≤ s, if r > r∗, then it is impossible to dis-
tribute resources among the nodes to get a completely heterogeneous graph
with r labels. We utilize the notion of domination in graphs to address this
issue. A dominating set is a fundamental object in the field of domination
in graphs (see [21] for details).

Definition 4.1. (Dominating Set) A set D is a dominating set if for each
v ∈ V , either v ∈ D, or v is adjacent to some u ∈ D.

Note that if D is a dominating set, then
⋃

u∈D N [u] = V . The cardinality
of the smallest dominating set in a graph is known as the domination number
of the graph. A graph can have multiple disjoint2 dominating sets. A related
and important concept is that of the domatic number.

Definition 4.2. (Domatic Number) The maximum number of disjoint dom-
inating sets in a graph is the domatic number of the graph.

If Di is a dominating set of a graph G and all the vertices in Di are
assigned a particular label i, then i is available in the closed neighborhood
of every vertex in G. In other words, if f(u) = i, ∀u ∈ Di, then i ∈ H(v),
∀v ∈ V . Furthermore, if the domatic number of a graph G is γ and every
vertex is assigned a single label, then by the definition of domatic number,
G can be completely heterogeneous with at most γ labels, i.e., r∗ = γ. The
notion of so-called (r, s)-configuration [22] defined below is also helpful in
this context.

2The intersection of distinct dominating sets is empty.
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Definition 4.3. ((r, s)-Configuration of a Graph) Let r = {1, 2, · · · , r} be
a set of labels (colors). A function

f : V −→ [r]s,

where [r]s is a collection of all s-subsets of r, is called an (r, s)-configuration
of a graph G, whenever

⋃
u∈N [v] f(u) = r, ∀v ∈ V .

Thus, the maximum value of r in an (r, 1)-configuration of a graph is
the domatic number of the graph. Moreover, if γ is the domatic number of a
graph, it is obvious that for s > 1, there always exists an (r, s)-configuration
for r = sγ. In other words, each vertex in the graph can always be labeled
with at most s colors such that the overall graph is completely heterogeneous
with sγ labels. However, there are graphs for which (r, s)-configurations exist
for r > sγ. For example, cycle graphs Cn in which n is not a multiple of
3, have a domatic number of 2, but (5, 2)-configurations of such graphs
exist [22]. Here, we present a sufficient condition for a graph to have an
(r, s)-configuration with r = sγ + � s2. A labeling scheme to obtain such a
configuration can also be derived using this condition.

We begin by defining some terms that will be used to prove Theorem 4.1,
which is the main result of this section.

Definition 4.4. (Minimal Partition of G) Let G be a graph with domatic
number γ, and vertex set V . A minimal partition of G, denoted by Π, is a
partitioning of V into γ + 1 disjoint sets such that,

(5) Π = D1 ∪D2 ∪ · · ·Dγ ∪ VΠ,

where Di is a minimal dominating set, ∀i ∈ {1, 2, · · · , γ}, and VΠ = V −
(∪γ

i=1Di) is the set of vertices that are not included in any minimal domi-
nating set Di.

We term VΠ in (5) as the set of non-critical vertices with respect to the
minimal partition Π. Note that VΠ ∩ (∪γ

i=1Di) = ∅.
Consider a minimal partition of G, denoted by Π. Let Dγ+1 be a dom-

inating set such that VΠ ⊆ Dγ+1. Since dom(G) = γ, and VΠ is not a
dominating set, we have

Dγ+1 = VΠ ∪ IΠ,

where IΠ ⊂ (∪γ
i=1Di). We call a set IΠ with the smallest cardinality, a set

of common vertices with respect to the minimal partition Π.
The notions of minimal partition Π, set of non-critical vertices with

respect to Π, and set of common vertices with respect to Π are shown in
Fig. 6.
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Figure 6: A cycle graph, C8 having a domatic number γ = 2. A minimal
partition Π = D1∪D2∪VΠ, whereD1 = {v1, v4, v7} andD2 = {v2, v5, v8} are
minimal dominating sets, and VΠ = {v3, v6} is the set of non critical vertices
with respect to Π. We can take another dominating set D3 as D3 = VΠ∪ IΠ,
where IΠ = {v8} is a set of common vertices with respect to the minimal
partition Π.

