

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Solving the pre-marshalling problem to optimality with A* and IDA*

Tierney, Kevin; Pacino, Dario; Voß, Stefan

Published in:
Flexible Services and Manufacturing Journal

Link to article, DOI:
10.1007/s10696-016-9246-6

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Tierney, K., Pacino, D., & Voß, S. (2017). Solving the pre-marshalling problem to optimality with A* and IDA*.
Flexible Services and Manufacturing Journal, 29(2), 223-259. DOI: 10.1007/s10696-016-9246-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84004739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10696-016-9246-6
http://orbit.dtu.dk/en/publications/solving-the-premarshalling-problem-to-optimality-with-a-and-ida(421684e3-e948-47fb-a9fe-4be9b4cdc4fa).html

Noname manuscript No.
(will be inserted by the editor)

Solving the Pre-Marshalling Problem to Optimality
with A* and IDA*

Kevin Tierney · Dario Pacino · Stefan Voß

the date of receipt and acceptance should be inserted later

Abstract We present a novel solution approach to the container pre-marshalling problem using the A*
and IDA* algorithms combined with several novel branching and symmetry breaking rules that significantly
increases the number of pre-marshalling instances that can be solved to optimality. A* and IDA* are graph
search algorithms that use heuristics combined with a complete graph search to find optimal solutions to
problems. The container pre-marshalling problem is a key problem for container terminals seeking to reduce
delays of inter-modal container transports. The goal of the container pre-marshalling problem is to find the
minimal sequence of container movements to shuffle containers in a set of stacks such that the resulting stacks
are arranged according to the time each container must leave the stacks. We evaluate our approach on three
well-known datasets of pre-marshalling problem instances, solving over 500 previously unsolved instances to
optimality, which is nearly twice as many instances as the current state-of-the-art method solves.

e

1 Introduction

International trade is increasingly being conducted with containers, which are large metal boxes in stan-
dardized sizes in which cargo can be secured during transit [49]. Containers are inter-modal, meaning they
can be easily transferred between different modes of transportation, such as trucks, trains and ships. Each
year, millions of containers are transferred between different transportation modes at the world’s ports and
hinterland handling yards [37]. Delays in the transfer of containers are expensive, causing trucks, trains
and ships to be delayed leaving ports, and avoiding such delays is a primary concern of container terminal
operators.

K. Tierney
Decision Support & Operations Research Lab
University of Paderborn
33098 Paderborn, Germany
E-mail: kevin.tierney@uni-paderborn.de

D. Pacino
DTU Management Engineering
Technical University of Denmark
2800 Kgs. Lyngby, Denmark
E-mail: darpa@dtu.dk

S. Voß
Institute of Information Systems
University of Hamburg
20146 Hamburg, Germany
Escuela de Ingenierá Industrial
Pontificia Universidad Católica de Valparáıso
Valparáıso, Chile
E-mail: stefan.voss@uni-hamburg.de

2 Kevin Tierney, Dario Pacino, Stefan Voß

RMGC
Vehicle

Yard block Bay

(a) Top view of an RMGC.

RMGC

Vehicle

Trolley

(b) Front view of an RMGC.

Fig. 1: A Rail Mounted Gantry Crane (RMGC) over a yard block.

A number of factors affect the speed of container transfer operations, such as intra-terminal container
handling (see [45]), inter-terminal transportation (e.g., [48]) and, our focus in this paper, the container
arrangement in the yard. In the yard, containers are stored in bays, which are two-dimensional portions of
the yard. Each export container is assigned a priority corresponding to its expected loading time and loading
sequence. Due to the high level of uncertainty related to when containers should leave the yard, it is often
not possible to arrange the containers optimally at the time they enter the yard, and, thus, containers are
stacked on top of each other such that cranes must perform unproductive moves to access containers that
are slated to leave the yard. We call this situation for a single container a mis-overlay.

More specifically, a mis-overlay occurs when a container with a lower priority is stacked on top of one with
a higher priority, i.e., a container that has to leave later is stacked on top of one that needs to leave sooner.
Mis-overlays imply extra, unnecessary, handling operations, and thus longer handling times for vehicles and
ships. To alleviate this situation, terminals sometimes perform pre-marshalling in order to find a configura-
tion of containers such that no mis-overlays occur. The goal of the pre-marshalling problem is to find the
minimal number of container moves necessary to remove all mis-overlays from a bay. Pre-marshalling is not
to be confused with the general housekeeping where containers are repositioned along the entire yard (i.e.,
between blocks) to improve transhipment operations. See, for example, [?], in which a simulation study in-
vestigates housekeeping operations at an Italian container terminal without pre-marshalling operations. Most
commonly, one may categorize container movements as follows: (i) pre-marshalling, if the movements are
bay-oriented, that is, movements are done within a bay (ii) housekeeping, if the movements are yard-oriented,
that is, they are done within the yard of a terminal and (iii) inter-terminal transport, if the movements are
done between different terminals or locations within a port.

This paper focuses on the pre-marshalling operations of container terminals that use certain types of
gantries like Rail Mounted Gantry Cranes (RMGCs). Figure 1 shows cranes installed over yard blocks at a
container terminal. The cranes are able to reach and move the containers on top of the stacks. [29] point out
that pre-marshalling is often only performed within a bay due to the high costs of bay to bay moves. One
can, however, still model bay to bay moves by creating a single bay formed of all the stacks and assigning
different costs to moves between stacks in different bays. It is also noteworthy that it is unusual to mix
containers of different lengths (e.g. 20ft and 40ft) within the same bay. It is due to these considerations, and
in accordance with the literature, that the pre-marshalling problem can be considered for a single bay.

Despite numerous heuristic methods for solving the pre-marshalling problem (see, e.g., [29, 28, 6]), only
two approaches have been proposed for solving the pre-marshalling problem to optimality. The first, using
integer programming, is proposed in [29] and the second is a basic A* algorithm from [11]. Optimal ap-
proaches, unless they can be executed within reasonable times, are often used to quantify the performance
of heuristic methods and policies. The aforementioned exact approaches for the pre-marshalling problem
are, however, only able to solve very small instances, making it hard for an interested terminal operator to
evaluate the quality of their operations or the numerous published heuristic approaches.

To this end, we present a novel solution technique for solving pre-marshalling problems to optimality
using the A* [15] and IDA* [27] algorithms combined with specialized branching rules, symmetry breaking

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 3

and strong lower bounds from the literature. The A* and IDA* algorithms are graph search methods that,
similar to Dijkstra’s shortest path algorithm [10], use a cost based search mechanism to find shortest paths
through a graph. We model the pre-marshalling problem as a graph and apply A* and IDA* to this to find
optimal solutions. Our contributions are as follows. We provide

1. two classes of novel symmetry breaking rules,
2. a novel branching rule based on preventing transitive moves,
3. a novel use of the Bortfeldt and Forster lower bound heuristic [2] as an A*/IDA* cost estimation heuristic.

We evaluate our A* and IDA* approaches on all three well-known pre-marshalling datasets from the literature
and are able to solve 568 instances more than the state-of-the-art A* approach, which represents nearly twice
as many instances solved to optimality. Additionally, we see significant runtime speedups on a majority of
instances solvable by both our approach and the state-of-the-art.

The remainder of the paper is organized as follows. First, we introduce the pre-marshalling problem
in Section 2 and review the literature in Section 3. We describe A* and IDA* algorithms for the pre-
marshalling problem in Section 4 and our branching rules in Section 5. Finally, we provide computational
results in Section 6 and conclude in Section 7.

2 The Pre-Marshalling Problem

Given an initial layout of a bay, the goal of the pre-marshalling problem is to find the minimal number
of container movements (or rehandles) necessary to eliminate all mis-overlays in the bay. Formally, a bay
contains S stacks which are at most T tiers high, where tier 1 is the bottom row of the bay. We define a
parameter pst ∈ N0 (s ∈ S, t ∈ T) to be the priority of the container currently in stack s at tier t. We set
pst = 0 if there is no container at the position (s, t). Containers with a smaller priority value must leave the
bay earlier than those with a larger value, meaning they must be above containers with a larger priority value
in a configuration with no mis-overlays. A bay has no mis-overlays iff pst ≥ ps,t+1 for all s ∈ S, 1 ≤ t < |T |.
As previously mentioned we focus on a single bay, thus no movements between bays are allowed and all
containers are assumed to be of the same size.

We make several standard assumptions regarding pre-marshalling. The first is that the crane can only
move a single container at a time. Second, we only perform pre-marshalling within a single bay. Given that
the costs of moving between bays are much higher than moving within a bay [29] this assumption makes
sense, as RMGCs can work through each bay one-by-one until they are sorted. While moving containers
between bays might lead to less overall moves, the total time would be significantly higher. We further note,
however, that if moves between bays are assumed to be low cost, our method can be applied to an instance
consisting of the bays appended together. Our third assumption is that the exit times of the containers have
a single deterministic value. Of course in reality it is possible that delays of ships or trucks could change
the exit time of a container while it is in the stacks. We believe this does not affect enough containers to
invalidate the approach, not to mention pre-marshalling can be re-run on a bay over several time periods as
new information is gathered.

Consider the simple example of Figure 2(a), which shows a bay composed of three container stacks
where containers can be stacked at most four tiers high. Each container is represented by a box with its
corresponding priority.1 This is not an ideal layout as the containers with priority 2, 4 and 5 will need to be
relocated in order to retrieve the containers with higher priority (1 and 3). That is, containers with priority
2, 4 and 5 are mis-overlaid. Consider a container movement (f, t) defining the relocation of the container on
top of the stack f to the top position of the stack t. The containers in the initial layout of Figure 2 (a) can
reach the final layout (d) with three relocation moves: (2, 3) reaching layout (b), (2, 3) reaching layout (c)
and (1, 2) reaching layout (d) where no mis-overlays occur.

The pre-marshalling problem can be seen as a problem arising in tactical and operational decision making
at a yard; see, e.g., [9, 5]. Following [7, 33, 22], the unproductive movement of containers in the different
phases of the container management process, i.e., rehandling, is perceived as the major source of inefficiency
in most container terminals. On a tactical level, pre-marshalling and or housekeeping policies refer to the

1 We note that multiple containers may have the same priority, but in order to make containers easily identifiable, in this
example we have assigned a different priority to each container.

4 Kevin Tierney, Dario Pacino, Stefan Voß

1 2 3

4

3

2

1

(a)

Tier No.

Stack No.

