1,630 research outputs found

    New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF)

    Get PDF
    This paper as an author contribution introduces the implementation of the new aspects in the modernization of the ships Radio Direction Finders (RDF) and their modern principles and applications for shipborne and coastal navigation surveillance systems. The origin RDF receivers with the antenna installed onboard ships or aircraft were designed to identify radio sources that provide bearing the Direction Finding (DF) signals. The radio DF system or sometimes simply known as the DF technique is de facto a basic principle of measuring the direction of signals for determination of the ship\u27s position. The position of a particular ship in coastal navigation can be obtained by two or more measurements of certain radio sources received from different unspecified locations of transmitters on the coast. In the past, the RDF devices were widely used as a radio navigation system for aircraft, vehicles, and ships in particular. However, the newly developed RDF devices can be used today as an alternative to the Radio – Automatic Identification System (R-AIS), Satellite – Automatic Identification System (S-AIS), Long Range Identification and Tracking (LRIT), radars, GNSS receivers, and another current tracking and positioning systems of ships. The development of a modern shipborne RDF for new positioning and surveillance applications, such as Search and Rescue (SAR), Man over board (MOB), ships navigation and collision avoidance, offshore applications, detection of research buoys and for costal vessels traffic control and management is described in this paper

    Study and applications of retrodirective and self adaptive electromagnetic-wave phase controls to a Mars probe

    Get PDF
    Computer analyses of retrodirective, and self adaptive antenna phase control techniques for Mars prob

    New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF)

    Get PDF
    This paper as an author contribution introduces the implementation of the new aspects in the modernization of the ships Radio Direction Finders (RDF) and their modern principles and applications for shipborne and coastal navigation surveillance systems. The origin RDF receivers with the antenna installed onboard ships or aircraft were designed to identify radio sources that provide bearing the Direction Finding (DF) signals. The radio DF system or sometimes simply known as the DF technique is de facto a basic principle of measuring the direction of signals for determination of the ship\u27s position. The position of a particular ship in coastal navigation can be obtained by two or more measurements of certain radio sources received from different unspecified locations of transmitters on the coast. In the past, the RDF devices were widely used as a radio navigation system for aircraft, vehicles, and ships in particular. However, the newly developed RDF devices can be used today as an alternative to the Radio – Automatic Identification System (R-AIS), Satellite – Automatic Identification System (S-AIS), Long Range Identification and Tracking (LRIT), radars, GNSS receivers, and another current tracking and positioning systems of ships. The development of a modern shipborne RDF for new positioning and surveillance applications, such as Search and Rescue (SAR), Man over board (MOB), ships navigation and collision avoidance, offshore applications, detection of research buoys and for costal vessels traffic control and management is described in this paper

    Preliminary design study of a high resolution meteor radar

    Get PDF
    A design study for a high resolution meteor radar system is carried out with the objective of measuring upper atmospheric winds and particularly studying short period atmospheric waves in the 80 to 120 km altitude region. The transmitter that is to be used emits a peak power of 4 Mw. The system is designed to measure the wind velocity and height of a meteor trail very accurately. This is achieved using a specially developed digital reduction procedure to determine wind velocity and range together with an interferometer for measuring both the azimuth and elevation angles of the region with a long baseline vernier measurement being used to refine the elevation angle measurement. The resultant accuracies are calculated to be + or - 0.9 m/s for the wind, + or - 230 m for the range and + or - 0.12 deg for the elevation angle, giving a height accuracy of + or - 375 m. The prospects for further development of this system are also discussed

    The Goldstone solar system radar: A science instrument for planetary research

    Get PDF
    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided

    Study and applications of retrodirective and self-adaptive electromagnetic wave controls to a Mars probe Quarterly report, 1 Oct. - 31 Dec. 1965

    Get PDF
    Design feasibility and applications of adaptive antenna circuits for deep space communication - antenna concepts, environmental effects, and phase lock loops and adaptive circuitr

    Persepsi pelajar sarjana muda kejuruteraan elektrik terhadap program latihan industri, Kolej Universiti Teknologi Tun Hussein Onn

    Get PDF
    Kajian ini dijalankan bertujuan untuk mengetahui persepsi Pelajar Sarjana Muda Kejuruteraan Elektrik Terhadap Program Latihan Industri, KUiTTHO berdasarkan kepada 4 faktor iaitu kesesuaian penempatan program latihan industri, kesesuaian pendedahan pelajaran teori di KUiTTHO dan amali di tempat program latihan industri, tahap kerjasama yang diberikan oleh pihak industri kepada pelajar d a n kesediaan pelajar melakukan kerja yang diberi semasa program latihan industri. Sampel kajian adalah terdiri daripada pelajar-pelajar Sarjana Mud a Kejuruteraan Elektrik di KUITTHO yang telah menjalani program latihan industri. Set soal selidik terdiri daripada 3 bahagian iaitu bahagian A yang bertujuan untuk mendapatkan maklumat diri responden manakala bahagian Bertujuan untuk mengetahui kesesuaian program latihan industri yang telah diikuti oleh pelajar dan bahagian C adalah cadangan untuk meningkatkan mutu program latihan industri. Data - data yang diperolehi dianalisis menggunakan perisisan SPSS 10.0 for Windows (Statistical Package for the Social Science version 10) dan dipersembahkan dalam bentuk peratusan, carta dan keterangan analisis. Dapatan kajian secara umumnya menunjukkan reaksi positif dimana bagi semua aspek menunjukkan min keseluruhan yang tingg

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    The rocket-grenade experiment

    Get PDF
    Grenade-exploding rocket sonde for measuring temperature and wind up to 90 kilometers altitud
    corecore