2,804 research outputs found

    Multi Domain Design: Integration and Reuse

    Get PDF
    Design of mechatronic systems is becoming increasingly complex. Companies must continuously reduce time-to-market while increasing the quality, diversity, and functionality of their products. As a result, more and more specialists from various domains are needed to develop such products. To reduce time-to-market, many companies look to reducing the time it takes to design a product. Many focus on the reuse of design objects, leading to libraries of templates and standard components to speed up their design process. However, these reusable design objects are developed and maintained in the specialists’ domains, resulting in communication and integration issues between these domains. This paper discusses these issues and proposes a combined approach for model reuse, design integration, and communication between the designers, design tools, and models involved. A case study at a multi-national company successfully demonstrated that the approach leads to a faster and more consistent design process

    Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays

    No full text
    The eyes and wings of some species of moth are covered with arrays of nanoscale features that dramatically reduce reflection of light. There have been multiple examples where this approach has been adapted for use in antireflection and antiglare technologies with the fabrication of artificial moth-eye surfaces. In this work, the suppression of iridescence caused by the diffraction of light from such artificial regular moth-eye arrays at high angles of incidence is achieved with the use of a new tiled domain design, inspired by the arrangement of features on natural moth-eye surfaces. This bio-mimetic pillar architecture contains high optical rotational symmetry and can achieve high levels of diffraction order power reduction. For example, a tiled design fabricated in silicon and consisting of domains with 9 different orientations of the traditional hexagonal array exhibited a ~96% reduction in the intensity of the ?1 diffraction order. It is suggested natural moth-eye surfaces have evolved a tiled domain structure as it confers efficient antireflection whilst avoiding problems with high angle diffraction. This combination of antireflection and stealth properties increases chances of survival by reducing the risk of the insect being spotted by a predator. Furthermore, the tiled domain design could lead to more effective artificial moth-eye arrays for antiglare and stealth applications

    A unifying view of abstract domain design

    Get PDF
    Introduction. The concept of abstract interpretation has been introduced by Patrick and Radhia Cousot in [4, 5], in order to formalize static program analyses. Within this framework, our goal is to offer a unifying view on operators for enhancing and simplifying abstract domains. Enhancing and simplifying operators are viewed, respectively, as domain refinements and inverses of domain refinements. This new unifying viewpoint make

    Domain design principles for managing complexity in conceptual modeling

    Get PDF
    Complexity is a problem that can be found in many aspects of research that deals with design. In particular, complexity is found in various business processes that must be modeled and represented in a meaningful way. One of the ways to address complexity is by using decomposition, for which a number of decomposition principles have been proposed. However, there are two domain specific areas in which these principles are lacking: the scope and the context of the problem. This research addresses this problem by deriving two new principles for managing complexity, and evaluates the proposed principles through an example case to illustrate their potential use

    A Frequency Domain Design Method For Sampled-Data Compensators

    Get PDF

    Time domain design of fractional differintegrators using least-squares

    Get PDF
    In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions

    Experiments on the Neurocognitionof Creativity

    Get PDF
    Creative production is often correlated to divergent thinking to produce many different ideas; hence, for the engineering education domain, design learning presents opportunities to enhance divergent thinking.https://openprairie.sdstate.edu/asee_nmws_2020_posters/1002/thumbnail.jp
    • …
    corecore