1 3 6

4 42

5

1 2 3

4

3

2

1

(b)

1 3 6

2 5

1 2 3

4

3

2

1

(c)

1 3 6

4

2 5

1 2 3

4

3

2

1

(d)

1 3 6

4

2 5

Fig. 2: An example solution to the pre-marshalling problem. Mis-overlays are indicated by the highlighted
containers.

pre-arrangement to be applied when re-arranging a terminal so as to ease, e.g., the future loading of a
vessel. On the operational level, the problem arises when rehandling of containers within the yard becomes
necessary. It should be noted that during re-marshalling and pre-marshalling the total number of containers
in a specific stacking area is kept unchanged.

As pointed out by many authors, e.g., [33, 22, 24], even when stacking policies aimed at minimizing
the number of rehandling moves are used, later rehandling cannot be avoided altogether. There are several
reasons why rehandling often cannot be prevented. First, containers being shipped with different vessels are
stored together due to the limited space capacity of the yard. Furthermore, the loading plan for a vessel is not
yet determined when a container arrives at the yard, and is often only finalized hours before a vessel arrives.
In addition, trucks or ships might be delayed, etc. In an early paper by [23] influencing this area of research,
various stack configurations and their influence on the expected number of rehandles are investigated in a
scenario of loading import containers onto outside trucks with a single transfer crane.

3 Literature Review

A survey of storage and stacking logistics at container terminals is provided in [46], [45], [5] and [3]. A more
specific overview of some of the most relevant optimization problems related to stacking at container terminals
is given in [9], which also proposes a number of alternative policies for stacking containers in a yard. However,
no details about reshuffling rules for containers are provided. The most recent overview of loading, unloading
and pre-marshalling problems is given in [31], which provides a classification and theoretical overview of a
wide range of stowage problems.

We now describe the most relevant literature to the pre-marshalling problem, followed by an overview of
work on similar problems, such as the blocks relocation problem (BRP), which is also known as the container
relocation problem, terminal re-marshalling problems and steel coil stacking.

Related work in pre-marshalling

There are two main types of marshalling activities. Intra-block re-marshalling refers to containers that are
rearranged into designated bays within the same (yard-)block. On a smaller scale, pre-marshalling refers to
intra-bay operations in which containers within the same bay are reshuffled. In both cases, the goal is to
minimize the number of future unproductive moves. That is, “re-marshalling refers to the task of relocating
export containers into a proper arrangement for the purpose of increasing the efficiency of the loading
operation” [7].

Intra-bay pre-marshalling may be motivated by means of different, mainly operational, arguments. When
rail mounted gantry cranes are used as major container handling equipment as in, e.g., [28, 29], it is assumed
that marshalling problems need to be solved at the bay level. If side-loading is applied to access the blocks,
moving gantries between bays while carrying a container is discouraged (see Figure 1).

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 5

Article Method Lower bound heuristic
Lee and Hsu (2007) [29] Mixed-integer linear programming Standard LP-relaxation

Expósito-Izquierdo et al. (2012) [11] A* Direct lower bound
Prandtstetter (2013) [35] Dynamic programming -

Rendl and Prandtstetter (2013) [36] Constraint programming Bortfeldt & Forster lower bound [2]
Zhang et al. (2015) [55] Heuristic guided branch-and-bound Extended direct lower bound

This article A*, IDA* Multiple lower bounds; multiple sym-
metry breaking and branching rules

Table 1: A categorization of optimal pre-marshalling algorithms.

There have been various approaches for solving the pre-marshalling problem. As the problem is NP-hard
(see [5]), these approaches incorporate heuristics, metaheuristics as well as exact algorithms.

An optimization model for the pre-marshalling problem is proposed by [29]. More specifically, they con-
sider an integer programming model based upon a time-space multi-commodity network flow problem. A
drawback of this approach is that the model contains a parameter T , defining the number of time periods
necessary to complete the optimization. The optimal value of this parameter is not known a priori, and
high values lead to long computation times. In [55], an approach similar to our work is presented using less
general versions of our branching rules. Table 1 provides an overview of the optimal approaches for solving
the pre-marshalling problem.

In order to overcome the limitations imposed by the size of the integer programming model of [29], [28]
propose a heuristic approach using neighborhood search and mathematical programming, in which the two
approaches are alternated to find short chains of re-handles.

A heuristic based on the corridor method is presented in [6]. The central idea of the approach relies
on iteratively solving smaller portions of the original problem to optimality. The algorithm consists of four
different phases, in which ideas from the corridor method, roulette-wheel selection and local search techniques
are intertwined to foster intensification around an incumbent solution. The algorithm is stochastic in nature
and is based upon the use of a set of greedy rules that bias the behavior of the scheme toward the selection
of the most appealing moves.

Additional approaches include using a tree search algorithm, see [2], as well as integer programming, see
[30]. Another idea is provided by [11], who describe an A* algorithm which can be considered as a blueprint
for the more advanced approach described in this paper. The approach by [11] does not include any symmetry
breaking or branching rules, and only uses a simple lower bound. Some comments on logical observations
leading to a lower bound are provided in [51]. Some of these ideas are also incorporated in the tree search
algorithm of [2], and are used to enhance the capabilities of the A* approach. The A* algorithm is also often
used in automated planning tools. A domain specific heuristic for pre-marshalling for use in an automated
planning tool is provided in [38]. We note that our approach introduces domain specific symmetry breaking
not present in the method of [38]. However, the domain independent planners used in their approach do have
symmetry breaking capabilities. Nonetheless, as we point out later, the computational performance of these
approaches is inferior to our custom built method.

Heuristic algorithms have been developed by [18, 13]. A neighborhood search heuristic can be found
in [28]. Incorporating these or similar heuristics into decision support systems or discrete event simulation
studies is one idea regarding their evaluation; see, e.g., [41, 26]. Another paper on heuristics is [11], who –
besides presenting the A* approach mentioned above – develop a greedy algorithm based on a collection of
rules, which are combined with a certain level of randomization to improve the quality of results. Based on
this approach, [20] extend the specific greedy rules to replace the randomization and obtain considerably
improved results. One of the greedy rules incorporated in the approaches of [11] and [20] deals with the
storage position of reshuffled containers. One of the issues is to avoid deadlocks and infeasibility. Related
stacking rules are also considered in [57].

Extensions of the pre-marshalling problem may be defined in various ways. As an example, one might
consider the more practical situation of an online optimization problem. Rather than explicitly defining such
a problem, an interesting extension of the pre-marshalling problem can be found in [36]. Instead of defining
priority values for the containers they assume a given range of priority values for them and redefine the
pre-marshalling problem under this modified setting. They propose a constraint programming approach to
solve the problem.

6 Kevin Tierney, Dario Pacino, Stefan Voß

Related work in different fields

The most closely related problems to the pre-marshalling problem are the previously mentioned BRP (see,
e.g., [25]), the re-marshalling problem (see, e.g., [7, 21]) and the assignment of inbound containers to
stacks [50]. Simulation studies, such as [34], have also been used to investigate terminal stacking opera-
tions, although optimization routines for pre-marshalling and other problems are not used.

In the BRP, containers (called blocks) must be extracted from a bay such that the number of shifted mis-
overlaid containers is minimized. In doing so, only containers relevant to the current extraction operation may
be moved (i.e., pre-marshalling is not allowed) in a commonly solved, “restricted” variant of the problem. The
removal of containers makes the BRP significantly easier to solve than pre-marshalling problems of similar
size because the problem size is reduced over the course of finding a solution. Secondly, the restriction of
which containers are allowed to be shifted also simplifies the problem, although variants exist where this
restriction is lifted.

The most relevant works to our approach from the BRP are [54] and [58], in which IDA* is used to
solve the BRP. The authors do not introduce any symmetry breaking or branch reduction heuristics, rather,
they focus on lower bounds and probing heuristics. Aspects of their IDA* algorithm may sound similar to
our approach, but it actually differs significantly, as the BRP allows a simplification of the search through
container removals. In pre-marshalling, containers cannot be removed, thus we must define a much wider
class of symmetries and branching rules to avoid repeated work. A branch-and-price algorithm is introduced
in [53]; however, its reliance on container removals makes it impractical for pre-marshalling. The RLIDA*
approach in [1] achieves state-of-the-art performance for the BRP by intelligently switching between different
lower bound heuristics with differing levels of CPU time requirements and bound tightness. This approach
is not yet relevant for pre-marshalling as there are only two lower bound algorithms, both with very low
CPU time requirements. Furthermore, as we will discuss later, one lower bound computation is completely
dominated by the other one, i.e., the other will always find at least as good a lower bound.

The pre-marshalling problem, however, can be imagined not only at container terminals but also in other
situations. Some warehouses are organized following the stacking principle, by storing uniform items piled
up on top of each other, where access is only granted to the uppermost item. While stacking operations
in such warehouses follow similar rules as in container yards, more often we see situations differing from
pre-marshalling when retrieving and receiving operations are performed in parallel; see, e.g., [32]. Moreover,
the physical properties of the items in a warehouse might differ from those of block-shaped containers. As an
example, consider coils in the steel industry. The resulting storage setting might not be formed as stand-alone
stacks, as each coil may be placed on top of two consecutive coils from the row below (see, e.g., [52] and
[47]), which could happen if one would allow a 40 ft. container being stacked on two 20 ft. containers.

The handling of trains also involves stacking operations; see, e.g., [12]. A train can be seen as a sequence
of wagons. It might happen that the wagon sequence of a single train needs to be changed or that the wagons
of several trains have to be reshuffled to new collections of trains. These operations are physically carried
out on dead end sidings, where trains or parts of trains can be stored intermediately and taken away later
on. Thus, on dead end sidings, trains can be “stacked” together and, moreover, rehandling of wagons is
possible. Each of those dead end sidings relates to a stack in the container yard, where only the uppermost
container/wagon is accessible.

