216,864 research outputs found

    An Unsplit Godunov Method for Ideal MHD via Constrained Transport in Three Dimensions

    Full text link
    We present a single step, second-order accurate Godunov scheme for ideal MHD which is an extension of the method described by Gardiner & Stone (2005) to three dimensions. This algorithm combines the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We describe the calculation of the PPM interface states for 3D ideal MHD which must include multidimensional ``MHD source terms'' and naturally respect the balance implicit in these terms by the B=0{\bf\nabla\cdot B}=0 condition. We compare two different forms for the CTU integration algorithm which require either 6- or 12-solutions of the Riemann problem per cell per time-step, and present a detailed description of the 6-solve algorithm. Finally, we present solutions for test problems to demonstrate the accuracy and robustness of the algorithm.Comment: Extended version of the paper accepted for publication in JC

    Infection Spreading and Source Identification: A Hide and Seek Game

    Full text link
    The goal of an infection source node (e.g., a rumor or computer virus source) in a network is to spread its infection to as many nodes as possible, while remaining hidden from the network administrator. On the other hand, the network administrator aims to identify the source node based on knowledge of which nodes have been infected. We model the infection spreading and source identification problem as a strategic game, where the infection source and the network administrator are the two players. As the Jordan center estimator is a minimax source estimator that has been shown to be robust in recent works, we assume that the network administrator utilizes a source estimation strategy that can probe any nodes within a given radius of the Jordan center. Given any estimation strategy, we design a best-response infection strategy for the source. Given any infection strategy, we design a best-response estimation strategy for the network administrator. We derive conditions under which a Nash equilibrium of the strategic game exists. Simulations in both synthetic and real-world networks demonstrate that our proposed infection strategy infects more nodes while maintaining the same safety margin between the true source node and the Jordan center source estimator

    Optimal Scaling of a Gradient Method for Distributed Resource Allocation

    Get PDF
    We consider a class of weighted gradient methods for distributed resource allocation over a network. Each node of the network is associated with a local variable and a convex cost function; the sum of the variables (resources) across the network is fixed. Starting with a feasible allocation, each node updates its local variable in proportion to the differences between the marginal costs of itself and its neighbors. We focus on how to choose the proportional weights on the edges (scaling factors for the gradient method) to make this distributed algorithm converge and on how to make the convergence as fast as possible. We give sufficient conditions on the edge weights for the algorithm to converge monotonically to the optimal solution; these conditions have the form of a linear matrix inequality. We give some simple, explicit methods to choose the weights that satisfy these conditions. We derive a guaranteed convergence rate for the algorithm and find the weights that minimize this rate by solving a semidefinite program. Finally, we extend the main results to problems with general equality constraints and problems with block separable objective function

    Energy Beamforming with One-Bit Feedback

    Full text link
    Wireless energy transfer (WET) has attracted significant attention recently for providing energy supplies wirelessly to electrical devices without the need of wires or cables. Among different types of WET techniques, the radio frequency (RF) signal enabled far-field WET is most practically appealing to power energy constrained wireless networks in a broadcast manner. To overcome the significant path loss over wireless channels, multi-antenna or multiple-input multiple-output (MIMO) techniques have been proposed to enhance the transmission efficiency and distance for RF-based WET. However, in order to reap the large energy beamforming gain in MIMO WET, acquiring the channel state information (CSI) at the energy transmitter (ET) is an essential task. This task is particularly challenging for WET systems, since existing channel training and feedback methods used for communication receivers may not be implementable at the energy receiver (ER) due to its hardware limitation. To tackle this problem, in this paper we consider a multiuser MIMO system for WET, where a multiple-antenna ET broadcasts wireless energy to a group of multiple-antenna ERs concurrently via transmit energy beamforming. By taking into account the practical energy harvesting circuits at the ER, we propose a new channel learning method that requires only one feedback bit from each ER to the ET per feedback interval. The feedback bit indicates the increase or decrease of the harvested energy by each ER between the present and previous intervals, which can be measured without changing the existing hardware at the ER. Based on such feedback information, the ET adjusts transmit beamforming in different training intervals and at the same time obtains improved estimates of the MIMO channels to ERs by applying a new approach termed analytic center cutting plane method (ACCPM).Comment: This is the longer version of a paper to appear in IEEE Transactions on Signal Processin

    Two-Stage Multi-Objective Meta-Heuristics for Environmental and Cost-Optimal Energy Refurbishment at District Level

    Get PDF
    Energy efficiency and environmental performance optimization at the district level are following an upward trend mostly triggered by minimizing the Global Warming Potential (GWP) to 20% by 2020 and 40% by 2030 settled by the European Union (EU) compared with 1990 levels. This paper advances over the state of the art by proposing two novel multi-objective algorithms, named Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-Objective Harmony Search (MOHS), aimed at achieving cost-effective energy refurbishment scenarios and allowing at district level the decision-making procedure. This challenge is not trivial since the optimisation process must provide feasible solutions for a simultaneous environmental and economic assessment at district scale taking into consideration highly demanding real-based constraints regarding district and buildings’ specific requirements. Consequently, in this paper, a two-stage optimization methodology is proposed in order to reduce the energy demand and fossil fuel consumption with an affordable investment cost at building level and minimize the total payback time while minimizing the GWP at district level. Aimed at demonstrating the effectiveness of the proposed two-stage multi-objective approaches, this work presents simulation results at two real district case studies in Donostia-San Sebastian (Spain) for which up to a 30% of reduction of GWP at district level is obtained for a Payback Time (PT) of 2–3 years.Part of this work has been developed from results obtained during the H2020 “Optimised Energy Efficient Design Platform for Refurbishment at District Level” (OptEEmAL) project, Grant No. 680676
    corecore