577 research outputs found

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −Δu−(k2+iε)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter ε∈R\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with ε≠0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (ε=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (ε≠0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and ε\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if ∣ε∣∼k2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case ε=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter h∼k−3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with h∼k−1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given

    Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation

    Get PDF
    The aim of this work is to perform numerical simulations of the propagation of a laser in a plasma. At each time step, one has to solve a Helmholtz equation in a domain which consists in some hundreds of millions of cells. To solve this huge linear system, one uses a iterative Krylov method with a preconditioning by a separable matrix. The corresponding linear system is solved with a block cyclic reduction method. Some enlightments on the parallel implementation are also given. Lastly, numerical results are presented including some features concerning the scalability of the numerical method on a parallel architecture

    Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?

    Full text link
    A new, coercive formulation of the Helmholtz equation was introduced in [Moiola, Spence, SIAM Rev. 2014]. In this paper we investigate hh-version Galerkin discretisations of this formulation, and the iterative solution of the resulting linear systems. We find that the coercive formulation behaves similarly to the standard formulation in terms of the pollution effect (i.e. to maintain accuracy as k→∞k\to\infty, hh must decrease with kk at the same rate as for the standard formulation). We prove kk-explicit bounds on the number of GMRES iterations required to solve the linear system of the new formulation when it is preconditioned with a prescribed symmetric positive-definite matrix. Even though the number of iterations grows with kk, these are the first such rigorous bounds on the number of GMRES iterations for a preconditioned formulation of the Helmholtz equation, where the preconditioner is a symmetric positive-definite matrix.Comment: 27 pages, 7 figure

    Analysis of a Helmholtz preconditioning problem motivated by uncertainty quantification

    Get PDF
    This paper analyses the following question: let Aj\mathbf{A}_j, j=1,2,j=1,2, be the Galerkin matrices corresponding to finite-element discretisations of the exterior Dirichlet problem for the heterogeneous Helmholtz equations ∇⋅(Aj∇uj)+k2njuj=−f\nabla\cdot (A_j \nabla u_j) + k^2 n_j u_j= -f. How small must ∥A1−A2∥Lq\|A_1 -A_2\|_{L^q} and ∥n1−n2∥Lq\|{n_1} - {n_2}\|_{L^q} be (in terms of kk-dependence) for GMRES applied to either (A1)−1A2(\mathbf{A}_1)^{-1}\mathbf{A}_2 or A2(A1)−1\mathbf{A}_2(\mathbf{A}_1)^{-1} to converge in a kk-independent number of iterations for arbitrarily large kk? (In other words, for A1\mathbf{A}_1 to be a good left- or right-preconditioner for A2\mathbf{A}_2?). We prove results answering this question, give theoretical evidence for their sharpness, and give numerical experiments supporting the estimates. Our motivation for tackling this question comes from calculating quantities of interest for the Helmholtz equation with random coefficients AA and nn. Such a calculation may require the solution of many deterministic Helmholtz problems, each with different AA and nn, and the answer to the question above dictates to what extent a previously-calculated inverse of one of the Galerkin matrices can be used as a preconditioner for other Galerkin matrices
    • …
    corecore