A well-known problem in artificial intelligence is the blocks world problem; see, e.g., [39], [14]. The blocks
world problem consists of a “table” where blocks are stacked on top of each other. A typical blocks world
instance consists of a given initial table state and a desired goal state. The task is to transform the initial
state to the goal state with a minimum number of moves. Variants of blocks world incorporate limitations on
the table size and different levels of given conditions for the goal state. A primary difference between blocks
world and pre-marshalling is the lack of height constraints on the block stacks. Another similar problem
from artificial intelligence is the Tower of Hanoi problem [16]. The main difference to pre-marshalling is that
ordering constraints of the elements of the Tower of Hanoi problem are enforced throughout the problem,
whereas in pre-marshalling containers may be temporarily mis-overlaid in order to sort the bay.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 7

4 Solution Approach

In this work we propose two optimal approaches based on the well-known A* and IDA* algorithms, which
both perform an exact path-based search guided by a cost estimation heuristic for the selection of the
branches to explore first (see, e.g., [40]). A* builds a so-called search fringe that stores the shortest path
found so far to explored nodes in a graph. The main advantage of using a search procedure such as A* is
that, unlike in the multi-commodity flow formulation of pre-marshalling in [29], A* builds a graph of moves
as it searches, rather than trying to fit a large graph into memory before solving even starts. A* is nearly
equivalent to the very well known Dijkstra’s algorithm for finding shortest paths in graphs [10], except that
A* uses an improved cost estimation heuristic f(x) = g(x) + h(x) for any node x where g(x) is the number
of nodes currently in the path to x, and h(x) is a lower bound on the cost from x to the destination of the
search. As long as h(x) never overestimates the real cost of completing a path, A* always finds an optimal
solution.

A downside to the A* algorithm is that it must save every node it explores in the graph along with the
cost of getting to that node. For large graphs, such as in the case of the pre-marshalling problem, this does
not fit in memory. Iterative deepening A* (IDA*) is a memory efficient version of A* in which a so-called
iterated deepening search is used. This type of search iteratively increases a depth limit on the search. Each
time the limit is increased, a depth first search is called and the search must re-generate all of its work from
the previous iteration. While this provides a constant sized memory footprint, the computational cost of
IDA* is higher than for A*. In practice, the time required for regenerating the search tree is actually rather
low. Due to the exponential growth of the tree, most time is spent investigating leaf nodes. We refer the
reader to [40] for a more in depth description of the general algorithm.

Note that although A* and IDA* are referred to as forms of heuristic search in the computer science
community, they both find optimal solutions as long as the cost estimation heuristic does not overestimate
the cost of finding a solution.

Since A* and IDA* are graph search algorithms, we must define a graph for the pre-marshalling problem
that can be searched. The graph is based on looking at a sequence of container moves as a path and
searching through this space. A node in the graph is a configuration of the bay. Each node has an arc to
every configuration that can be reached by moving exactly one container from the top of one stack to the
top of a different stack.

We apply state-of-the-art A* and IDA* techniques for solving the pre-marshalling problem, and advance
them with domain-specific rules. Although there has been significant work on domain independent symmetry
breaking and heuristics (see, e.g., [8] or more recently [44]) for A* and automated planning algorithms, these
techniques usually require a significant domain specific component. For pre-marshalling, we provide domain
specific rules that are fine-tuned to the problem to get fast performance.

4.1 A* for pre-marshalling

Algorithm 1 provides pseudo-code for the A* algorithm, with the following parameters. The initial solution,
n, provides the starting configuration of the bay. The functions g and h provide the cost to reach the
current solution from the initial state and the estimated cost of completing the solution, respectively, and
are described in a following subsection. Finally, the parameter do-close indicates whether or not the search
should explicitly store already seen nodes in a form of state memoization (see, e.g., [40]). Turning this
parameter off means that A* may visit some nodes more than once. There is no risk of entering loops or
infinitely long paths since with each move the path length increases.

The priority queue open stores the unexplored nodes, called the search fringe, whereas the set closed is a
set of all previously seen nodes. The search continues until a solution is found or the priority queue becomes
empty, meaning no solution exists. On line 6 the closed queue is updated with the currently explored node
(if the do-close parameter is set). When exploring all possible branches on line 7, the already explored nodes
are removed from consideration. We refer to the closed list as memoization throughout this work.

The function branches creates a node for every possible move of a container in the current bay. That
is, for each container at the top of a stack, we create a new node that moves the container to every other
stack, subject to a number of branching rules and symmetry breaking introduced in the next section. As

8 Kevin Tierney, Dario Pacino, Stefan Voß

1 2 3

4

3

2

1

(a)

Stack No.

1 3 6

42

5

4

1 3 6

2 5 4

1 3 6

2

5

4

1 3 6

2

5

4

1 3 6

5

2 4

1 3

6

2

5

4

1 3

2

5

6

1 3 6

4

2 5

1 3 6

2 5

4

1 3 6

2

54

1 3 6

2

54

Fig. 3: Example search graph of A*.

Algorithm 1 An A* algorithm for the container pre-marshalling problem.
1: function PM-A*(n, g, h, do-close)
2: open ← priority-queue()
3: closed ← ∅
4: while mis-overlays(n) > 0 do
5: if do-close = true then . Memoization step
6: closed ← closed ∪ {n}
7: for m ∈ branches(n) \ closed do
8: push(open, 〈g(m) + h(m), m〉)
9: if |open| = 0 then return no solution

10: n← pop(open)

11: return g(n)

this procedure enumerates every possible bay configuration, our approach clearly finds the optimal solution,
if there is one.

Since the algorithm uses a priority queue to sort the search fringe by objective function value, when a
configuration is found with no mis-overlays, it must consist of a minimal number of moves.

Consider the example search graph shown in Figure 3. The root node of the A* search is the initial
configuration of the bay, with outgoing arcs to every configuration that can be reached through a single
move of a container. The value of the node, f(x), is computed for each node that is opened. After opening
search depth 1, a node must be chosen for the next iteration of A*. Any node with a minimal f(x) value
can be chosen for further exploration. We expand the leftmost node for illustrative purposes. Out of the six
possible moves from this node, only 4 are actually opened. Two moves would lead to nodes we have already
seen (dashed lines) and are pruned through branching rules we will describe later. In the next iteration,
another node must be chosen to be opened. Again, any node with the minimal f(x) value can be opened,
in this case any node with f(x) = 3. When there is a tie between two nodes, as there is in this example, we
open the node with the highest g(x) value, as it is more likely to quickly lead to a solution. This is the case
in this example, as opening the leftmost node at search depth 2 leads to an optimal solution.

4.2 IDA* for pre-marshalling

IDA* conducts a series of depth-limited depth first searches in order to avoid using as much memory as
A*, at the expense of some extra computation time. Algorithm 2 provides the pseudo-code for our IDA*
approach. The parameters n, g, and h are the same as in A*. The parameter k refers to the maximum

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 9

Algorithm 2 An IDA* algorithm for the container pre-marshalling problem.
1: function PM-IDA*(n, g, h, k, kmax)
2: if k ≥ kmax then return no solution

3: m← PM-IDA*-Recur(n, g, h, k)
4: if m 6= ∅ then
5: return m
6: else
7: return PM-IDA*(n, g, h, k + 1, kmax)

8: function PM-IDA*-Recur(n, g, h, k)
9: if mis-overlays(n) = 0 then return n

10: for m ∈ branches(n) do
11: if g(m) + h(m) ≤ k then
12: r ← PM-IDA*-Recur(m, g, h, k)
13: if r 6= ∅ then return r
14: return ∅

depth that the depth first search in IDA*-Recur may search to, and kmax is the maximum k value of the
algorithm. Too low a value leads to no solution being returned on instances that actually have solutions.
We believe that most practical pre-marshalling instances either have a solution or are obviously unsolvable,
meaning setting this value to (for example) five times the lower bound of the initial configuration suffices for
finding solutions.

The algorithm starts by running a depth first search on line 3 to the given depth. If a solution is found, it
is optimal and is returned. Otherwise, k is incremented and the depth first search is executed again. Within
the depth first search IDA*-Recur, all branches of a search node are explored in no particular order2. The
algorithm uses the same branching function as in the A* algorithm. When the cost of reaching a particular
search node plus the lower bound on the number of moves necessary to complete that node’s solution is
larger than k, the branch is discarded. Otherwise, the branch is explored recursively.

Consider again the example in Figure 3 for the IDA* approach. First, it computes the f(x) value of the
root node, which is 3. This provides the initial depth limit of the search, which in this example is sufficient
for finding the optimal solution. Note that this is not always the case. IDA* then performs a depth first
search, which explores the “left most” node with the best f(x) value over all branches. Thus, the leftmost
node of search depth 1 is opened. Then, the leftmost node of search depth 2 with f(x) is opened. An optimal
solution is then found. In contrast to A*, IDA* must only open the left most nodes, rather than all of the
nodes at each level of the search.

4.3 Lower bound and optimality

In both algorithms, the heuristic cost estimation is given by f(n) = g(n) + h(n), where g is the number of
moves used to reach a particular configuration from the initial configuration, and the heuristic h computes
a lower bound on the number of moves necessary to find a configuration without mis-overlays. For both A*
and IDA*, as long as f(n) does not overestimate the cost of reaching the optimal solution given solution n
and the branching at each node is complete, the algorithms are guaranteed to find optimal solutions.

We use one of two cost estimation heuristics for the function h: the “direct” heuristic and the lower bound
presented in [2]. The first lower bound heuristic, which we call the direct lower bound, counts the number of
mis-overlaid containers in the current search node. This is the same lower bound used in the A* approach
in [11]. Figure 4 shows a sample bay in which the gray containers are mis-overlaid. The direct lower bound
simply counts these gray containers. Thus, the direct lower bound in this example is 5. However, the optimal
number of moves to solve this example is actually 8, meaning a tighter lower bound that also takes into
account indirect moves is desirable.

Considering Figure 4 again, the lower bound can be increased by one since at least one of the highest
priority containers (i.e., containers with priority 5) must be put in the bottom tier. In order to do this, one of
the containers at the bottom must be removed, even though none of them are mis-overlaid. The second cost
estimation heuristic we use is provided in [2] and generalizes this idea into notions of supply and demand,

2 We note that this may be a fruitful direction for future work.

10 Kevin Tierney, Dario Pacino, Stefan Voß

Fig. 4: A bay with mis-overlaid containers.

in which demand refers to high priority mis-overlaid containers needing to be moved (such as containers
with priority 4 and 5 in the example), and supply describes areas where such containers can be placed (for
example, stacks 3 and 4). We refer to this bound as the extended mis-overlay (EMO) lower bound, and refer
to [2] for the algorithmic details. In performing this extra analysis the EMO bound is often able to provide
tighter bounds than the direct lower bound at little extra computational cost.

