6 research outputs found

    Dimensions of psychosis: Elucidating the subclinical spectrum using neuroimaging markers

    Get PDF
    Psychosis unifies a collective of disorders characterised by symptom dimensions (Gaebel & Zielasek, 2015). Purposefully delimited clinical descriptors of schizophrenia spectrum and psychotic disorders (American Psychiatric Association, 2013) impose challenges on the identification of aetiological and clinically meaningful predictors. The disassembly of psychiatric diagnoses into their elementary symptom dimensions has helped formulate psychosis phenotypes fitted on a psychosis continuum (Verdoux & van Os, 2002). Aetiological models of psychosis may be studied through schizotypy and transient psychotic experiences (Barrantes-Vidal et al., 2015; Nelson, Fusar-Poli, & Yung, 2012), collectively termed subclinical psychosis phenotypes. The dimensional psychometric structures of these phenotypes varying in temporal stability (Linscott & van Os, 2013; Mason et al., 1995; Stefanis et al., 2002), and their implications might be further consolidated when paired with neuroimaging parameters (Siever & Davis, 2004). Three neuroimaging studies aimed to examine the relationship between subclinical psychotic phenotypes and neurobiology. Surface and volume-based morphometric (VBM) methods were implemented to examine the variety of cortical and subcortical signatures of different phenotype dimensions. Study 1 investigated whether cortical surface gyrification -a maker of genetic and developmental influences on cortical morphology (Docherty et al., 2015; Haukvik et al., 2012)- is associated with dimensional psychosis prone phenomena (Konings, Bak, Hanssen, van Os, & Krabbendam, 2006; Stefanis et al., 2002). Early cortical organisation contributes to cognitive capacities in later life (Gautam et al., 2015; Gregory et al., 2016; Papini et al., 2020). Given that cognitive deficits are present in psychosis prone and clinical samples to varying extents (Hou et al., 2016; Siddi et al., 2017), Study 1 also explored the mediating role of cognition (both as a general measure and intelligence quotient) as a psychosis endophenotype in the relationship between regional gyrification and PLE distress. Study 2 and Study 3 used VBM to investigate structural brain correlates for psychotic-like experiences (PLE) and trait psychosis phenotypes (schizotypy). Different PLE facets (quantity and distress severity) (Hanssen, Bak, et al., 2005; Ising et al., 2012) were used to estimate whole-brain grey matter volume, followed by interaction models in subsequent prefrontal regions of interest (Study 2). The medial temporal lobe includes the hippocampal subfields, which are regions of interest in psychosis pathophysiology (Lieberman et al., 2018; Mathew et al., 2014; Schobel et al., 2013). Based on a previous study in schizoytypy (Sahakyan et al., 2020), Study 3 examined the relationship between schizotypal trait dimensions (Mason et al., 1995) and PLE, and their interactions, and hippocampal subfields and the amygdala. The results of Study 1 showed that psychometrically assessed PLE were associated with reduced gyrification in parietal and temporal regions, indicating that psychosis proneness correlates with neurodevelopmental factors (Fonville et al., 2019; Liu et al., 2016). A lack of mediating pathways between regional gyrification and PLE suggested that cognition effects may emerge in larger samples (Mollon et al., 2016) and/or increasingly psychosis pone phenotypes. Elaborating on the distinction between PLE quantity versus distress, Study 2 showed that PLE load, but not distress severity, were associated with volume increases in prefrontal and occipitotemporal regions. At increased distress severity for perceptual abnormalities, PLE were associated with regional volume reductions of the superior frontal gyrus. Study 3 showed differential relationships between schizotypy dimensions and volumes of the MTL that are involved in the pathophysiology of schizophrenia. PLE per se did not associate with amygdala or hippocampal subfield volumes, but a positive association between the hippocampal subiculum and PLE was moderated by positive schizotypy. Study 3 underscored the enhanced usefulness of schizotypy as an endophenotype in psychosis research when its multidimensional organisation (Grant, 2015; Vollema & van den Bosch, 1995) is respected. The results support the use of psychosis symptom dimensions, showing different (positive and negative) neuroanatomical associations. While case-control studies in schizophrenia show consistent volume reductions of the prefrontal and temporal cortices (Haijma et al., 2013; Honea, Crow, Passingham, & Mackay, 2005), these findings contribute to more heterogeneous volumetric relationships in nonclinical individuals. Reduced regional cortical gyrification proposes a continuous distribution of neurodevelopmental impacts. Distress severity and schizotypy occasioned modulatory effects in prefrontal and hippocampal subfield volumes, respectively. Collectively, these three cross-sectional studies extend previous research suggesting that dimensional phenotypes show neuroanatomical variation supportive of a psychosis continuum possibly characterised by an underlying non-linearity (Bartholomeusz et al., 2017; Binbay et al., 2012; Johns & van Os, 2001)

