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Abstract—The increasing amount of data produced in satellites
poses a downlink communication problem due to the limited data
rate of the downlink. This bottleneck is solved by introducing
more and more processing power on-board to compress data
to a satisfiable rate. Currently, this processing power is often
provided by custom off the shelf hardware which is needed to
run the complex image compression standards. The increase in
required processing power often increases the energy required to
power the hardware. This in turn pushes algorithm developers to
develop lower complexity algorithms which are able to compress
the data for the least amount of processing per data element.
On the other hand hardware developers are pushed to develop
flexible hardware which can be used on multiple missions to cut
development cost and can be re-used for different missions.

This paper introduces an algorithm which has been devel-
oped to compress hyperspectral images at low complexity and
describes its mapping to a new hardware platform which has
been developed to offer flexibility as well as high performance
processing power called the Xentium tile processor.

I. INTRODUCTION

The improvements in hyperspectral sensors make it more
difficult to achieve the compression needed to download all
the data from the orbiting platform. Although the processing
power of the hardware on-board has increased, so has its
power consumption. The constraints on processing power
consumption have in turn pushed scientists to develop less
complex algorithms to process this increasing amount of data.

The algorithm described in this paper has been developed
by Abrardo et. al. [1] to have a lossless algorithm which
combines a good compression ratio with low complexity. The
algorithm has been proposed to the CCSDS hyperspectral
data compression group for standardization. Abrardo et. al
proposed the algorithm but without any implementation other
than a C program run on an standard Linux desktop PC. This
leads to the question whether this algorithm is indeed such a
good choice to be run on any DSP architecture or alike.

Not only are the scientists pushed to develop better algo-
rithms, the hardware engineers are pushed to develop more
efficient and flexible processing platforms. The hardware plat-
form needs to be able to adapt to changes in the algorithm
during development. Moreover, if a different algorithm would
improve the overall platform performance it would be a
welcome feature when this could be implemented even after
launch.

A new tile processor called the Xentium is under develop-
ment at Recore Systems [2] which will become available as
an IP in the future. This highly parallel processing platform
is designed to be part of a system-on-chip in which several
of these tiles will be connected with a network-on-chip. This
allows to distribute programs over different tiles and employ
more tiles when needed. Tiles which are not used can be turned
off to save power. Another benefit of this tiled approach is
that if a single tile fails the tasks can easily be mapped on a
different still available tile.

This paper investigates the possibilities to map the hyper-
spectral image compression algorithm to the Xentium plat-
form. Although the platform’s main development drive is not
related to space affiliated applications it is meant to be an
energy efficient highly parallel platform. Section II explains
the algorithm after which section III will provide a more
detailed description of the Xentium platform. Section IV will
show how different parts of the algorithm can be mapped to
the Xentium and section V will show the obtained results. This
paper concludes in section VI after which the future work is
discussed in section VII.

II. COMPRESSION ALGORITHM

The following compression algorithm has been developed
by the universities of Siena and Torino in Italy together
with Carlo Gavazzi Space and the On-Board Payload Data
Processing section of ESA’s ESTEC. This section will give
a short overview of the encoding part of the algorithm. The
decoding is forseen to be done as part of the ground segment
and as such not on the platform proposed here. The algorithm
has been described in detail in a paper by Abrardo et. al. [1].

The main purpose of the algorithm is to compress hyper-
spectral image data lossless at a competitive rate and with
low complexity. A hyperspectral image is an image in which
the same scene is observed in different frequency bands.
Because it is the same scene, the frequency bands show
a high correlation between each of them. The algorithm is
based upon the ideas of distributed source coding (DSC) [3]
and has been proposed to the CCSDS for standardization.
Distributed source coding considers a situation in which two
or more statistically dependent data sources must be encoded
by separate encoders that are not allowed to communicate
with each other. Performing separate lossless compression may
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Fig. 1. DSC example

seem less efficient than joint encoding. However, distributed
source coding theory proves that, separate encoding is optimal,
provided that the sources are decoded jointly and are correlated
[4, 5].