In Figure 4, the EMO bound is 7, only one container short of the 8 moves necessary to solve the problem.
This missing container is due to the fact that the EMO bound’s generalized notions of “flow” do not com-
pletely capture all the moves that must be performed. In particular, the consequences of performing indirect
moves are often not completely captured, such as moving the containers with priority 5 into stacks 3 or 4. The
EMO bound correctly sees that either stack 3 or 4 must be cleared, resulting in two extra moves. However,
the container of priority 2 will be handled twice because there is nowhere it can be placed in this instance
where it is not mis-overlaid. [51] discusses various situations in which the lower bound can be strengthened
through such reasoning, but no general algorithm is provided for doing so. Thus, we do not include these
ideas in our approach.

The EMO bound has not been previously used in any optimal approaches, and we note that while the
bound is valid and will never overestimate the cost of a solution (i.e., it is admissible) the bound lacks
the property of consistency. With each move added to a partial plan, the EMO bound is not guaranteed
to monotonically increase. This means that moving a container could potentially cause the lower bound to
go up, rather than down. This is a rare edge case of the lower bound, but since A* and IDA* require a
completely consistent heuristic, we simply store the heuristic cost of a parent state and compare it against
the bound of a child node. Should the bound of the parent be higher than that of the child, we use the
parent’s value as the bound.

4.4 Tie breaking

During a search with A*, the search fringe is often full of thousands of nodes with the same f value. Correctly
determining which node to open next is important for finding solutions quickly, as in A* open nodes are
stored in a priority queue in which the node with the lowest f value is explored at each iteration in a best-
first strategy. In contrast, IDA* does not store the search fringe as it uses a depth-limited depth-first search.
Thus, no tie breaking is necessary.

We use two tie breaking rules sequentially to try to distinguish between search nodes that look the same.
The first is to sort nodes based on g, ordering configurations with higher values of g first. Recall that g
counts the number of moves in a partial solution, meaning higher values are solutions where less decisions
still need to be made. This is an intuitive tie breaking rule that is a common strategy for A* algorithms with
an admissible search heuristic.

Our second tie breaking rule distinguishes between two search nodes by comparing the lowest priority
container that is located on the top of a stack. The idea is that nodes with a low priority container on top
are potentially more sorted than other nodes, and once the node is expanded the number of mis-overlays in
the next move will be low.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 11

4.5 Implementation details

We briefly describe implementation details for A* and IDA* that were not present in previous approaches
that help us achieve better performance.

Memory requirements for A* are an issue because the search expands an exponential number of nodes.
Thus, we use trailing, a technique often used in constraint programming solvers [43], in order to reduce our
memory overhead. The basic idea is to save the moves needed to reach a given node rather than the entire
bay configuration. Such an adjustment allows the algorithm to scale further.

We use a standard backtracking search to implement IDA*, which allows our IDA* to process a high
number of nodes per second while maintaining a small memory footprint. We further pay close attention
to caching effects and avoiding unnecessary memory allocations in order to further increase the number of
nodes processed per second.

5 Branching Rules

In this section, we describe four classes of A* and IDA* branching rules for the pre-marshalling problem,
three of which are novel contributions to the literature. Our branching rules analyze past moves to prune
future moves from the search fringe that cause symmetries or lead to obviously dominated states.

We first describe the standard move reversal prevention rule, which has been used in the previous A∗

approach by [11]. For the next two classes of rules, which prevent unrelated and transitive moves, we describe
two variants covering the directly successive and successive cases, which refer to situations that occur in moves
mi and mi+1, or moves mi and mj , i < j, respectively. Although the directly successive case is simply a
special case of successive moves, our directly successive rules can be detected and analyzed in constant time.
In the case of successive moves leading to symmetries or dominated states, the previous move list must be
examined at each search node. While not overly computationally expensive, examining the previous move
list does present a trade-off in terms of pruning power and computational requirements worth investigating
further. Finally, we provide a rule to avoid symmetries related to empty stacks. We use the notation m = (f, t)
to indicate the movement of the container on the top of stack f (the “from” stack) to the top of stack t (the
“to” stack).

We note that this work is novel even in the context of advances in A* and IDA* search procedures. While
work has been done to automatically detect move reversals [17], as well as remove duplicate states from the
search using memoization, the branching rules we propose use domain specific insights to achieve pruning
that cannot be accomplished through independent heuristics alone.

5.1 Move reversal prevention

The first branching rule involves suppressing moves that reverse directly previous moves. We do not describe
this rule in detail due to its simplicity, and the fact that it has also been used by [11]. Briefly formalized,
given two directly successive moves m1 = (f1, t1) and m2 = (f2, t2), we do not apply move m2 if t1 = f2 and
t2 = f1, i.e., if move m2 undoes m1. If m2 were to be performed, the resulting search node would have the
same configuration as before m1 was applied, but with a higher lower bound, which is clearly a dominated
state.

5.2 Unrelated move symmetry breaking

We first target successive moves that do not share any from or to stacks in common. Starting from a given
configuration, such moves can be ordered arbitrarily and the same resulting configuration is reached. We call
such moves unrelated moves, and address the directly successive and successive cases as follows.

5.2.1 Directly successive moves

We formally define the concept of unrelated moves as follows.

12 Kevin Tierney, Dario Pacino, Stefan Voß

Definition 1 Given two successive moves, m1 = (f1, t1) and m2 = (f2, t2), moves m1 and m2 are unrelated
iff f1 6= f2 6= t1 6= t2.

Figure 5 shows a symmetry caused by two unrelated moves performed in direct succession. Move 1 involves
shifting container 3 from stack a to stack b, and move 2 consists of moving container 4 from stack c to stack
d. From the original bay configuration, we perform move 1 on the left and move 2 on the right. Then, at
the next level of the tree, we perform move 2 on the node on the left and move 1 on the node on the right.
Both orderings of move 1 and move 2 result in the same final configuration, meaning without a symmetry
breaking rule we will explore the same configuration twice. In order to break unrelated move symmetries,
we examine directly successive moves and impose an ordering restriction on the from stack of each move.
We formalize this notion as follows.

Rule 1 Given a move m1 = (f1, t1) and a directly successive unrelated move m2 = (f2, t2), m2 is allowed
only if f1 � f2, where � ∈ {<,>} is fixed over the entire search.

In other words, a directly successive unrelated move is only allowed if its from stack is strictly less than
(greater than) the from stack of the move preceding it. We note that � must remain consistent throughout
the search tree in order for the rule to function. Furthermore, we only apply this rule to moves that are
directly successive, i.e., they happen directly after each other.

Proposition 1 Both A* and IDA* remain complete when applying Rule 1.

Proof. Consider directly successive unrelated moves m1 and m2 with f1 � f2 as described in Rule 1, and
a search node n1. We can apply m1 and m2 to n1 in any order to achieve node n2 because the moves are
unrelated. By imposing an order � onto which unrelated moves are allowed, we now only accept a single
ordering of m1 and m2. However, since both orderings of the moves generate the same node, no parts of the
search tree are lost. Thus, the search remains complete. ut

5.2.2 Successive moves

In the case of successive unrelated moves, Rule 1 is an insufficient condition to detect symmetries. We now
refer to two moves mi = (fi, ti) and mj = (fj , tj) with i < j. Rule 1 is insufficient because moves may have
occurred between moves mi and mj that actually make mi and mj related. For example, assume there is a
move from ti to fj ordered between mi and mj . In such a situation, preventing mj from being carried out
could cut off portions of the search tree that must be explored. We therefore keep our previous definition of
unrelated moves, but only apply it in a strict set of situations, defined as follows.

Rule 2 Given a move mi = (fi, ti) and a successive unrelated move mj = (fj , tj), i < j, we allow mj only if
fi�fj, where � ∈ {<,>} is fixed over the entire search, and ∀i<k<j mk = (fk, tk), {fk, tk}∩{fi, ti, fj , tj} = ∅.

Fig. 5: A symmetry caused by unrelated moves.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 13

Fig. 6: A dominated state caused by transitive moves.

The rule ensures that no move between m1 and m2 modifies any of the stacks involved in the two moves.
When this condition holds, we can be sure that applying Rule 2 will not cut off any parts of the search space
that need to be explored to guarantee completeness.

Proposition 2 Both A* and IDA* remain complete when applying Rule 2.

Proof. Rule 2 is only applied if it can be shown that no move between mi and mj modifies any of the
stacks changed in mi and mj . Thus, the intermediate moves between mi and mj do not have any effect on
the nodes generated by mi and mj . This means that Proposition 1 can be directly applied to Rule 2 and the
search remains complete. ut

5.3 Transitive move avoidance

Our second type of rule prevents moves that are clearly dominated, but cannot always be pruned purely by
examination of the lower bound. In this situation, the same container is moved multiple times to achieve a
configuration that can also be reached by simply moving the container a single time. We call such double
moves transitive moves. These moves result in a symmetry-like situation, where the same configuration is
reached twice, but with slightly different lower bounds.

5.3.1 Directly successive moves

We formally define transitive moves as follows.

Definition 2 Two successive moves m1 = (f1, t1) and m2 = (f2, t2) are transitive if t1 = f2.

Figure 6 shows an example situation in which a transitive move is dominated by a single move. The left
path moves container 3 first from stack a to b and then from b to d, whereas the move on the right moves
the container directly from a to d. Clearly using a single move dominates two moves as the cost of solving
the configuration is the same between the two possibilities, but the number of moves required to reach the
configuration is less when one move is used. Based on this definition, we can form the following rule to
prevent transitive moves from being performed.

Rule 3 Given two directly successive moves m1 = (f1, t1) and m2 = (f2, t2), disallow m2 if m1 and m2 are
transitive moves.

We now show that we can use this rule and still be guaranteed to find an optimal solution.

Proposition 3 Both A* and IDA* remain complete when applying Rule 3.

14 Kevin Tierney, Dario Pacino, Stefan Voß

Fig. 7: Transitive moves that are not directly successive.

Proof. Any search node n3 that is reached by applying transitive moves m1 and m2 in direct succession
to node n1 can also be reached by applying some other move, m3 = (f1, t2). Since reaching n3 using m3

is cheaper than using m1 and m2, the sequence m1 and m2 is dominated and will never be in an optimal
configuration. Since m3 will always be applied to node n1, applying m2 after m1 is not necessary to achieve
a complete search space. ut

5.3.2 Successive moves

As in the case of unrelated move symmetries, our transitive move branching rule can also be extended to
the case of successive moves. For successive moves, the pruning only applies to moves between stacks that
have not been changed between the two transitive moves.