    Distinguishing Performance on Tests of Executive Functions Between Those with Depression and Anxiety

    Get PDF
    Objective: To see if there are differences in executive functions between those diagnosed with Major Depressive Disorder (MDD) and those with Generalized Anxiety Disorder (GAD).Participants and Methods: The data were chosen from a de-identified database at a neuropsychological clinic in South Florida. The sample used was adults diagnosed with MDD (n=75) and GAD (n=71) and who had taken the Halstead Category Test, Trail Making Test, Stroop Test, and the Wisconsin Card Sorting Test. Age (M=32.97, SD=11.75), gender (56.7% female), and race (52.7% White) did not differ between groups. IQ did not differ but education did (MDD=13.41 years, SD=2.45; GAD=15.11 years, SD=2.40), so it was ran as a covariate in the analyses. Six ANCOVAs were run separately with diagnosis being held as the fixed factor and executive function test scores held as dependent variables. Results: The MDD group only performed worse on the Category Test than the GAD group ([1,132]=4.022, p\u3c .05). Even though both WCST scores used were significantly different between the two groups, both analyses failed Levene’s test of Equality of Error Variances, so the data were not interpreted. Conclusions: Due to previous findings that those diagnosed with MDD perform worse on tests of executive function than normal controls (Veiel, 1997), this study wanted to compare executive function performance between those diagnosed with MDD and those with another common psychological disorder. The fact that these two groups only differed on the Category Test shows that there may not be much of a difference in executive function deficits between those with MDD and GAD. That being said, not being able to interpret the scores on the WCST test due to a lack of homogeneity of variance indicates that a larger sample size is needed to compare these two types of patients, as significant differences may be found. The results of this specific study, however, could mean that the Category Test could be used in assisting the diagnosis of a MDD patient

    Effects of Diversity and Neuropsychological Performance in an NFL Cohort

    Get PDF
    Objective: The aim of this study was to examine the effect of ethnicity on neuropsychological test performance by comparing scores of white and black former NFL athletes on each subtest of the WMS. Participants and Methods: Data was derived from a de-identified database in South Florida consisting of 63 former NFL white (n=28, 44.4%) and black (n=35, 55.6%) athletes (Mage= 50.38; SD= 11.57). Participants completed the following subtests of the WMS: Logical Memory I and II, Verbal Paired Associates I and II, and Visual Reproduction I and II. Results: A One-Way ANOVA yielded significant effect between ethnicity and performance on several subtests from the WMS-IV. Black athletes had significantly lower scores compared to white athletes on Logical Memory II: F(1,61) = 4.667, p= .035, Verbal Paired Associates I: F(1,61) = 4.536, p = .037, Verbal Paired Associates: II F(1,61) = 4.677, p = .034, and Visual Reproduction I: F(1,61) = 6.562, p = .013. Conclusions: Results suggest significant differences exist between white and black athletes on neuropsychological test performance, necessitating the need for proper normative samples for each ethnic group. It is possible the differences found can be explained by the psychometric properties of the assessment and possibility of a non-representative sample for minorities, or simply individual differences. Previous literature has found white individuals to outperform African-Americans on verbal and non-verbal cognitive tasks after controlling for socioeconomic and other demographic variables (Manly & Jacobs, 2002). This highlights the need for future investigators to identify cultural factors and evaluate how ethnicity specifically plays a role on neuropsychological test performance. Notably, differences between ethnic groups can have significant implications when evaluating a sample of former athletes for cognitive impairment, as these results suggest retired NFL minorities may be more impaired compared to retired NFL white athletes

