109,199 research outputs found

    Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone

    Get PDF
    Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.We thank F. Abascal and M. L. Tress for helpful discussions. This work was supported by Spanish Ministry of Economy and Competitiveness Projects BFU2015-71241-R and BIO2012-40205, cofunded by the European Regional Development Fund.S

    GAIA: a gram-based interaction analysis tool – an approach for identifying interacting domains in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein Interactions (PPIs) play important roles in many biological functions. Protein domains, which are defined as independently folding structural blocks of proteins, physically interact with each other to perform these biological functions. Therefore, the identification of Domain-Domain Interactions (DDIs) is of great biological interests because it is generally accepted that PPIs are mediated by DDIs. As a result, much effort has been put on the prediction of domain pair interactions based on computational methods. Many DDI prediction tools using PPIs network and domain evolution information have been reported. However, tools that combine the primary sequences, domain annotations, and structural annotations of proteins have not been evaluated before.</p> <p>Results</p> <p>In this study, we report a novel approach called Gram-bAsed Interaction Analysis (GAIA). GAIA extracts peptide segments that are composed of fixed length of continuous amino acids, called n-grams (where n is the number of amino acids), from the annotated domain and DDI data set in <it>Saccharomyces cerevisiae </it>(budding yeast) and identifies a list of n-grams that may contribute to DDIs and PPIs based on the frequencies of their appearance. GAIA also reports the coordinate position of gram pairs on each interacting domain pair. We demonstrate that our approach improves on other DDI prediction approaches when tested against a gold-standard data set and achieves a true positive rate of 82% and a false positive rate of 21%. We also identify a list of 4-gram pairs that are significantly over-represented in the DDI data set and may mediate PPIs.</p> <p>Conclusion</p> <p>GAIA represents a novel and reliable way to predict DDIs that mediate PPIs. Our results, which show the localizations of interacting grams/hotspots, provide testable hypotheses for experimental validation. Complemented with other prediction methods, this study will allow us to elucidate the interactome of cells.</p

    Predicting Yeast Synthetic Lethal Genetic Interactions Using Protein Domains

    Get PDF
    Synthetic lethal genetic interaction (SLGI) is an important biological phenomenon. Such interactions are of interest as they can be used to predict function of unknown proteins and find drug targets or drug combinations. High throughput biological experiments enhance the capability in identifying genetic interactions, but the large amount of protein pairs still make the task of genome-wide identification of genetic interactions overwhelming. Computational based prediction of SLGIs is promising but still hampered by the unclear molecular mechanism of SLGIs. Protein domains with conserved functions serve as the building blocks of proteins. The genetic interaction that occurs between a pair of proteins could be essentially related to or even dominated by the domains underneath. We applied support vector machine (SVM) classifier and maximum likelihood estimation (MLE) method to predict SLGIs in yeast based on domain information in proteins. Our study demonstrates that yeast SLGIs could be explained by the genetic interactions between domains of those proteins. Moreover, we retrieved a set of polypeptide clusters and used them for the prediction of SLGIs. Besides providing better performance, this approach allows us to predict genetic interactions in a more general fashion. We proposed a novel idea for the prediction of SLGIs, upon which multiple approaches were derived. This study helps the understanding of originality of functional relationship in SLGIs at the domain level that may significantly aid the biology community in further analysis of genetic interaction related studies

