1,849 research outputs found

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Secure Space Mesh Networking

    Get PDF
    Innoflight’s Secure Space Mesh Networking development and prototyping efforts started at its incorporation over 15 years ago with a vision of establishing end-to-end Internet Protocol (IP) connectivity in and through space. A number of space industry trends have accelerated the demand for space networking: (a) the widespread adoption of enterprise-grade and cloud-based, IP-centric ground system architectures; (b) the accelerated growth of both commercial and government proliferated Low Earth Orbit (pLEO) constellations leveraging small satellites (SmallSats); (c) the maturation, miniaturization and commoditization of high-speed Radio Frequency (RF), Free Space Optical (FSO) Inter-Satellite Links (ISLs), and high-performance flight processors for aforementioned SmallSats; and (d) the need for All-Domain Operations (ADO) seamlessly and autonomously integrating space, airborne, terrestrial, maritime and underwater networks. Furthermore, data encryption, for reasons of either National Security or monetized mission data protection, creates additional challenges to effectively switch/route and encrypt/decrypt ciphertext data across a mesh network. Lastly, with the projection of multiple and multi-national pLEO constellations, it is critical to negotiate link security real-time for dynamic, trusted nodes, and prevent inadvertent or intentional networking with unknown/untrusted nodes. Innoflight will discuss the aforementioned relevant space industry trends and commercial and government initiatives, including DARPA (Defense Advanced Research Projects Agency) Blackjack and Space Development Agency’s (SDA) National Defense Space Architecture (NDSA), and then identify the technical challenges for secure space mesh networking and decompose these challenges with two popular frameworks: (a) the individual layers, especially Layer 2 (data/link layer) and Layer 3 (network layer), within the Open Systems Interconnection (OSI) model; and (b) the control and data planes within the Software Defined Networking (SDN) model. Innoflight will present its development and prototyping efforts, specific to these challenges, including recent work funded under a 2019 Space Pitch Day award and leveraging its general-purpose processing and networking CFC-400X platform, and conclude by identifying remaining gaps: including technical, commercial and policy; to fully realize interoperable secure space mesh networking.

    Critical issues in NASA information systems

    Get PDF
    The National Aeronautics and Space Administration has developed a globally-distributed complex of earth resources data bases since LANDSAT 1 was launched in 1972. NASA envisages considerable growth in the number, extent, and complexity of such data bases, due to the improvements expected in its remote sensing data rates, and the increasingly multidisciplinary nature of its scientific investigations. Work already has begun on information systems to support multidisciplinary research activities based on data acquired by the space station complex and other space-based and terrestrial sources. In response to a request from NASA's former Associate Administrator for Space Science and Applications, the National Research Council convened a committee in June 1985 to identify the critical issues involving information systems support to space science and applications. The committee has suggested that OSSA address four major information systems issues; centralization of management functions, interoperability of user involvement in the planning and implementation of its programs, and technology

    Codifying Information Assurance Controls for Department of Defense (DoD) Supervisory Control and Data Acquisition (SCADA) Systems (U)

    Get PDF
    Protecting DoD critical infrastructure resources and Supervisory Control and Data Acquisition (SCADA) systems from cyber attacks is becoming an increasingly challenging task. DoD Information Assurance controls provide a sound framework to achieve an appropriate level of confidentiality, integrity, and availability. However, these controls have not been updated since 2003 and currently do not adequately address the security of DoD SCADA systems. This research sampled U.S. Air Force Civil Engineering subject matter experts representing eight Major Commands that manage and operate SCADA systems. They ranked 30 IA controls in three categories, and evaluated eight SCADA specific IA controls for inclusion into the DoD IA control framework. Spearman’s Rho ranking results (ρ = .972414) indicate a high preference for encryption, and system and information integrity as key IA Controls to mitigate cyber risk. Equally interesting was the strong agreement among raters on ranking certification and accreditation dead last as an effective IA control. The respondents strongly favored including four new IA controls of the eight considered

    Communication Architecture For Distributed Interactive Simulation (CADIS): Military Standard (draft)

    Get PDF
    Report establishes the requirements for the communication architecture to be used in a distributed interactive simulation, including the standards and the recommended practices for implementing the communication architecture and the rationales behind them