    The Effect of Ethnicity on Neuropsychological Test Performance of Former NFL Athletes

    Get PDF
    Objective: To investigate the effect of ethnicity on neuropsychological test performance by specifically exploring differences between white and black former NFL athletes on subtests of the WAIS-IV. Participants and Methods: Data was derived from a de-identified database in Florida consisting of 63 former NFL athletes (Mage=50.38; SD=11.57); 28 white and 35 black. Participants completed the following subtests of the WAIS-IV: Block Design, Similarities, Digit Span, Matrix Reasoning, Arithmetic, Symbol Search, Visual Puzzles, Coding, and Cancellation. Results: One-Way ANOVA yielded a significant effect between ethnicity and performance on several subtests. Black athletes had significantly lower scaled scores than white athletes on Block Design F(1,61)=14.266, p\u3c.001, Similarities F(1,61)=5.904, p=.018, Digit Span F(1,61)=8.985, p=.004, Arithmetic F(1,61)=16.07, p\u3c.001 and Visual Puzzles F(1,61)=16.682, p\u3c .001. No effect of ethnicity was seen on performance of Matrix Reasoning F(1,61)=2.937, p=.092, Symbol Search F(1,61)=3.619, p=.062, Coding F(1,61)=3.032, p=.087 or Cancellation F(1,61)=2.289, p=.136. Conclusions: Results reveal significant differences between white and black athletes on all subtests of the WAIS-IV but those from the Processing Speed Scale and Matrix Reasoning. These findings align with previous literature that found white individuals to outperform African-Americans on verbal and non-verbal tasks after controlling for socioeconomic and demographic variables (Manly & Jacobs, 2002). These differences may also be a reflection of the WAIS-IV’s psychometric properties and it is significant to consider the normative sample used may not be appropriate for African-Americans. This study highlights the need for future research to identify how ethnicity specifically influences performance, sheds light on the importance of considering cultural factors when interpreting test results, and serves as a call to action to further understand how and why minorities may not be accurately represented in neuropsychological testing

    Regional Cerebral Blood Flow Patterns in Children vs. Adults with ADHD Combined and Inattentive Types: A SPECT Study

    Get PDF
    Objective: The current study sought to determine whether ADHD Combined Type (ADHD-C) and ADHD Primarily Inattentive Type (ADHD-PI) showed differential regional cerebral blood flow (rCBF) patterns in children vs. adults. Participants and Methods: The overall sample (N=1484) was effectively split into four groups: adults with ADHD-PI (n=519), adults with ADHD-C (n=405), children with ADHD-PI (n=192), children with ADHD-C (n=368). All participants were void of bipolar, schizophrenia, autism, neurocognitive disorders, and TBI. The data were collected from a de-identified archival database of individuals who underwent SPECT scans at rest. Results: Using αConclusions: Overall, the current study suggested that children may show rCBF differences between different ADHD subtypes, but adults may not. The current study did not find significance in any of the 17 brain regions examined when comparing adults with ADHD-C to adults with ADHD-PI. All significant findings were attributed to the children with ADHD-C group showing aberrant blood flow rate than at least one other group. Previous research has supported that the differentiation of these subtypes as distinctive disorders is difficult to make in adults (Sobanski et al., 2006). Other research has indicated the potential of imaging techniques to differentiate the two in children (Al-Amin, Zinchenko, & Geyer, 2018). The current findings support nuanced ways in which rCBF patterns of ADHD-C and ADHD-PI differ between children and adults

    Learning Disabilities

    Get PDF
    Learning disabilities are a heterogeneous group of disorders characterized by failure to acquire, retrieve, and use information competently. These disorders have a multifactorial aetiology and are most common and severe in children, especially when comorbid with other chronic health conditions. This book provides current and comprehensive information about learning disorders, including information on neurobiology, assessment, clinical features, and treatment. Chapters cover such topics as historical research and hypotheses of learning disorders, neuropsychological assessment and counselling, characteristics of specific disorders such as autism and ADHD, evidence-based treatment strategies and assistive technologies, and much more
    corecore