Theorem 4.1. Let G be a graph with domatic number γ. Let Π be a minimal
partition of G and IΠ be a set of common vertices with respect to Π. If there
exists another minimal partition of G, say Π̃ �= Π, such that IΠ ⊆ VΠ̃,
then G has an (r, s)-configuration with r = sγ + � s2. Here, VΠ̃ is a set of

non-critical vertices with respect to Π̃,

Proof. Let Π =
⋃γ

i=1Di ∪ VΠ in which VΠ is the set of non-critical vertices
with respect to the minimal partition Π. Let Dγ+1 be a dominating set with
Dγ+1 = VΠ ∪ IΠ, in which IΠ is a set of common vertices with respect to
Π. Assign � s2 distinct labels to all the vertices in a dominating set Di, for
every i ∈ {1, 2, · · · , γ + 1}3. Under this labelling scheme, vertices in IΠ will
have (2� s2) distinct labels as they are included in two different dominating
sets, including Dγ+1 and some other Di for i ∈ {1, 2, · · · , γ}. Note that the
vertices in IΠ are the only ones with (2� s2) labels. Moreover, every v ∈ V
has a � s2(γ + 1) distinct labels in its closed neighborhood.

Consider another minimal partition of G, Π̃ =
⋃γ

i=1 Si ∪ VΠ̃, with VΠ̃

being the set of non-critical vertices with respect to Π̃, and each Si being a
minimal dominating set. Let Π̃ be such that IΠ ⊆ VΠ̃. It means that every
vertex in V −VΠ̃ has � s2 labels. Since Si ⊆ (V −VΠ̃) for any i ∈ {1, 2, · · · , γ},
every vertex v ∈ Si has � s2 labels. Furthermore, assign 	 s2
 unique labels
to each vertex in Si, ∀i. Since each Si is a dominating set, every v ∈ V
has a set of 	 s2
γ unique labels in N [v]. Moreover, since � s2(γ + 1) unique
labels are already available in the closed neighborhood of every vertex, all

3� s
2 labels assigned to the vertices of Di are different from the ones assigned to

the vertices in Dj where i �= j.
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Figure 7: (a) Π̃ = S1∪S2∪VΠ̃, in which S1 = {v1, v4, v6} and S2 = {v2, v5, v7}
are disjoint minimal dominating sets, and VΠ̃ = {v3, v8} is the set of non-

critical vertices with respect to Π̃. (b) A (5, 2)-configuration of C8.

vertices in V have � s2(γ+1)+	 s2
γ = sγ+� s2 distinct labels in their closed
neighborhoods. Note that each vertex is assigned at most s distinct labels.
Thus, an (r, s)-configuration of G with r = sγ + � s2 is obtained.

As an example, consider a (5, 2)-configuration of C8. Domatic number
of C8 is 2, i.e., γ = 2. We consider two minimal partitions of C8, denoted by
Π and Π̃, where Π is shown in Fig. 6. For Π̃, we take Π̃ = S1 ∪ S2 ∪ VΠ̃, as
shown in Fig. 7. Since IΠ ⊆ VΠ̃, (5, 2)-configuration exists for C8.

5. Assignment of multiple resources in R-disk proximity
graphs

In this section, a resource assignment problem based on the graph coloring
formulation in Section 2 is investigated for the R-disk proximity graphs,
which are frequently employed to model inter-connections among nodes in
multiagent networks. In such a model, a disk of radius R, which repre-
sents interaction range of a node, is associated with every node v that lies
at the center of the disk. A node forms an edge with other nodes if and
only if they exist within the R radius disk of the node. Applications of this
model include ad hoc communication networks, wireless sensor networks
(e.g., see [25]), multiagent and multirobot systems (see e.g., [26]), and other
broadcast networks with limited range transmitters and receivers.

Analysis of (r, s)-configurations of R-disk proximity graphs is of sig-
nificance, particularly in the context of heterogeneous multiagent systems.
Here, we show that under some mild conditions, R-disk graphs always have
an (r, s)-configuration for r = �5s2 , where s is any positive integer. It is
assumed that agents, which are equipped with multiple capabilities or re-
sources, are lying in a plane, and interactions among them are modeled by
the R-disk proximity graph model.
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Figure 8: K1,6 and K2,3, which are examples of complete bi-partite graphs,
are shown along with the double cycle graph C4 • C4, which is obtained by
identifying a vertex of C4 with a vertex of another C4.