Figure 7 shows an example situation in which a transitive move is separated over several steps. The top
sequence of moves contains the transitive moves 4 : a→ b and 4 : b→ e, which is dominated by the bottom
row’s move 4 : a → e. Looking at the third configuration in the top row, directly after the move 5 : c → d,
container 4 can be moved to stacks c and d without causing a transitive move, but cannot be moved to a
or e.3 We allow container 4 to be moved to stacks c and d because they have changed since container 4 was
first moved from stack a to stack b. In order to retain completeness of the algorithm, we must allow such
moves to be possible, as they may be necessary for finding an optimal move sequence.

Rule 4 Given two successive moves mi = (fi, ti) and mj = (fj , tj), i < j, disallow mj if (i) mi and mj are
transitive moves, and (ii) there is no move mk = (fk, tk), i < k < j such that {fk, tk} ∩ {fj , tj} 6= ∅.

This rule prevents mj from being performed if it is transitive with move mi, no move has taken place
changing the state of stacks fj or tj , and there is no other move that could qualify as transitive with mj

after mi. When this is the case, we know that the move (fi, tj) was already carried out during the branching
step when mi was applied. We now prove this.

Proposition 4 Both A* and IDA* remain complete when applying Rule 4.

Proof. If the intervening moves between mi and mj do not affect the search’s completeness, then it suffices
to apply Proposition 3 to show that the search is complete. Let nj be the search node reached by applying
mj . In any case where mj is banned, the search can also explore nj by applying the move (fi, tj) and then
moves mi+1 . . .mj−1. Since moves mi+1 . . .mj−1 do not change stacks fj or tj in any way, whether they are
applied before or after mj is irrelevant and has no bearing on the completeness of the search space. Since
the only search node in question is nj , and this node is visited even when banning mj according to Rule 4,
the search remains complete. ut

3 Moving container 4 to stack a is actually a move reversal as discussed in Section 5.1, which is a special case of successive
transitive moves.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 15

5.4 Empty stack symmetry breaking

Symmetries can occur when a configuration has multiple empty stacks available at the same time. This is
because when a container is moved into an empty stack, it does not matter which stack receives the container
from the point of view of the lower bound. We note that breaking empty stack symmetries does not generally
result in a significant performance gain, since empty stacks tend to be filled rather quickly with containers.
Thus, not many nodes have empty stack symmetries present in the first place. In contrast to the previous
rules we have presented, previous moves need not be examined in order to break empty stack symmetries.
Rather, we impose an ordering over the empty stacks to ensure a container is only moved into a single
empty stack at any branching step. Empty stack symmetries are also broken in [56] for the blocks relocation
problem.

Rule 5 Given a search node n1 with at least two empty stacks, represented by the set E, let e∗ = min{E} be
the empty stack with the lowest index. Disallow any move m1 = (f1, t1) applied to n1 with t1 > e∗.

The search remains complete under this rule since all empty stacks are equivalent, thus there is no need
to branch on moving a particular container into multiple empty stacks.

6 Computational Experiments

We implemented both A* and IDA* for the pre-marshalling problem in C++11 [19]. We ran all experiments
on AMD Opteron 6386 2.8 GHz processors for up to one hour and allowed up to 5 GB of RAM to be used.
We first show the effectiveness of the unrelated symmetry breaking and transitive move avoidance rules on
IDA*, and then provide results of IDA* versus A* and previous work.

The state-of-the-art optimal approach is the A* with the “direct” lower bound presented in [11]. However,
we only apply the lower bound from [2] for our tests of the various branching rules and heuristics since
it dominates the “direct” lower bound. We further note that we forego a complete comparison with the
automated planning approach of [42, 38] based on the results in their paper, which IDA* easily outperforms.
In particular, they report needing 6 seconds to even find a first solution for 4 stack instances with 15
containers, whereas our approach solves 4 stack instances with 16 containers to optimality in an average
time of 1.22 seconds on hardware that is roughly half as fast.

6.1 Datasets

We use three well-known datasets from the literature to test the effectiveness of our approach, summarized
in Table 2. The table provides the number of instances; the minimum and maximum number of stacks, tiers
and containers; and the average and standard deviation for the maximum priority, number of empty stacks,
and “density” over all instances in each dataset. The density is computed as the number of containers in
an instance divided by the total number of slots in the bay. Interestingly, the average density is almost the
same for all datasets, even though the CV appear more dense due to their lack of empty stacks and because
all stacks are filled to 2 slots below the maximum number of tiers.

The CV dataset, from [6], consists of 880 instances ranging in size from 3 stacks and 3 tiers up to 10
stacks and 10 tiers filled completely with containers. As in [6], we add two empty tiers on top of each instance
so that they can actually be solved. Each container receives its own priority, which is a unique feature of the
CV dataset compared to other datasets.

The BF dataset [2] contains 721 instances, 40 of which are sourced from the CV dataset, and another
41 of which are variations of the instance used in [28]. We remove the CV instances (giving the numbers
in Table 2 indicated by an asterisk), but leave the instance from [28] and its variations, which are prefixed
in our results tables with “LC”. We note that while the minimum number of stacks of the BF instances is
10, this is only due to the group of LC instances, which are either 10 or 12 stacks wide. The non-LC BF
instances are categorized into 32 different groups, which contain either 16 or 20 stacks, and either 5 or 8
tiers. In contrast to the CV instances, multiple containers are assigned the same priority. This can be seen in

16 Kevin Tierney, Dario Pacino, Stefan Voß

Dataset Insts.
Stacks Tiers Containers Max. pst Empty Density

Min Max Min Max Min Max � σ � σ � σ
CV 880 3 10 3 10 9 100 32.8 20.7 0.0 0.0 0.7 0.1
BF 681* 10* 20 5 8 35 128 24.1 11.6 1.5 2.0 0.7 0.1
EMM 700 4 10 4 4 8 40 5.4 2.4 0.8 0.2 0.5 0.2

Table 2: Instance characteristics for each of the datasets used in our evaluation.

1. Algorithm

A*, IDA*

2. Unrelated move symmetries

S< Directly successive, less-than
S> Directly successive, greater-than
M< Successive, less-than
M> Successive, greater-than

3. Transitive move avoidance

T Directly successive
U Successive

4. Empty stack symmetry breaking

E Empty stack symmetry breaking enabled

5. A* specific parameters

O State memoization enabled
I Tie breaking enabled

6. Lower bound

EMO EMO lower bound [2]
D “Direct” lower bound as described in Section 4

Fig. 8: Overview of the parameterizations of the IDA* and A* algorithms.

the maximum priority column of the table, which shows that BF instances have a lower maximum priority
on average.

Finally, we use the instance generator from [11] to generate a dataset of 700 instances.4 The dataset
is similar to the one used in [11], and has 25 instances each with 4 tiers; 4, 7 or 10 stacks; a container
fill percentage of 0.5, 0.75 or 1; and a “configuration” of either 0, 1, or 2, which describes the priority
distributions for the containers. We call this dataset the EMM dataset. We refer to [11] for structural details
regarding the instances.

6.2 Parameterizations

Since both our A* and IDA* algorithms have a number of parameters, we summarize our abbreviations for
the parameterizations in Figure 8. For example, IDA*|S>E|EMO is IDA* with single level unrelated move
symmetry breaking using the greater-than criterion, empty stack symmetry breaking, and the EMO lower
bound. The parameterization A*|D is our own implementation of the state-of-the-art technique from [11],
which has some implementation differences as discussed in Section 4.5.

6.3 Evaluation of unrelated move symmetry breaking

We investigate the effectiveness of unrelated move symmetry breaking on all three datasets in both the
directly successive and successive cases on both algorithmic approaches. Figure 9 shows the number of
instances solved on each dataset using the symmetry breaking rule with both the less-than and greater-than
variants. Table 3 shows the same information in a table with the percentage of instances that were solved
for each dataset using A* and IDA* under the various parameterizations. The symmetry breaking rule is

4 We note that we cannot use the exact same instances as in [11] because their instances were unfortunately lost by those
authors.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 17

0 100 200 300 400 500
0

50

100

150

200

A∗|EMO
A∗|S<|EMO
A∗|S>|EMO
A∗|M<|EMO
A∗|M>|EMO

(a) A*; BF

0 500 1000 1500 2000150

200

250

300

350

A∗|EMO

A∗|S<|EMO

A∗|S>|EMO

A∗|M<|EMO

A∗|M>|EMO

(b) A*; CV

0 200 400 600 800 1000 1200

200

300

400

500

600

A∗|EMO

A∗|S<|EMO

A∗|S>|EMO

A∗|M<|EMO

A∗|M>|EMO

(c) A*; EMM

0 500 1000 1500 2000 2500 3000 35000

50

100

150

200

IDA∗|EMO

IDA∗|S<|EMO

IDA∗|S>|EMO

IDA∗|M<|EMO

IDA∗|M>|EMO

(d) IDA*; BF

0 500 1000 1500 2000 2500 3000 3500300

350

400

450

IDA∗|EMO

IDA∗|S<|EMO

IDA∗|S>|EMO

IDA∗|M<|EMO

IDA∗|M>|EMO

(e) IDA*; CV

0 500 1000 1500 2000 2500 3000 3500500

520

540

560

580

600

620

IDA∗|EMO

IDA∗|S<|EMO

IDA∗|S>|EMO

IDA∗|M<|EMO

IDA∗|M>|EMO

(f) IDA*; EMM

Fig. 9: Number of instances solved versus time in seconds for the unrelated move symmetry breaking rule in
the directly successive and successive cases using A* and IDA*.

significantly better than not using the rule on all datasets, even in the directly successive case. Overall, the
best performing symmetry breaking rule on each dataset is able to solve 127 more instances than not using
the rule with IDA* and 286 more instances for A*.

While the successive rule does not perform better than the directly successive rule on the CV or EMM
datasets, it does greatly outperform other variants of the rule in the greater-than case for the BF dataset
for both algorithms. We suspect this is due to the high number of stacks in the BF dataset, which can lead
to many unrelated move symmetries. When not many stacks are present, the extra overhead of looking back
multiple moves simply does not pay off.

On the BF dataset for IDA*, the successive greater-than rule solves 60% more instances than no rule at
all, and 17% more instances than the nearest competitor, the directly successive less-than rule. The successive
less-than rule solves 9% more instances on the CV dataset than not using any branching rules, but does not
perform significantly better than any other unrelated symmetry breaking rule, while on the EMM dataset
the unrelated symmetry breaking rule provides only minor gains in terms of total instances solved. However,
the symmetry breaking rules do offer faster solutions than not using the rules, as can be seen at the left side
of Figure 9((f)). This means the rule is still beneficial on the EMM dataset.