The principle of DSC can be explained by the following
example: Figure 1 depicts 8 different pixel values of different
frequency bands of a hyperspectral image. We choose to
encode the value of the frequency band indicated by X . In
the case there would not be any side information available, the
value of X would cost 3 bits to encode. Now we introduce
the different cosets, bins, in which the value can reside. In
figure 1 they are indicated by triangle point upwards, circle,
square and triangle point downwards. Encoding only this coset
requires 2 bits and by using the previous decoded band as side
information the actual value can be retrieved. The value of X
without side information can be decoded as either 2 (010) or 6
(110) as the encoded value of the coset in which X resides is
10 in binary. When the value in the previous band, Y , is 3, X
will be decoded as 2 (010) because the requirement is that the
closest coset is chosen in the decoding stage. The probability
of error, i.e that Y is closer to another element of the coset
other than the true value of X , is really small. The number
of cosets depends on the amount of correlation between the
different bands, more correlation results in less cosets and vice
versa [1].

The encoding part of the algorithm is as follows. Let xm,n,i
denote the pixel of an hyperspectral image X in the m − th
line, n− th column and i− th band. Each band is partitioned
into blocks of size 16 × 16 and each pixel xm,n,i can be
recovered from the pixel of the previous band xm,n,i−1 with
a linear model

xm,n,i = f(xm,n,i−1) + vm,n (1)

where vm,n is a noise process determining the correlation. So
f(x) is a linear function from which the current band can
be determined with the previous band as input. The value of
pixels in X is coded by retaining only the least significant
bits (LSBs) of xm,n,i, where the selected number of LSBs
depends on the amount of correlation between the current and
the previous band. The number of LSBs is selected in such a
way as to guarantee that the decoder will be able to exactly
reconstruct X .

To compress xm,n,i the following steps are applied.
1) In order to make the current 16 × 16 block, xm,n,i, as

similar as possible to xm,n,i−1 in a Minimum Mean-
Squared Error sense, a Least-Squared estimator is com-
puted as follows

α[−1] =

∑
m,n(xm,n,i−1 − µi−1) · (xm,n,i − µi)∑

m,n(xm,n,i−1 − µi−1)2
(2)

where µi and µi−1 are the average value of the corre-
sponding blocks of bands i and i− 1.

2) A quantized version of α[−1] is generated with a uniform
scalar quantizer with 256 levels starting from 0 to 1.99.
The predicted values within the block will be

x̃m,n,i = µi + α̂[−1][xm,n,i−1 − µi−1] (3)

3) The error vector is calculated in each block as

e[−1]
m,n = xm,n,i − x̃m,n,i (4)

and the maximum error is used to set the number of
LSBs to be retained as

k[−1] =
⌊
log2(‖e[−1]

m,n‖∞)
⌋

+ 2 (5)

Where number of bits to encode the absolute maximum
of e[−1]

m,n is determined.
4) The k[−1]−1 LSBs are transmitted and for the k[−1] least

significant bit-plane the following map is computed

M[−1] =

{
0 |e[−1]

m,n | < 2k[−1]−2

1 otherwise
(6)

where the maximum absolute error in the block is
2k[−1]−1. This results in a 16 × 16 matrix of 0s and
1s. The map M[−1], as well as the k[−1]-th LSB of
those pixels for which M[−1] = 1, need to be written
in the compressed file. Most samples of M[−1] are zero.
This means that M[−1] is a highly compressible signal.
Only the positions of the bits where M[−1] equals to
one are coded using a differential Huffman encoder. The
Huffman code table is pre-defined and built based on
simulation data.

5) For each block the compressed bitstream also contains
the k[−1] value as well as the value of α̂[−1] and µi.

The algorithm also has some provisions for error resilience.
The error resilience in the algorithm is achieved by using not
only xm,n,i−1 as side information to create the map but also
xm,n,i−2 hereby if one band is garbled or lost during transmis-
sion there is still a high probability that the information can
be recovered. Since this only affects the number of operations
and not so much the mapping possibility, it has been discarded
in our implementation.