We start by translating the geometric property of such graphs into a
graph-theoretic one by first defining the following special graphs. A graph
G is a complete bi-partite graph if there exists a partition of its vertex set,
V = X ∪ Y , such that an edge u ∼ v exists whenever u ∈ X and v ∈ Y . If
|X| = x and |Y | = y, then we denote a complete bi-partite graph by Kx,y.
Examples of complete bi-partite graphs are shown in Fig. 8. We also define
a double cycle graph, denoted by C4 •C4, as the one obtained by identifying
a vertex of C4 with a vertex of another C4, as shown in Fig. 8. Furthermore,
a graph G is said to be an H-free graph, if H is not an induced subgraph
of G.

It is shown in [23] that K2,3 cannot be an R-disk graph. In the following
Lemma, it is shown that R-disk graphs are always K1,6-free.

Lemma 5.1. An R-disk proximity graph is K1,6 free.

Proof. Let G(V,E) be an R-disk proximity graph. Let v ∈ V , such that
N (v) = {v1, v2, · · · , vp}, where p ≥ 6. We define θ(vivvj) to be the angle v
makes with vi and vj . If ‖vi, vj‖ is the euclidean distance between vi and
vj , then it is easy to see that ‖vi, vj‖ > R, whenever θ(vivvj) > 60◦. Thus,
vi, vj ∈ N (v) are non-adjacent if and only if θ(vivvj) > 60◦. To have K1,6 as
an induced subgraph of G, there must be a subset of N (v) with six nodes,
say {x1, x2, · · · , x6} ⊆ N (v), such that θ(xivxj) > 60◦, ∀xi, xj . This will give∑5

i=1 θxivx(i+1)
+ θx6vx1

> 360◦, which is not possible. Thus, an R-disk graph
is K1,6-free.

Since every R-disk graph is K1,6-free, we can focus on the results regard-
ing (r, s)-configurations of K1,6-free graphs to study the resource assignment
problem in R-disk graphs. A useful result regarding (r, s)-configurations of
K1,6-free graphs is stated in [24].
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Theorem 5.2. [24] For any positive integer s, a connected K1,6-free graph
G with a minimum degree of at least two has a (5, 2)-configuration whenever
G is not isomorphic to C4, C7,K2,3, or C4 • C4.

The above result can be generalized for any positive integer s.

Corollary 5.3. For any positive integer s, a connected K1,6-free graph G
with a minimum degree of at least two has an (r, s)-configuration with r =
�5s2  whenever G is not isomorphic to C4, C7,K2,3, or C4 • C4.

Proof. If s is an even number, let s = 2s′. Obtain a (5, 2)-configuration
of G. Repeat this process s′ number of times assigning distinct labels to
vertices in each step. At the end of s′ steps, at most 2s′ labels are assigned
to every v, i.e., |f(v)|≤ 2s′ = s, and 5s′ = 5s

2 distinct labels are available
in the closed neighborhood of every v. Thus, a (5s2 , s)-configuration of G is
obtained.

If s is an odd number, let s− 1 = 2s′, then (5(s−1)
2 , s− 1)-configuration

can be obtained as above. Furthermore, using the fact that every connected
graph has a domination number of at least 2, it is possible to assign a single
label to each vertex such that every vertex has at least two distinct labels in
its closed neighborhood. Thus, for a given positive odd integer s, an (r, s)-

configuration is possible with r = 5(s−1)
2 + 2 = 5s

2 − 1
2 = �5s2 .

Now, using Theorem 5.2, Lemma 5.1, and the fact that an R-disk graph
can never have a component isomorphic toK2,3 graph, we state the following
result regarding (r, s)-configurations of R-disk graphs.

Theorem 5.4. For any positive integer s, an R-disk proximity graph G with
a minimum degree of at least 2 has an (r, s)-configuration with r = �5s2 
whenever G has no component isomorphic to C4, C7, or C4 • C4.