Interestingly, whether the rule is set up with a less-than or greater-than relation has a significant effect on
the BF dataset, with the successive greater-than rule performing the best, followed by the directly successive
less-than rule, and finally the successive less-than and directly successive greater-than rules perform roughly
the same. This could be an artifact of the random instance generation process, as from a theoretical standpoint
the less than or greater than operators are equivalent.

6.4 Evaluation of transitive move avoidance

The effectiveness of our transitive move avoidance rules is shown in Figure 10 and in Table 4. The rules are
highly effective in combination with A*, although the successive and directly successive rules have similar

18 Kevin Tierney, Dario Pacino, Stefan Voß

Parameters
BF CV EMM

A* IDA* A* IDA* A* IDA*
EMO 138 (20%) 120 (17%) 311 (35%) 443 (50%) 437 (67%) 618 (94%)
S<|EMO 182 (27%) 170 (24%) 357 (41%) 478 (54%) 604 (92%) 626 (96%)
S>|EMO 171 (25%) 158 (22%) 335 (38%) 481 (55%) 604 (92%) 626 (96%)
M<|EMO 205 (30%) 164 (23%) 339 (39%) 488 (55%) 610 (93%) 627 (96%)
M>|EMO 169 (25%) 192 (27%) 348 (40%) 482 (55%) 609 (93%) 628 (96%)

Table 3: Effectiveness of unrelated move symmetry breaking

0 100 200 300 400 5000

20

40

60

80

100

120

140

A∗|EMO

A∗|T |EMO

A∗|U |EMO

(a) A*; BF

0 500 1000 1500 2000

240

260

280

300

320

340

A∗|EMO

A∗|T |EMO

A∗|U |EMO

(b) A*; CV

0 200 400 600 800 1000 1200300

350

400

450

500

550

A∗|EMO

A∗|T |EMO

A∗|U |EMO

(c) A*; EMM

0 500 1000 1500 2000 2500 3000 35000

20

40

60

80

100

120

IDA∗|EMO

IDA∗|T |EMO

IDA∗|U |EMO

(d) IDA*; BF

0 500 1000 1500 2000 2500 3000 3500300

320

340

360

380

400

420

440

460

IDA∗|EMO

IDA∗|T |EMO

IDA∗|U |EMO

(e) IDA*; CV

0 500 1000 1500 2000 2500 3000 3500500

520

540

560

580

600

620

IDA∗|EMO

IDA∗|T |EMO

IDA∗|U |EMO

(f) IDA*; EMM

Fig. 10: Number of instances solved versus time in seconds for the transitive move avoidance rule in the
directly successive and successive cases using IDA*.

results on the BF and EMM datasets. This contrasts with IDA*, where the transitive move avoidance rules
only work well on the CV dataset, although there are some small gains on the EMM dataset.

This rule seems to help A* more than IDA* because it prevents A* from running out of memory as
quickly. This allows A* to dig deeper into the tree. The rule shows particular good performance on the CV
dataset, which could be due to the uniform stack heights and lack of empty stacks.

The successive rule only outperforms the directly successive on the CV dataset. Otherwise the perfor-
mance is fairly comparable, although we note some slight gains for A* on BF and for IDA* on EMM. This
result is surprising, because we would have thought the multi-level transitive avoidance scheme works best
on instances with a high number of stacks, since more similar configurations will be created. One reason for
this performance could be that in the CV instances, the lower bound tends to be unable to correctly estimate
the number of rehandles necessary for single containers, some of which must be moved two or three times.
The transitive move avoidance rule is therefore able to prevent similar configurations from being created
through these rehandles that the lower bound cannot avoid.

6.5 Evaluation of empty stack symmetry breaking

We only provide this brief mention of the empty stack symmetry breaking because it is ineffective at improving
the performance of either the A* or IDA* approach. The reason is that very few instances have enough empty

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 19

Parameters
BF CV EMM

A* IDA* A* IDA* A* IDA*
EMO 138 (20%) 120 (17%) 311 (35%) 443 (50%) 437 (67%) 618 (94%)
T |EMO 135 (20%) 120 (17%) 327 (37%) 464 (53%) 589 (90%) 620 (95%)
U |EMO 137 (20%) 120 (17%) 344 (39%) 474 (54%) 594 (91%) 621 (95%)

Table 4: Effectiveness of transitive move avoidance.

stacks to matter. Even on large instances, we rarely see more than 10 empty stack symmetries broken on
a single instance. In comparison, our other novel rules are invoked tens to hundreds of thousands (and
sometimes millions) of times. We leave the empty stack symmetry breaking rule on in our evaluations,
however, because it is inexpensive to use and does not hurt performance.

6.6 Evaluation of A* memoization and tie breaking

We now evaluate the effectiveness of the A*-specific memoization and tie breaking rules. Figure 11 shows the
performance of adding these two approaches into a standard A* algorithm for the pre-marshalling problem.
Memoization is helpful on the CV and EMM datasets, allowing a total of 177 more instances to be solved
between the two datasets. That memoization works better on these two datasets than on BF is not so
surprising, since smaller instances take up less memory, meaning A* does not run out of memory as fast
as on the large BF instances. We note that memoization does not hurt performance on the BF instances,
meaning we can recommend it always be used in combination with A*.

The tie breaking rule is mainly effective on the EMM instances, although small gains can be seen on
both BF and CV instances. The tie breaking will only help A* solve more instances when the search fringe
is cleared of all nodes that have an f value less than the optimal number of moves. We hypothesize that the
effectiveness of the tie breaking rule on the EMM instances is due to their simplicity, as the search often
reaches the f value with the optimal number of moves. Without the tie breaking, the size of the search fringe
overwhelms the amount of memory available. Given more memory, A* would likely solve nearly the same
number of instances as without the tie breaking rule, just not as quickly.

6.7 A* versus IDA*

We now show that both our A* and IDA* approaches outperform the state-of-the-art approach from the
literature [11], parameterized as A*|D. We note that we have reimplemented A*|D within our framework
to ensure a fair comparison. We evaluate our approaches on each of the three datasets and observe that we
are able to solve significantly more instances to optimality than was previously possible. We only show a
selection of all of the possible parameterizations of the algorithms in our tables due to the effectiveness of
the branching rules and symmetry breaking for both A* and IDA*, and the potency of the A* memoization
and tie breaking shown in the previous subsections.

6.7.1 BF dataset

The performance of IDA* and A* on the BF dataset is shown in Table 5. Each of the BF, LC2 and LC3
categories of instances contains 20 instances, and LC1 contains a single instance. We first note how effective
both algorithms are at solving the LC1 instance from [28], which the authors target with heuristic approaches.
The instance is easily solvable by every configuration we test, with our novel extensions to IDA* and A*
bringing the solution time down from 8.16 seconds to being practically instantaneous.

A∗|M>UOI |EMO is able to solve the most instances across the dataset, nearly twice as many as A∗|EMO
and over four times as many as A∗|D , showing the significant performance gains over the state-of-the-art
that our branching rules and use of the EMO lower bound provide.

Although the number of instances solved by IDA∗|M>UE |EMO and A∗|M>UOI |EMO are relatively
similar, A∗|M>UOI |EMO solves them significantly faster. We attribute this to the fact that A* does not
need to spend time reconstructing the search tree each time it increases the lower bound of a problem like

20 Kevin Tierney, Dario Pacino, Stefan Voß

0 100 200 300 400 5000

20

40

60

80

100

120

140

A∗|EMO

A∗|O|EMO

(a) A*; BF; Memoization

0 500 1000 1500 2000250

260

270

280

290

300

310

320

330

A∗|EMO

A∗|O|EMO

(b) A*; CV; Memoization

0 200 400 600 800 1000 1200300

350

400

450

500

550

A∗|EMO

A∗|O|EMO

(c) A*; EMM; Memoization

0 100 200 300 400 5000

20

40

60

80

100

120

140

A∗|EMO

A∗|I|EMO

(d) A*; BF; Tie breaking

0 500 1000 1500 2000250

260

270

280

290

300

310

A∗|EMO

A∗|I|EMO

(e) A*; CV; Tie breaking

0 200 400 600 800 1000 1200300

350

400

450

500

550

A∗|EMO

A∗|I|EMO

(f) A*; EMM; Tie breaking

Fig. 11: Number of instances solved versus time in seconds for the transitive move avoidance rule in the
directly successive and successive cases using IDA*.

IDA*, thus allowing it to save time on the relatively large instances of the BF dataset. It is also possible
that the tie breaking rules in A*, which do not have a direct translation into IDA*, provide better branching
decisions in the final level of the search tree.

The LC2 and LC3 instances are variations of the LC1 instance that tend to be significantly more difficult
than the original. The use of the EMO lower bound is critical to being able to solve these instances, although
we note that our branching rules do not seem to help on these instances, with some instances solving faster
using the branching rules, but others being slowed down. Using IDA* instead of A* allows several more
instances to be solved.

6.7.2 CV dataset

Our comparison of approaches on the CV dataset is shown in Table 6. The instances are split into groupings
of 40 instances each, where |S| is the number of stacks and |T | is the number of tiers. The current state-of-the-
art A∗|D approach is only able to completely solve two classes of instances. Replacing the lower bound with
the EMO lower bound allows us to completely solve an additional 4 classes, closing out the 3 tier problems.
Including our branching rules, memoization and tie breaking results in an additional two classes completely
solved by A∗|M>UOI |EMO ; however, the most classes are completely solved using IDA∗|M>UE |EMO ,
which is able to solve all 3 and 4 tier problems to optimality. IDA∗|M>UE |EMO solves 1.8 times as many
instances as A∗|D and an additional 70 instances over IDA∗|EMO . A∗|M>UOI |EMO is also able to solve
larger instances than any other approach, with the largest solved having 5 tiers and 10 stacks.

These results provide an interesting contrast to the BF dataset, where A* slightly outperforms IDA*.
The CV instances have less stacks than the BF instances, and have a one-to-one assignment of priorities
to containers. Although it would seem like this small size would actually benefit A*, since less memory is
required to store each search node, due to the efficient memory storage of nodes in our A* implementation,
this benefit is rather small. For reasons that are unclear, the better performance of IDA* is likely due to
its higher node throughput and potentially due to different branching decisions. IDA* evaluates between 10
and 74 times as many search nodes per second than A* on CV instances. Note, though, that some of these

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 21

Table 5: Average CPU time in seconds (on instances solved) and number of instances solved on the various
categories of the BF dataset.

