19 research outputs found

    Low-Complexity Hyperspectral Image Compression on a Multi-tiled Architecture

    Get PDF
    The increasing amount of data produced in satellites poses a downlink communication problem due to the limited data rate of the downlink. This bottleneck is solved by introducing more and more processing power on-board to compress data to a satisfiable rate. Currently, this processing power is often provided by custom off the shelf hardware which is needed to run the complex image compression standards. The increase in required processing power often increases the energy required to power the hardware. This in turn pushes algorithm developers to develop lower complexity algorithms which are able to compress the data for the least amount of processing per data element. On the other hand hardware developers are pushed to develop flexible hardware which can be used on multiple missions to cut development cost and can be re-used for different missions. This paper introduces an algorithm which has been developed\ud to compress hyperspectral images at low complexity and describes its mapping to a new hardware platform which has been developed to offer flexibility as well as high performance processing power called the Xentium tile processor

    Generic design of Chinese remaindering schemes

    Get PDF
    We propose a generic design for Chinese remainder algorithms. A Chinese remainder computation consists in reconstructing an integer value from its residues modulo non coprime integers. We also propose an efficient linear data structure, a radix ladder, for the intermediate storage and computations. Our design is structured into three main modules: a black box residue computation in charge of computing each residue; a Chinese remaindering controller in charge of launching the computation and of the termination decision; an integer builder in charge of the reconstruction computation. We then show that this design enables many different forms of Chinese remaindering (e.g. deterministic, early terminated, distributed, etc.), easy comparisons between these forms and e.g. user-transparent parallelism at different parallel grains

    Модульное умножение в криптографии реального времени

    Get PDF
    Розглянуто алгоритми модульної арифметики, що застосовуються в криптографії. Проаналізовано базові операції. Запропановано узагальнюючий алгоритм, який названо Radix-Z. Знайдена залежність кількості операцій алгоритма Radix-Z від значення розщеплення Z. Наведено текст програми Radix-Z модульного множення мовою Cі. Надано характеристики асемблерної реалізації запропонованого алгоритма.Efficient real-time cryptography modular multiplication algorithms are observed. Its basic operations are analyzes. A new common Radix-Z modular multiplication algorithm is proposed. A correlation between operation complicity and radix value is found. Source C code of Radix-Z modular multiplication is present. The typical cycle terms of ADSP-218x assembler release are given an example

    Low-Complexity Hyperspectral Image Compression on a Multi-tiled Architecture

    Get PDF
    The increasing amount of data produced in satellites poses a downlink communication problem due to the limited data rate of the downlink. This bottleneck is solved by introducing more and more processing power on-board to compress data to a satisfiable rate. Currently, this processing power is often provided by custom off the shelf hardware which is needed to run the complex image compression standards. The increase in required processing power often increases the energy required to power the hardware. This in turn pushes algorithm developers to develop lower complexity algorithms which are able to compress the data for the least amount of processing per data element. On the other hand hardware developers are pushed to develop flexible hardware which can be used on multiple missions to cut development cost and can be re-used for different missions. This paper introduces an algorithm which has been developed to compress hyperspectral images at low complexity and describes its mapping to a new hardware platform which has been developed to offer flexibility as well as high performance processing power called the Xentium tile processor

    Integer Division by Constants: Optimal Bounds

    Get PDF
    The integer division of a numerator n by a divisor d gives a quotient q and a remainder r. Optimizing compilers accelerate software by replacing the division of n by d with the division of c * n (or c * n + c) by m for convenient integers c and m chosen so that they approximate the reciprocal: c/m ~= 1/d. Such techniques are especially advantageous when m is chosen to be a power of two and when d is a constant so that c and m can be precomputed. The literature contains many bounds on the distance between c/m and the divisor d. Some of these bounds are optimally tight, while others are not. We present optimally tight bounds for quotient and remainder computations

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Hardware Design of a Binary Integer Decimal-based

    Get PDF
    Abstract Because of the growing importance of decimal floating-point (DFP

    Code density concerns for new architectures

    Full text link
    Reducing a program\u27s instruction count can improve cache behavior and bandwidth utilization, lower power consumption, and increase overall performance. Nonetheless, code density is an often overlooked feature in studying processor architectures. We hand-optimize an assembly language embedded benchmark for size on 21 different instruction set architectures, finding up to a factor of three difference in code sizes from ISA alone. We find that the architectural features that contribute most heavily to code density are instruction length, number of registers, availability of a zero register, bit-width, hardware divide units, number of instruction operands, and the availability of unaligned loads and stores. We extend our results to investigate operating system, compiler, and system library effects on code density. We find that the executable starting address, executable format, and system call interface all affect program size. While ISA effects are important, the efficiency of the entire system stack must be taken into account when developing a new dense instruction set architecture
    corecore