    Analysis of the impact of solvent on contacts prediction in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The correlated mutations concept is based on the assumption that interacting protein residues coevolve, so that a mutation in one of the interacting counterparts is compensated by a mutation in the other. Approaches based on this concept have been widely used for protein contacts prediction since the 90s. Previously, we have shown that water-mediated interactions play an important role in protein interfaces. We have observed that current "dry" correlated mutations approaches might not properly predict certain interactions in protein interfaces due to the fact that they are water-mediated.</p> <p>Results</p> <p>The goal of this study has been to analyze the impact of including solvent into the concept of correlated mutations. For this purpose we use linear combinations of the predictions obtained by the application of two different similarity matrices: a standard "dry" similarity matrix (DRY) and a "wet" similarity matrix (WET) derived from all water-mediated protein interfacial interactions in the PDB. We analyze two datasets containing 50 domains and 10 domain pairs from PFAM and compare the results obtained by using a combination of both matrices. We find that for both intra- and interdomain contacts predictions the introduction of a combination of a "wet" and a "dry" similarity matrix improves the predictions in comparison to the "dry" one alone.</p> <p>Conclusion</p> <p>Our analysis, despite the complexity of its possible general applicability, opens up that the consideration of water may have an impact on the improvement of the contact predictions obtained by correlated mutations approaches.</p

    In silico Prediction and Validations of Domains Involved in Gossypium hirsutum SnRK1 Protein Interaction With Cotton Leaf Curl Multan Betasatellite Encoded βC1

    Get PDF
    Cotton leaf curl disease (CLCuD) caused by viruses of genus Begomovirus is a major constraint to cotton (Gossypium hirsutum) production in many cotton-growing regions of the world. Symptoms of the disease are caused by Cotton leaf curl Multan betasatellite (CLCuMB) that encodes a pathogenicity determinant protein, βC1. Here, we report the identification of interacting regions in βC1 protein by using computational approaches including sequence recognition, and binding site and interface prediction methods. We show the domain-level interactions based on the structural analysis of G. hirsutum SnRK1 protein and its domains with CLCuMB-βC1. To verify and validate the in silico predictions, three different experimental approaches, yeast two hybrid, bimolecular fluorescence complementation and pull down assay were used. Our results showed that ubiquitin-associated domain (UBA) and autoinhibitory sequence (AIS) domains of G. hirsutum-encoded SnRK1 are involved in CLCuMB-βC1 interaction. This is the first comprehensive investigation that combined in silico interaction prediction followed by experimental validation of interaction between CLCuMB-βC1 and a host protein. We demonstrated that data from computational biology could provide binding site information between CLCuD-associated viruses/satellites and new hosts that lack known binding site information for protein–protein interaction studies. Implications of these findings are discussed

    A domain-based approach to predict protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI) networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins.</p> <p>Results</p> <p>DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms.</p> <p>Conclusion</p> <p>We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed using the DomainGA scores are reasonably low, and the erroneous predictions can be filtered further using supplementary approaches such as those based on literature search or other prediction methods.</p

    Prediction of protein-protein interaction types using association rule based classification

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Park et alBackground: Protein-protein interactions (PPI) can be classified according to their characteristics into, for example obligate or transient interactions. The identification and characterization of these PPI types may help in the functional annotation of new protein complexes and in the prediction of protein interaction partners by knowledge driven approaches. Results: This work addresses pattern discovery of the interaction sites for four different interaction types to characterize and uses them for the prediction of PPI types employing Association Rule Based Classification (ARBC) which includes association rule generation and posterior classification. We incorporated domain information from protein complexes in SCOP proteins and identified 354 domain-interaction sites. 14 interface properties were calculated from amino acid and secondary structure composition and then used to generate a set of association rules characterizing these domain-interaction sites employing the APRIORI algorithm. Our results regarding the classification of PPI types based on a set of discovered association rules shows that the discriminative ability of association rules can significantly impact on the prediction power of classification models. We also showed that the accuracy of the classification can be improved through the use of structural domain information and also the use of secondary structure content. Conclusion: The advantage of our approach is that we can extract biologically significant information from the interpretation of the discovered association rules in terms of understandability and interpretability of rules. A web application based on our method can be found at http://bioinfo.ssu.ac.kr/~shpark/picasso/SHP was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2005-214-E00050). JAR has been supported by the Programme Alβan, the European Union Programme of High level Scholarships for Latin America, scholarship E04D034854CL. SK was supported by Soongsil University Research Fund
    • …
    corecore