Category IDA∗|M>UE |EMO IDA∗|EMO IDA∗|D A∗|M>UOI |EMO A∗|EMO A∗|D
BF1 49.17 18 365.67 15 0.00 2 0.73 12 27.83 14 0.04 2
BF2 99.25 15 311.65 10 280.13 10 3.69 17 1.07 15 0.73 8
BF3 365.11 12 183.19 7 13.21 2 10.19 10 1.31 9 0.02 1
BF4 13.51 18 17.15 14 69.18 5 22.78 15 - 0 0.03 4
BF5 264.61 8 423.34 11 - 0 34.61 10 - 0 - 0
BF6 311.36 1 - 0 - 0 36.73 13 - 0 - 0
BF7 470.07 12 997.00 15 - 0 60.99 7 - 0 - 0
BF8 146.93 3 966.73 3 - 0 45.39 5 - 0 - 0
BF9 902.10 7 684.51 6 - 0 60.85 1 - 0 - 0

BF10 130.00 3 330.56 2 - 0 - 0 0.08 1 - 0
BF11 633.76 4 567.99 4 - 0 92.15 2 - 0 - 0
BF12 2816.65 1 1246.81 1 - 0 - 0 - 0 - 0
BF13 - 0 - 0 - 0 - 0 - 0 - 0
BF14 - 0 - 0 - 0 - 0 - 0 - 0
BF15 - 0 - 0 - 0 - 0 - 0 - 0
BF16 - 0 - 0 - 0 - 0 - 0 - 0
BF17 371.73 7 24.70 8 0.00 3 15.70 14 0.07 12 0.05 3
BF18 7.74 16 55.77 13 212.24 14 6.99 14 0.39 16 0.14 12
BF19 1.05 11 545.90 8 0.00 4 20.72 11 12.12 10 0.05 4
BF20 8.66 14 152.22 12 132.00 10 6.72 8 0.08 14 11.82 9
BF21 701.75 7 376.76 5 - 0 21.57 8 9.02 2 - 0
BF22 - 0 2811.51 1 - 0 17.57 3 0.09 1 - 0
BF23 22.54 3 1723.35 3 - 0 23.58 8 119.67 2 - 0
BF24 - 0 - 0 - 0 173.55 2 - 0 - 0
BF25 - 0 922.24 1 - 0 109.61 1 - 0 - 0
BF26 - 0 - 0 - 0 482.29 1 - 0 - 0
BF27 268.91 2 1104.14 1 - 0 70.24 1 - 0 - 0
BF28 220.91 1 1868.77 1 - 0 - 0 - 0 - 0
BF29 - 0 - 0 - 0 - 0 - 0 - 0
BF30 - 0 - 0 - 0 - 0 - 0 - 0
BF31 - 0 - 0 - 0 - 0 - 0 - 0
BF32 - 0 - 0 - 0 - 0 - 0 - 0
LC1 0.00 1 0.00 1 8.16 1 0.00 1 0.00 1 56.78 1

LC2a 72.36 9 22.27 9 - 0 3.28 8 - 0 - 0
LC2b 388.93 7 184.35 7 - 0 25.26 6 - 0 - 0
LC3a 218.79 6 694.34 8 - 0 55.05 6 - 0 - 0
LC3b 296.42 7 404.58 7 - 0 97.12 5 - 0 - 0

Avg/Count 222.40 173 157.79 120 146.53 51 27.80 189 8.38 96 3.89 44

Table 6: Average CPU time in seconds (on instances solved) and number of instances solved on the various
categories of the CV dataset.

|T | |S| Moves IDA∗|M>UE |EMO IDA∗|EMO IDA∗|D A∗|M>UOI |EMO A∗|EMO A∗|D

3

3 8.78 0.00 40 0.00 40 0.01 40 0.01 40 0.02 40 0.07 40
4 9.03 0.00 40 0.00 40 0.03 40 0.01 40 0.02 40 0.41 40
5 10.15 0.01 40 0.03 40 0.50 40 0.04 40 0.13 40 5.42 39
6 11.28 0.02 40 0.07 40 4.60 40 0.07 40 0.17 40 17.28 38
7 12.80 0.05 40 0.25 40 23.91 40 0.15 40 0.56 40 33.37 35
8 13.53 0.11 40 0.55 40 33.63 39 0.17 40 0.56 40 58.58 32

4

4 15.82 1.22 40 12.46 40 114.69 40 6.99 40 83.69 35 459.55 24
5 17.85 3.75 40 36.56 40 524.61 39 7.67 40 39.33 37 119.13 17
6 19.30 24.26 40 179.41 39 563.10 26 77.71 38 72.65 25 51.85 9
7 21.82 45.73 40 422.05 38 954.49 16 135.70 33 85.65 25 171.86 3

5

4 - 270.61 32 613.45 21 347.66 10 629.22 21 413.78 7 1071.42 3
5 - 530.16 34 1035.71 14 884.22 2 870.33 11 253.07 3 - 0
6 - 1148.75 16 1427.66 3 - 0 559.73 3 1052.07 1 - 0
7 - 424.06 15 1153.23 7 - 0 223.93 6 429.96 2 - 0
8 - 1762.02 10 889.66 1 - 0 121.25 1 - 0 - 0
9 - 1592.46 3 - 0 - 0 - 0 - 0 - 0

10 - 2261.26 3 - 0 - 0 - 0 - 0 - 0

6
6 - - 0 - 0 - 0 - 0 - 0 - 0

10 - - 0 - 0 - 0 - 0 - 0 - 0

10
6 - - 0 - 0 - 0 - 0 - 0 - 0

10 - - 0 - 0 - 0 - 0 - 0 - 0

Avg/Count 162.99 513 148.22 443 168.49 372 78.44 433 37.25 375 75.65 280

22 Kevin Tierney, Dario Pacino, Stefan Voß

Table 7: Average CPU time in seconds (on instances solved) and number of instances solved on the various
categories of the EMM dataset.

|S| p C Moves IDA∗|M>UE |EMO IDA∗|EMO IDA∗|D A∗|M>UOI |EMO A∗|EMO A∗|D

4

0.5
0 2.48 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25
1 1.92 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25
2 0.84 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25

0.75
0 13.00 0.00 25 0.00 25 0.04 25 0.00 25 0.00 25 0.51 25
1 5.76 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25
2 1.96 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25

1
0 19.40 0.15 25 0.51 25 14.76 25 0.43 25 2.17 25 539.11 15
1 12.20 0.02 25 0.06 25 0.35 25 0.03 25 0.28 25 27.52 25
2 9.36 0.03 25 0.12 25 0.58 25 0.05 25 0.31 25 89.87 25

7

0.5
0 7.28 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.02 25
1 3.56 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25
2 3.00 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25

0.75
0 19.24 0.05 25 0.25 25 - 0 - 0 - 0 - 0
1 10.52 0.03 25 0.82 25 17.09 25 0.14 25 25.13 25 2.10 24
2 6.32 0.00 25 0.00 25 0.29 25 0.00 25 0.00 25 8.23 25

1
0 28.20 1.22 25 4.63 25 - 0 - 0 - 0 - 0
1 18.72 10.50 25 105.49 25 674.23 19 43.89 24 15.87 20 70.26 7
2 15.56 8.13 25 132.33 25 534.91 19 93.97 23 18.98 18 182.73 4

10

0.5
0 9.32 0.00 25 0.02 25 0.91 25 0.01 25 0.14 25 0.35 24
1 6.56 0.00 25 0.01 25 0.04 25 0.00 25 0.01 25 0.20 25
2 3.56 0.00 25 0.00 25 0.00 25 0.00 25 0.00 25 0.03 25

0.75
0 - 0.37 10 0.87 10 - 0 - 0 - 0 - 0
1 - 0.17 10 3.09 10 235.32 8 0.02 10 9.38 10 46.79 6
2 - 0.01 10 0.03 10 12.84 8 0.02 10 0.11 10 4.98 6

1
0 37.76 60.19 25 28.23 24 - 0 - 0 - 0 - 0
1 - 116.23 23 382.87 20 1139.05 3 - 0 - 0 - 0
2 - 95.96 24 435.61 19 1430.33 3 47.92 21 15.17 12 24.16 1

Avg/Count 11.15 627 36.82 618 69.11 485 8.26 513 3.31 495 29.43 437

nodes are evaluated multiple times, unlike in A*. Although the overall average computation time required
by the A* appears to be lower, this is only because larger instances are not solved.

6.7.3 EMM dataset

We present our results on the EMM dataset in Table 7, where |S| is the number of stacks, p is the container
density and C is the configuration type. All instances have 4 tiers. IDA∗|M>UE |EMO solves 1.4 times
as many instances as A∗|D. In addition, on instances solved by both approaches IDA∗|M>UE |EMO is
faster, with a number of categories, such as 4-1-1, 4-1-2 and 7-0.75-2 solving essentially instantly with
IDA∗|M>UE |EMO , but requiring significant CPU time with A∗|D. IDA∗|M>UE |EMO is almost able to
solve all of the instances in the dataset, with the exception of several instances with 10 stacks and fill
percentages of 0.75 and more, whereas A∗|D begins to struggle with 7 stacks and a fill percentage of 0.75.

IDA* offers large performance gains over A*, and the use of the EMO lower bound also provides perfor-
mance gains over the state-of-the-art A* approach. However, our branching rules only offer mild gains over
not using them on the EMM dataset, probably because of how easy the vast majority of the EMM instances
are.

7 Conclusion

In this paper we have considered the container pre-marshalling problem, which is an important problem
in maritime shipping for reducing the delay of inter-modal container transfers. We presented novel A* and
IDA* approaches, including several novel branching and symmetry breaking rules. Our approach significantly
outperforms the state-of-the-art A* technique for solving pre-marshalling problems to optimality, solving 568
previously unsolved instances to optimality. Combinations of our approaches with (meta)heuristic techniques
could be considered in future work, such as using a beam search or integrating IDA* within the corridor
method. Integrating pre-marshalling solution methods in other storage or seaside problems [4] could also
make terminal operations more efficient. It is also possible that our branching rules are applicable to similar
problems, such as the blocks relocation problem in the unrestricted case, and could be of assistance for
solving this problem to optimality.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 23

References

1. O. Betzalel, A. Felner, and S.E. Shimony. Type system based rational lazy IDA*. In Eighth Annual
Symposium on Combinatorial Search, 2015.

2. A. Bortfeldt and F. Forster. A tree search procedure for the container pre-marshalling problem. European
Journal of Operational Research, 217(3):531–540, 2012.