5.1. Example

Consider a group of robots deployed in a planar region D for the purpose of
environment modeling. These robots interact and exchange information with
each other, and this interaction is modeled by an R-disk proximity graph
model. For environment modeling, five different parameters are considered,
including temperature, relative humidity, air pressure, light, and soil texture.
Every robot performs some spatio-temporal data processing using the data
of the environment parameters, which is obtained from the sensors mounted
on robots. If each sensor observes a specific environment parameter, five
different types of sensors are needed.
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One possible course of action is to install all five sensors on each robot
so that robots can collect information of all parameters for further process-
ing. However, this might not be a feasible approach for one or more of the
following reasons: first a large amount of power supplies will be needed to
keep all five sensors operational on every robot, and power is always a lim-
iting factor for a continuous operation of such networks over an extended
period of time; second a large number of sensors of each type will be required
which may not be cost effective; third mounting all sensors on a single robot
may not be feasible from a hardware view-point in certain cases. Another
approach is to install a subset of sensors on each robot and utilize the fact
that robots exchange information with each other. However, this approach
requires sensors to be distributed among robots in such a way that each robot
can obtain the data of the missing parameters from its neighbor robots. In
other words, sensors missing on a robot are installed on its neighbor robots.
This set-up requires a much smaller number of sensors of each type for the
overall operation of the system. If each robot is allowed to have at most two
of the five sensors’ types, then sensors need to be installed in such a way
that each robot can find a complete set of five distinct sensors in its closed
neighborhood. However, it is possible if and only if the underlying R-disk
graph of the network has a (5, 2)-configuration. It is shown in Theorem 5.4
that every R-disk graph has a (5, 2)-configuration under some conditions.
Thus, it is possible to make a robot network completely heterogeneous with
five labels under the restriction that each robot can have at most two labels.
An example is illustrated in Fig. 9.

6. Discussion and conclusions

The notion of completely heterogeneous graph can be extended and gen-
eralized in different ways. In Section 2, a completely heterogeneous graph
with a set of r unique labels is defined as the one in which every node finds
a complete set of r labels in its closed neighborhood. There might be sit-
uations in which a complete set of resources might not be required in the
closed neighborhood of all the nodes. This motivates to further extend the
notion of a completely heterogeneous graph for more general scenarios. For
instance, the notion of neighborhood can be extended to the k-neighborhood.
If the distance between nodes v and u, denoted by d(u, v), is the length of the
shortest path in a graph G, then the open k-neighborhood of node v is the set
Nk(v) = {u ∈ V : d(u, v) ≤ k}. Likewise, the closed k-neighborhood of v is
Nk[v] = Nk(v)∪v. We can define a completely k-heterogeneous graph with r
labels as the one in which every vertex finds a complete set of r labels in its
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Figure 9: A group of robots connected via R-disk proximity graph model.
Each robot is assigned two labels from the set {1, 2, 3, 4, 5} in such a way
that a complete set of five labels is available in the closed neighborhood of
every node.

closed k-neighborhood. The concept of completely k-heterogeneous graph
with r labels is particularly useful in situations in which r is quite large,
i.e., a large number of different types of resources exist within the network,
and it might not be possible to ensure the availability of all these resources
in the closed neighborhood of every node. In such situations, one can aim
to distribute resources among nodes to get a completely k-heterogeneous
graph with r labels for a small value of k to ensure that each node finds all
r resources within a small distance k from it.

Analogous to the color distribution matrix introduced in Section 3 for
the analysis purpose, we can define k-color distribution matrix for the case
of completely k-heterogeneous graphs as

Φ(k) = AkC.

Here, Ak = Ak + I and C is the color matrix. Ak is an n× n matrix whose
ijth entry is 1 whenever d(vi, vj) ≤ k and i �= j.

It is to be observed that ijth entry of the Φ(k) matrix is the number of
vertices with the color j in the closed k-neighborhood of vi. Thus, we can
use the same approach as in Section 3 to analyze the distribution of labels
when using the notion of k-neighborhood for k > 1.

In conclusion, we investigated heterogeneity in cooperative and multia-
gent systems from a network topology view-point in this paper. The notion
of (r, s)-configuration of a graph was used to characterize a distribution of
agents with multiple capabilities (or resources). In such a distribution, ev-
ery agent could find all types of resources available in the network in its
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closed neighborhood. The role of individual agents and interactions among

them in attaining (r, s)-configurations was also examined. The study not

only analyzed the role of network topology in the context of heterogeneous

multiagent systems, but also provided ways to design network structures in

which agents equipped with various resources coordinate and compliment

each others capabilities to accomplish complex tasks.
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