    Joint Technical Architecture for Robotic Systems (JTARS)-Final Report

    Get PDF
    This document represents the final report for the Joint Technical Architecture for Robotic Systems (JTARS) project, funded by the Office of Exploration as part of the Intramural Call for Proposals of 2005. The project was prematurely terminated, without review, as part of an agency-wide realignment towards the development of a Crew Exploration Vehicle (CEV) and meeting the near-term goals of lunar exploration

    OSI in the NASA science internet: An analysis

    Get PDF
    The Open Systems Interconnection (OSI) protocol suite is a result of a world-wide effort to develop international standards for networking. OSI is formalized through the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). The goal of OSI is to provide interoperability between network products without relying on one particular vendor, and to do so on a multinational basis. The National Institute for Standards and Technology (NIST) has developed a Government OSI Profile (GOSIP) that specified a subset of the OSI protocols as a Federal Information Processing Standard (FIPS 146). GOSIP compatibility has been adopted as the direction for all U.S. government networks. OSI is extremely diverse, and therefore adherence to a profile will facilitate interoperability within OSI networks. All major computer vendors have indicated current or future support of GOSIP-compliant OSI protocols in their products. The NASA Science Internet (NSI) is an operational network, serving user requirements under NASA's Office of Space Science and Applications. NSI consists of the Space Physics Analysis Network (SPAN) that uses the DECnet protocols and the NASA Science Network (NSN) that uses TCP/IP protocols. The NSI Project Office is currently working on an OSI integration analysis and strategy. A long-term goal is to integrate SPAN and NSN into one unified network service, using a full OSI protocol suite, which will support the OSSA user community

    Gateway design for LAN interconnection via ISDN

    Get PDF
    Computer Networks and ISDN Systems19143-5

    Merging and Extending the PGP and PEM Trust Models - the ICE-TEL Trust Model

    Get PDF
    The ICE-TEL project is a pan-European project that is building an Internet X.509 based certification infrastructure throughout Europe, plus several secure applications that will use it. This paper describes the trust model that is being implemented by the project. A trust model specifies the means by which a user may build trust in the assertion that a remote user is really who he purports to be (authentication) and that he does in fact have a right to access the service or information that he is requesting (authorization). The ICE-TEL trust model is based on a merging of and extensions to the existing Pretty Good Privacy (PGP) web of trust and Privacy Enhanced Mail (PEM) hierarchy of trust models, and is called a web of hierarchies trust model. The web of hierarchies model has significant advantages over both of the previous models, and these are highlighted here. The paper further describes the way that the trust model is enforced through some of the new extensions in the X.509 V3 certificates, and gives examples of its use in different scenarios

    Geospatial Informational Security Risks and Concerns of the U.S. Air Force GeoBase Program

    Get PDF
    Technological advancements such as Geospatial Information Systems (GIS) and the Internet have made it easier and affordable to share information, which enables complex and time sensitive decisions to be made with higher confidence. Further, advancements in information technology have dramatically increased the ability to store, manage, integrate, and correlate larger amounts of data to improve operational efficiency. However, the same technologies that enable increased productivity also provide increased capabilities to those wishing to do harm. Today’s military leaders are faced with the challenge of deciding how to make geospatial information collected on military installations and organizations available to authorized communities of interest while simultaneously restricting access to protect operational security. Often, these decisions are made without understanding how the sharing of certain combinations of data may pose a significant risk to protecting critical information, infrastructure or resources. Information security has been an area of growing concern in the GeoBase community since, by definition, it is required to strike a balance between competing interests, each supported by federal policy: (1) the availability of data paid for by tax dollars and (2) the protection of data as required to mitigate risks. In this research we will explore the security implications of the US Air Force GeoBase (the US Air Force’s applied Geospatial Information System) program. We examine the rapid expansion of the use of GeoBase to communities outside of the civil engineering field; examine the intrinsic and extrinsic security risks of the unconstrained sharing of geospatial information; explore difficulties encountered when attempting to rate the sensitivity of information, discuss new policies and procedures that have been implemented undertaken to protect the information, and propose technical and managerial control measures to facilitate sharing geospatial information sharing while minimizing the associated operational risks
    corecore