3. H.J. Carlo, I.F.A. Vis, and K.J. Roodbergen. Storage yard operations in container terminals: Literature
overview, trends, and research directions. European Journal of Operational Research, 235(2):412–430,
2014.

4. H.J. Carlo, I.F.A. Vis, and K.J. Roodbergen. Seaside operations in container terminals: literature
overview, trends, and research directions. Flexible Services and Manufacturing Journal, 27(2-3):224–
262, 2015.

5. M. Caserta, S. Schwarze, and S. Voß. Container rehandling at maritime container terminals. In J.W.
Böse, editor, Handbook of Terminal Planning, volume 49 of Operations Research/Computer Science
Interfaces Series, pages 247–269. Springer, New York, 2011.

6. M. Caserta and S. Voß. A corridor method-based algorithm for the pre-marshalling problem. Lecture
Notes in Computer Science, 5484:788–797, 2009.

7. R. Choe, T. Park, M.S Oh, J. Kang, and K.R. Ryu. Generating a rehandling-free intra-block remarshaling
plan. Journal of Intelligent Manufacturing, 22(2):201–217, 2011.

8. J.C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(3):318–334, 1998.
9. R. Dekker, P. Voogd, and E. van Asperen. Advanced methods for container stacking. OR Spectrum,

28(4):563–586, 2006.
10. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269–271,

1959.
11. C. Expósito-Izquierdo, B. Melián-Batista, and M. Moreno-Vega. Pre-marshalling problem: Heuristic

solution method and instances generator. Expert Systems with Applications, 39(9):8337–8349, 2012.
12. S. Felsner and M. Pergel. The complexity of sorting with networks of stacks and queues. Lecture Notes

in Computer Science, 5193:417–429, 2008.
13. M.S. Gheith, A.B. El-Tawil, and N.A. Harraz. A proposed heuristic for solving the container pre-

marshalling problem. In E. Qi, J. Shen, and R. Dou, editors, The 19th International Conference on
Industrial Engineering and Engineering Management, pages 955–964. Springer, Berlin, 2013.

14. N. Gupta and D.S. Nau. On the complexity of blocks-world planning. Artificial Intelligence, 56(2–
3):223–254, 1992.

15. P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100–107, 1968.

16. A.M. Hinz. The tower of Hanoi. Enseign. Math, 35(2):289–321, 1989.
17. R.C. Holte and N. Burch. Automatic move pruning for single-agent search. AI Communications,

27(4):363–383, 2014.
18. S.-H. Huang and T.-H. Lin. Heuristic algorithms for container pre-marshalling problems. Computers &

Industrial Engineering, 62(1):13–20, 2012.
19. ISO/IEC. Information technology – Programming languages – C++, Third Edition. ISO/IEC

14882:2011, International Organization for Standardization / International Electrotechnical Commis-
sion, Geneva, Switzerland, 2011.

20. R. Jovanovic, M. Tuba, and S. Voß. A multi-heuristic approach for solving the pre-marshalling problem,
2016. Accepted in the Central European Journal of Operations Research.

21. J. Kang, M.S. Oh, E.Y. Ahn, K.R. Ryu, and K.H. Kim. Planning for intra-block remarshalling in a
container terminal. Lecture Notes in Artificial Intelligence, 4031:1211–1220, 2006.

22. J. Kang, K.R. Ryu, and K.H Kim. Deriving stacking strategies for export containers with uncertain
weight information. Journal of Intelligent Manufacturing, 17(4):399–410, 2006.

23. K.H. Kim. Evaluation of the number of rehandles in container yards. Computers & Industrial Engineer-
ing, 32:701–711, 1997.

24. K.H. Kim and J.W. Bae. Re-marshalling export containers in port container terminals. Computers &
Industrial Engineering, 35(3–4):655–658, 1998.

24 Kevin Tierney, Dario Pacino, Stefan Voß

25. K.H. Kim and G.-P. Hong. A heuristic rule for relocating blocks. Computers & Operations Research,
33(4):940–954, 2006.

26. J. Klaws, R. Stahlbock, and S. Voß. Container terminal yard operations - simulation of a side-loaded con-
tainer block served by triple rail mounted gantry cranes. Lecture Notes in Computer Science, 6971:243–
255, 2011.

27. R.E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence,
27(1):97–109, 1985.

28. Y. Lee and S.L. Chao. A neighborhood search heuristic for pre-marshalling export containers. European
Journal of Operational Research, 196(2):468–475, 2009.

29. Y. Lee and N.Y. Hsu. An optimization model for the container pre-marshalling problem. Computers &
Operations Research, 34(11):3295–3313, 2007.

30. Y. Lee and Y.-J. Lee. A heuristic for retrieving containers from a yard. Computers & Operations
Research, 37(6):1139–1147, 2010.

31. J. Lehnfeld and S. Knust. Loading, unloading and premarshalling of stacks in storage areas: Survey and
classification. European Journal of Operational Research, 239(2):297 – 312, 2014.

32. T. Nishi and M. Konishi. An optimisation model and its effective beam search heuristics for floor-storage
warehousing systems. International Journal of Production Research, 48:1947–1966, 2010.

33. K. Park, T. Park, and K.R. Ryu. Planning for remarshalling in an automated container terminal using
cooperative coevolutionary algorithms. In SAC 2009 – Honolulu, Hawaii, pages 1098–1105, 2009.

34. M.E.H. Petering. Real-time container storage location assignment at an RTG-based seaport container
transshipment terminal: problem description, control system, simulation model, and penalty scheme
experimentation. Flexible Services and Manufacturing Journal, 27(2-3):351–381, 2015.

35. M. Prandtstetter. A dynamic programming based branch-and-bound algorithm for the container pre-
marshalling problem. Technical report, Austrian Institute of Technology, 2013.

36. A. Rendl and M. Prandtstetter. Constraint models for the container pre-marshaling problem. In G. Kat-
sirelos and C.-G. Quimper, editors, ModRef 2013: 12th International Workshop on Constraint Modelling
and Reformulation, pages 44–56, 2013.

37. J.P. Rodrigue, C. Comtois, and B. Slack. The Geography of Transport Systems. Routledge, Milton Park,
2 edition, 2009.

38. M. Rodŕıguez-Molins, M. Á. Salido, and F. Barber. Domain-dependent planning heuristics for locating
containers in maritime terminals. In N. Garćıa-Pedrajas, F. Herrera, C. Fyfe, J.M. Beńıtez, and M. Ali,
editors, Trends in Applied Intelligent Systems, volume 6096 of Lecture Notes in Computer Science, pages
742–751. Springer Berlin Heidelberg, 2010.

39. A.G. Romero and R. Alquézar. To block or not to block? Lecture Notes in Computer Science, 3315:134–
143, 2004.

40. S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010.
41. M.A. Salido, M. Rodriguez-Molins, and F. Barber. A decision support system for managing combinatorial

problems in container terminals. Knowledge-Based Systems, 29:63–74, 2012.
42. M.A. Salido, O. Sapena, M. Rodriguez, and F. Barber. A planning tool for minimizing reshuffles in

container terminals. In 21st IEEE International Conference on Tools with Artificial Intelligence, pages
567–571. IEEE, 2009.

43. C. Schulte and M. Carlsson. Finite domain constraint programming systems. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, volume 2 of Foundations of Artificial
Intelligence, pages 29 – 83. Elsevier, 2006.

44. A. Shleyfman, M. Katz, M. Helmert, S. Sievers, and M. Wehrle. Heuristics and symmetries in classical
planning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

45. R. Stahlbock and S. Voß. Operations research at container terminals: A literature update. OR Spectrum,
30(1):1–52, 2008.

46. D. Steenken, S. Voß, and R. Stahlbock. Container terminal operations and operations research – A
classification and literature review. OR Spectrum, 26(1):3–49, 2004.

47. L. Tang, R. Zhao, and J. Liu. Models and algorithms for shuffling problems in steel plants. Naval
Research Logistics (NRL), 59(7):502–524, 2012.

48. K. Tierney, S. Voß, and R. Stahlbock. A mathematical model of inter-terminal transportation. European
Journal of Operational Research, 235(2):448 – 460, 2014.

Solving the Pre-Marshalling Problem to Optimality with A* and IDA* 25

49. UNCTAD. United Nations Conference on Trade and Development (UNCTAD), Review of maritime
transport. 2012.

50. E. van Asperen, B. Borgman, and R. Dekker. Evaluating impact of truck announcements on container
stacking efficiency. Flexible Services and Manufacturing Journal, 25(4):543–556, 2013.

51. S. Voß. Extended mis-overlay calculation for pre-marshalling containers. In H. Hu, X. Shi, R. Stahlbock,
and S. Voß, editors, Computational Logistics, volume 7555 of Lecture Notes in Computer Science, pages
86–91. Springer, Berlin, 2012.

52. G. Zäpfel and M. Wasner. Warehouse sequencing in the steel supply chain as a generalized job shop
model. International Journal of Production Economics, 104(2):482–501, 2006.

53. E. Zehendner and D. Feillet. A branch and price approach for the container relocation problem. Inter-
national Journal of Production Research, 52(24):7159–7176, 2014.

54. H. Zhang, S. Guo, W. Zhu, A. Lim, and B. Cheang. An investigation of IDA* algorithms for the container
relocation problem. In N. Garca-Pedrajas, F. Herrera, C. Fyfe, J.M. Bentez, and M. Ali, editors, Trends
in Applied Intelligent Systems, volume 6096 of Lecture Notes in Computer Science, pages 31–40. Springer
Berlin Heidelberg, 2010.

55. R. Zhang, Z. Jiang, and W. Yun. Stack pre-marshalling problem: A heuristic-guided branch-and-
bound algorithm. International Journal of Industrial Engineering: Theory, Applications and Practice,
22(5):509–523, 2015.

56. R. Zhang, S. Liu, and H. Kopfer. Tree search procedures for the blocks relocation problem with batch
moves. Flexible Services and Manufacturing Journal, pages 1–28, 2015. Online available.

57. Y. Zhang, W. Mi, D. Chang, and W. Yan. An optimization model for intra-bay relocation of outbound
containers on container yards. In Proceedings of the IEEE International Conference on Automation and
Logistics, pages 776–781, 2007.

58. W. Zhu, H. Qin, A. Lim, and H. Zhang. Iterative deepening A* algorithms for the container relocation
problem. IEEE Transactions on Automation Science and Engineering, 9(4):710–722, 2012.

