76,051 research outputs found

    Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment

    Get PDF
    Sustainability assessments require the management of a wide variety of information types, parameters and uncertainties. Multi criteria decision analysis (MCDA) has been regarded as a suitable set of methods to perform sustainability evaluations as a result of its flexibility and the possibility of facilitating the dialogue between stakeholders, analysts and scientists. However, it has been reported that researchers do not usually properly define the reasons for choosing a certain MCDA method instead of another. Familiarity and affinity with a certain approach seem to be the drivers for the choice of a certain procedure. This review paper presents the performance of five MCDA methods (i.e. MAUT, AHP, PROMETHEE, ELECTRE and DRSA) in respect to ten crucial criteria that sustainability assessments tools should satisfy, among which are a life cycle perspective, thresholds and uncertainty management, software support and ease of use. The review shows that MAUT and AHP are fairly simple to understand and have good software support, but they are cognitively demanding for the decision makers, and can only embrace a weak sustainability perspective as trade-offs are the norm. Mixed information and uncertainty can be managed by all the methods, while robust results can only be obtained with MAUT. ELECTRE, PROMETHEE and DRSA are non-compensatory approaches which consent to use a strong sustainability concept, accept a variety of thresholds, but suffer from rank reversal. DRSA is less demanding in terms of preference elicitation, is very easy to understand and provides a straightforward set of decision rules expressed in the form of elementary “if … then …” conditions. Dedicated software is available for all the approaches with a medium to wide range of results capability representation. DRSA emerges as the easiest method, followed by AHP, PROMETHEE and MAUT, while ELECTRE is regarded as fairly difficult. Overall, the analysis has shown that most of the requirements are satisfied by the MCDA methods (although to different extents) with the exclusion of management of mixed data types and adoption of life cycle perspective which are covered by all the considered approaches

    Incorporating stakeholders’ knowledge in group decision-making

    Get PDF
    International audienc

    Multi-mode resource constrained multi-project scheduling and resource portfolio problem

    Get PDF
    This paper introduces a multi-project problem environment which involves multiple projects with assigned due dates; with activities that have alternative resource usage modes; a resource dedication policy that does not allow sharing of resources among projects throughout the planning horizon; and a total budget. There are three issues to face when investigating this multiproject environment. First, the total budget should be distributed among different resource types to determine the general resource capacities which correspond to the total amount for each renewable resource to be dedicated to the projects. With the general resource capacities at hand, the next issue is to determine the amounts of resources to be dedicated to the individual projects. With the dedication of resources accomplished, the scheduling of the projects' activities reduces to the multi-mode resource constrained project scheduling problem (MRCPSP) for each individual project. Finally the last issue is the effcient solution of the resulting MRCPSPs. In this paper, this multi-project environment is modeled in an integrated fashion and designated as the Resource Portfolio Problem. A two-phase and a monolithic genetic algorithm are proposed as two solution approaches each of which employs a new improvement move designated as the combinatorial auction for resource portfolio and the combinatorial auction for resource dedication. Computational study using test problems demonstrated the effectiveness of the solution approach proposed

    Multi-criteria analysis: a manual

    Get PDF

    Dominance-based rough set approach and analytic network process for assessing urban transformation scenarios

    Get PDF
    For half a century, the significant development of intensive farming has led to a massive use of products such as pesticides. The excessive use of these substances has contaminated surface water and groundwater. Drinking water extraction points have also had to be abandoned. Some thirty years ago, in the southwest of France, a group of farmers decided to improve their farming methods, as well as developing new Best Environmental Practices, such as grass strips along streams and riparian forests. By combining the use of ELECTRE TRI-C multi-criteria model with a GIS, we were able to characterise the contribution of each farming area to the risk of surface water contamination with pesticides. We also assessed the effectiveness of different environmental practices. We found that the use of Best Environmental Practices led to a reduction in the risk of pesticides transfer. This methodology re-enforces decision support tools for water resource managers and agricultural and environmental stakeholders
    corecore