246 research outputs found

    Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals

    Full text link
    Tesis por compendioDespite the continuous evolution in computers and information technology, real-world combinatorial optimization problems are NP-problems, in particular in the domain of planning and scheduling. Thus, although exact techniques from the Operations Research (OR) field, such as Linear Programming, could be applied to solve optimization problems, they are difficult to apply in real-world scenarios since they usually require too much computational time, i.e: an optimized solution is required at an affordable computational time. Furthermore, decision makers often face different and typically opposing goals, then resulting multi-objective optimization problems. Therefore, approximate techniques from the Artificial Intelligence (AI) field are commonly used to solve the real world problems. The AI techniques provide richer and more flexible representations of real-world (Gomes 2000), and they are widely used to solve these type of problems. AI heuristic techniques do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable time. These techniques are divided into two broad classes of algorithms: constructive and local search methods (Aarts and Lenstra 2003). They can guide their search processes by means of heuristics or metaheuristics depending on how they escape from local optima (Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI techniques becomes paramount due to their complexity (Coello Coello 2006). Nowadays, the point of view for planning and scheduling tasks has changed. Due to the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown information, breakdowns, incidences or changes, which become the initial plans or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and Herroelen 2008). In this way, these optimization problems become harder since a new objective function (robustness measure) must be taken into account during the solution search. Therefore, the robustness concept is being studied and a general robustness measure has been developed for any scheduling problem (such as Job Shop Problem, Open Shop Problem, Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques have been developed to improve the search of optimized and robust solutions in planning and scheduling problems. These techniques offer assistance to decision makers to help in planning and scheduling tasks, determine the consequences of changes, provide support in the resolution of incidents, provide alternative plans, etc. As a case study to evaluate the behaviour of the techniques developed, this thesis focuses on problems related to container terminals. Container terminals generally serve as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey 2006a), it is shown how this transshipment market has grown rapidly. Container terminals are open systems with three distinguishable areas: the berth area, the storage yard, and the terminal receipt and delivery gate area. Each one presents different planning and scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation, quay crane assignment, stowage planning, and quay crane scheduling must be managed in the berthing area; the container stacking problem, yard crane scheduling, and horizontal transport operations must be carried out in the yard area; and the hinterland operations must be solved in the landside area. Furthermore, dynamism is also present in container terminals. The tasks of the container terminals take place in an environment susceptible of breakdowns or incidences. For instance, a Quay Crane engine stopped working and needs to be revised, delaying this task one or two hours. Thereby, the robustness concept can be included in the scheduling techniques to take into consideration some incidences and return a set of robust schedules. In this thesis, we have developed a new domain-dependent planner to obtain more effi- cient solutions in the generic problem of reshuffles of containers. Planning heuristics and optimization criteria developed have been evaluated on realistic problems and they are applicable to the general problem of reshuffling in blocks world scenarios. Additionally, we have developed a scheduling model, using constructive metaheuristic techniques on a complex problem that combines sequences of scenarios with different types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking problems). These problems are usually solved separately and their integration allows more optimized solutions. Moreover, in order to address the impact and changes that arise in dynamic real-world environments, a robustness model has been developed for scheduling tasks. This model has been applied to metaheuristic schemes, which are based on genetic algorithms. The extension of such schemes, incorporating the robustness model developed, allows us to evaluate and obtain more robust solutions. This approach, combined with the classical optimality criterion in scheduling problems, allows us to obtain, in an efficient in way, optimized solution able to withstand a greater degree of incidents that occur in dynamic scenarios. Thus, a proactive approach is applied to the problem that arises with the presence of incidences and changes that occur in typical scheduling problems of a dynamic real world.Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545TESISCompendi

    Intelligent planning for allocating containers in maritime terminals

    Full text link
    Maritime container terminals are facilities where cargo containers are transshipped between ships or between ships and land vehicles (tucks or trains). These terminals involve a large number of complex and combinatorial problems. One of them is related to the Container Stacking Problem. A container yard is a type of temporary store where containers await further transport by truck, train or vessel. The main efficiency problem for an individual stack is to ensure easy access to containers at the expected time of transfer. Stacks are 'last-in, first-out' storage structures where containers are stocked in the order they arrive. But they should be retrieved from the stack in the order (usually different) they should be shipped. This retrieval operation should be efficiently performed, since berthing time of vessels and the terminal operations should be optimized. To do this, cranes can relocate containers in the stacks to minimize the rearrangements required to meet the expected order of demand for containers. In this paper, we present a domain-dependent heuristically guided planner for obtaining the optimized reshuffling plan, given a stacking state and a container demand. The planner can also be used for finding the best allocation of containers in a yard-bay in order to minimize the number of reshuffles as well as to be used for simulation tasks and obtaining conclusions about possible yard configurations. © 2011 Elsevier Ltd. All rights reserved.This work has been partially supported by the research projects TIN2010-20976-C02-01 (Min. de Ciencia e Innovacion, Spain), P19/08 (Min. de Fomento, Spain-FEDER) and the VALi+d Program of the Conselleria d'Educacio (Generalitat Valenciana), as well as with the collaboration of the maritime container terminal MSC (Mediterranean Shipping Company S.A.).Rodríguez Molins, M.; Salido Gregorio, MA.; Barber Sanchís, F. (2012). Intelligent planning for allocating containers in maritime terminals. Expert Systems with Applications. 39(1):978-989. https://doi.org/10.1016/j.eswa.2011.07.098S97898939

    Solving the pre-marshalling problem to optimality with A* and IDA*

    Get PDF

    Analyzing the Interdiction of Sea-Borne Threats Using Simulation Optimization

    Get PDF
    Worldwide, maritime trade accounts for approximately 80% of all trade by volume and is expected to double in the next twenty years. Prior to September 11, 2001, Ports, Waterways and Coastal Security (PWCS) was afforded only 1 percent of United States Coast Guard (USCG) resources. Today, it accounts for nearly 22 percent of dedicated USCG resources. Tactical assessment of resource requirements and operational limitations on the PWCS mission is necessary for more effective management of USCG assets to meet the broader range of competing missions. This research effort involves the development and validation of a discrete-event simulation model of the at-sea vessel interdiction process utilizing USCG deepwater assets. A discrete-event simulation model of the interdiction, control and boarding, and inspection processes has been developed and validated. Through a simulation optimization approach, our research utilizes the efficiency of a localized search algorithm interfaced with the simulation model to allocate USCG resources in the interception, boarding, and inspection processes with the objective of minimizing overall process time requirements. The model is tested with actual USCG data to gain insight on the development of efficient and effective interdiction operations

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions

    Dynamics in Logistics

    Get PDF
    This open access book highlights the interdisciplinary aspects of logistics research. Featuring empirical, methodological, and practice-oriented articles, it addresses the modelling, planning, optimization and control of processes. Chiefly focusing on supply chains, logistics networks, production systems, and systems and facilities for material flows, the respective contributions combine research on classical supply chain management, digitalized business processes, production engineering, electrical engineering, computer science and mathematical optimization. To celebrate 25 years of interdisciplinary and collaborative research conducted at the Bremen Research Cluster for Dynamics in Logistics (LogDynamics), in this book hand-picked experts currently or formerly affiliated with the Cluster provide retrospectives, present cutting-edge research, and outline future research directions
    corecore