85 research outputs found

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Randomness Tests for Binary Sequences

    Get PDF
    Cryptography is vital in securing sensitive information and maintaining privacy in the today’s digital world. Though sometimes underestimated, randomness plays a key role in cryptography, generating unpredictable keys and other related material. Hence, high-quality random number generators are a crucial element in building a secure cryptographic system. In dealing with randomness, two key capabilities are essential. First, creating strong random generators, that is, systems able to produce unpredictable and statistically independent numbers. Second, constructing validation systems to verify the quality of the generators. In this dissertation, we focus on the second capability, specifically analyzing the concept of hypothesis test, a statistical inference model representing a basic tool for the statistical characterization of random processes. In the hypothesis testing framework, a central idea is the p-value, a numerical measure assigned to each sample generated from the random process under analysis, allowing to assess the plausibility of a hypothesis, usually referred to as the null hypothesis, about the random process on the basis of the observed data. P-values are determined by the probability distribution associated with the null hypothesis. In the context of random number generators, this distribution is inherently discrete but in the literature it is commonly approximated by continuous distributions for ease of handling. However, analyzing in detail the discrete setting, we show that the mentioned approximation can lead to errors. As an example, we thoroughly examine the testing strategy for random number generators proposed by the National Institute of Standards and Technology (NIST) and demonstrate some inaccuracies in the suggested approach. Motivated by this finding, we define a new simple hypothesis test as a use case to propose and validate a methodology for assessing the definition and implementation correctness of hypothesis tests. Additionally, we present an abstract analysis of the hypothesis test model, which proves valuable in providing a more accurate conceptual framework within the discrete setting. We believe that the results presented in this dissertation can contribute to a better understanding of how hypothesis tests operate in discrete cases, such as analyzing random number generators. In the demanding field of cryptography, even slight discrepancies between the expected and actual behavior of random generators can, in fact, have significant implications for data security

    Do We Need to Vary the Constants? Methodological Investigation of Block-Cipher Based Hash Functions

    No full text
    The recent collision attacks on the MD hash function family do not depend on the constants used in the function, but rather on its structure (i.e., changing the constants will not affect the differential analysis based attacks). Thus, is seems that the role of constants in maintaining security and preventing these attacks is unclear, at best, for this case and in particular fixing or varying the constants will not matter for these analyses. In this work we present a methodological investigation into the case of block-cipher based PGV hash functions family, and investigate the importance of constants in securing these designs. To this end we consider the twelve variants of the PGV family that yield secure hash in the generic ideal cipher case (as was shown by Black, Rogaway and Shrimpton), but consider them under concrete instantiation. To investigate the role of constant in the key derivation procedure we just ignore the constants. In this more uniform setting we further consider a very regula

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    В настоящем электронном сборнике «Европейский и национальный контексты в научных исследованиях. Технология» представлены работы молодых ученых по геодезии и картографии, химической технологии и машиностроению, информационным технологиям, строительству и радиотехнике. Предназначены для работников образования, науки и производства. Будут полезны студентам, магистрантам и аспирантам университетов.=In this Electronic collected materials “National and European dimension in research. Technology” works in the fields of geodesy, chemical technology, mechanical engineering, information technology, civil engineering, and radio-engineering are presented. It is intended for trainers, researchers and professionals. It can be useful for university graduate and post-graduate students

    Supporting the Additional Protocol declarations on nuclear research and technology by the JRC TIM DU platform

    Full text link
    peer reviewedResearch subject to dual-use trade controls may play an important role in proliferation programmes because the exchanges among research entities are traditionally open and prone to be exploited by third countries’ illicit developments. For these reasons, apart from information “in the public domain” or “basic scientific research”, transfers of nuclear technology are subject to export authorisation requirements and government-to-government assurances like the export of tangible goods, as specified by the Nuclear Suppliers Group’s guidelines and national export control laws. Also the requirements of the Model Additional Protocol to the Agreement(s) between States and the International Atomic Energy Agency for the Application of Safeguards include declarations about national research and development activities related to the nuclear fuel cycle, but do not require declarations of technology transfers to third countries. The European Commission JRC, in collaboration with Liege University, has developed the Tools for Innovation Monitoring Dual-use (TIM DU) platform that can facilitate the identification of entities publishing research with a dual-use potential in the various countries. Together with many dual-use goods and emerging technologies, TIM DU maps nuclear-fuel cycle activities’ results included in scientific abstracts, patents, and EU-funded projects, allowing analysts to gather lists of documents, geographical distributions, collaborations, and authors related to these activities. These results can help the national authorities submitting declarations to IAEA in accordance with Additional Protocol’s Article 2.a, both to identify also previously unknown national research actors and their collaboration networks, as well as to raise the awareness of national research entities about potential sensitivities with external collaborators. The IAEA could also use TIM DU to support the verification of the completeness and correctness of the declarations concerning nuclear fuel cycle research

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Reversible and imperceptible watermarking approach for ensuring the integrity and authenticity of brain MR images

    Get PDF
    The digital medical workflow has many circumstances in which the image data can be manipulated both within the secured Hospital Information Systems (HIS) and outside, as images are viewed, extracted and exchanged. This potentially grows ethical and legal concerns regarding modifying images details that are crucial in medical examinations. Digital watermarking is recognised as a robust technique for enhancing trust within medical imaging by detecting alterations applied to medical images. Despite its efficiency, digital watermarking has not been widely used in medical imaging. Existing watermarking approaches often suffer from validation of their appropriateness to medical domains. Particularly, several research gaps have been identified: (i) essential requirements for the watermarking of medical images are not well defined; (ii) no standard approach can be found in the literature to evaluate the imperceptibility of watermarked images; and (iii) no study has been conducted before to test digital watermarking in a medical imaging workflow. This research aims to investigate digital watermarking to designing, analysing and applying it to medical images to confirm manipulations can be detected and tracked. In addressing these gaps, a number of original contributions have been presented. A new reversible and imperceptible watermarking approach is presented to detect manipulations of brain Magnetic Resonance (MR) images based on Difference Expansion (DE) technique. Experimental results show that the proposed method, whilst fully reversible, can also realise a watermarked image with low degradation for reasonable and controllable embedding capacity. This is fulfilled by encoding the data into smooth regions (blocks that have least differences between their pixels values) inside the Region of Interest (ROI) part of medical images and also through the elimination of the large location map (location of pixels used for encoding the data) required at extraction to retrieve the encoded data. This compares favourably to outcomes reported under current state-of-art techniques in terms of visual image quality of watermarked images. This was also evaluated through conducting a novel visual assessment based on relative Visual Grading Analysis (relative VGA) to define a perceptual threshold in which modifications become noticeable to radiographers. The proposed approach is then integrated into medical systems to verify its validity and applicability in a real application scenario of medical imaging where medical images are generated, exchanged and archived. This enhanced security measure, therefore, enables the detection of image manipulations, by an imperceptible and reversible watermarking approach, that may establish increased trust in the digital medical imaging workflow

    Copyright protection of scalar and multimedia sensor network data using digital watermarking

    Get PDF
    This thesis records the research on watermarking techniques to address the issue of copyright protection of the scalar data in WSNs and image data in WMSNs, in order to ensure that the proprietary information remains safe between the sensor nodes in both. The first objective is to develop LKR watermarking technique for the copyright protection of scalar data in WSNs. The second objective is to develop GPKR watermarking technique for copyright protection of image data in WMSN
    corecore