234 research outputs found

    A Greedy Partition Lemma for Directed Domination

    Get PDF
    A directed dominating set in a directed graph DD is a set SS of vertices of VV such that every vertex uV(D)Su \in V(D) \setminus S has an adjacent vertex vv in SS with vv directed to uu. The directed domination number of DD, denoted by γ(D)\gamma(D), is the minimum cardinality of a directed dominating set in DD. The directed domination number of a graph GG, denoted Γd(G)\Gamma_d(G), which is the maximum directed domination number γ(D)\gamma(D) over all orientations DD of GG. The directed domination number of a complete graph was first studied by Erd\"{o}s [Math. Gaz. 47 (1963), 220--222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α\alpha denotes the independence number of a graph GG, we show that αΓd(G)α(1+2ln(n/α))\alpha \le \Gamma_d(G) \le \alpha(1+2\ln(n/\alpha)).Comment: 12 page

    Extension of One-Dimensional Proximity Regions to Higher Dimensions

    Get PDF
    Proximity maps and regions are defined based on the relative allocation of points from two or more classes in an area of interest and are used to construct random graphs called proximity catch digraphs (PCDs) which have applications in various fields. The simplest of such maps is the spherical proximity map which maps a point from the class of interest to a disk centered at the same point with radius being the distance to the closest point from the other class in the region. The spherical proximity map gave rise to class cover catch digraph (CCCD) which was applied to pattern classification. Furthermore for uniform data on the real line, the exact and asymptotic distribution of the domination number of CCCDs were analytically available. In this article, we determine some appealing properties of the spherical proximity map in compact intervals on the real line and use these properties as a guideline for defining new proximity maps in higher dimensions. Delaunay triangulation is used to partition the region of interest in higher dimensions. Furthermore, we introduce the auxiliary tools used for the construction of the new proximity maps, as well as some related concepts that will be used in the investigation and comparison of them and the resulting graphs. We characterize the geometry invariance of PCDs for uniform data. We also provide some newly defined proximity maps in higher dimensions as illustrative examples

    Approximate Hamilton decompositions of robustly expanding regular digraphs

    Get PDF
    We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r-o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the `robust' outneighbourhood of S is a little larger than S. This generalises a result of K\"uhn, Osthus and Treglown on approximate Hamilton decompositions of dense regular oriented graphs. It also generalises a result of Frieze and Krivelevich on approximate Hamilton decompositions of quasirandom (di)graphs. In turn, our result is used as a tool by K\"uhn and Osthus to prove that any sufficiently large r-regular digraph G which has linear degree and is a robust outexpander even has a Hamilton decomposition.Comment: Final version, published in SIAM Journal Discrete Mathematics. 44 pages, 2 figure

    Eternal dominating sets on digraphs and orientations of graphs

    Get PDF
    We study the eternal dominating number and the m-eternal dominating number on digraphs. We generalize known results on graphs to digraphs. We also consider the problem "oriented (m-)eternal domination", consisting in finding an orientation of a graph that minimizes its eternal dominating number. We prove that computing the oriented eternal dominating number is NP-hard and characterize the graphs for which the oriented m-eternal dominating number is 2. We also study these two parameters on trees, cycles, complete graphs, complete bipartite graphs, trivially perfect graphs and different kinds of grids and products of graphs.Comment: 34 page

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper
    corecore