III. XENTIUM TILE PROCESSOR

The Xentium tile processor is currently under development
by Recore Systems. The Xentium is a programmable digital
signal processing tile that is being designed for high perfor-
mance computing. The Xentium datapath has by default a
width of 32-bits, but is customizable at design time. In this
paper we assume a default un-customized Xentium. A default
implementation of the Xentium design is depicted in figure 2.

DSP operations are performed on different processing units.
One operation can be issued on each unit in each clock cycle.
All operations require a single clock cycle (with the exception
for load operations which require two cycles). Multiple units
can be used in parallel to perform operations used in DSP



Fig. 2. Xentium core

Fig. 3. Xentium together with memory and NoC interface

kernels such as one complex multiplication per clock cycle,
four multiply accumulates (MACs) per clock cycle or a radix-2
FFT butterfly per clock cycle.

The processing units in the Xentium datapath can operate
in two different modes; 32-bit word or vector mode. In vector
mode, the unit operands are interpreted as 2-element vectors.
The elements of these vectors are the low and high half-
word parts of a word. Vector operations perform the same
operation on the low and high parts of the vectors. Moreover,
the datapath is equipped with dedicated 40-bit accumulators
for improved accuracy.

The default Xentium design has two M units, four S units,
two P units and two E units. The M units can perform
multiply operations. The S units can perform ALU (addition,
subtraction) and shift operations. The P units can perform
ALU, compare and pack operations. The E units can perform
load and store operations. Each operation can be executed
conditionally and a 16-bit immediate value can be selected
as a second operand on the M, S and P units.

A preliminary synthesis of the design has been performed
in 90nm CMOS technology. The estimated area of the design
(excl. SRAM cells) is about 0.3mm2 (100k equivalent gates,
excl. embedded SRAM). The clock frequency of the process-
ing tile is estimated over 200Mhz. Those preliminary results
are before place and route. Hence, area and size should be
taken as lowerbound.

The Xentium is developed to be part of a SoC like depicted
as in figure 4 in which TP denotes the different tile processors.
Each of the tile processors is connected to a router. The routers
in their turn are connected to a network-on-chip. The network-
on-chip can be connected to a more conventional bus archi-
tecture like AMBA to communicate with other peripherals.

Currently, program development for the Xentium is done
in C with intrinsics or directly in assembly. As a development
environment, the Eclipse IDE is used together with a Xentium

Fig. 4. Xentium tiles connected via a network-on-chip

C library with which a functionally correct implementation can
be made. A cycle accurate DSP kernel implementation for
execution on the Xentium processing tile currently requires
Xentium assembly coding effort.

IV. MAPPING

The algorithm lends itself well for data parallelism since
all the bands can be divided into blocks of 16x16 pixels.
Therefore a mapping has been made in which the whole
process of a single block has been implemented on a single
processing tile. This way more throughput is easily obtained by
employing more processing tiles. In order to verify the func-
tional correctness of the algorithm, a reference implementation
was made in Matlab. As input for the algorithm a 50 band, 16
bits per pixel image from the AVIRIS instrument was used.

Different parts of the algorithm will be discussed now and
how these are mapped to the Xentium platform

A. Average

The average value of each block, µ, is one of least complex
operations.

µi =

∑
m,n(xm,n,i)
16× 16

(7)

The values are loaded into the Xentium and added after which
the result is shifted to the right by 8 positions. Before shifting
128 is added to the result to make sure that the result is
properly rounded.

B. Least-squared estimator

The least-squared estimator, α, in a straight forward manner
consists of 5 ∗ 256 additions and subtractions, and 512 multi-
plications followed by a single division. An easy optimization
can be made by using the difference between the mean and the
pixel value in the previous band,(xm,n,i−1 − µi−1), twice for
both the denominator as well as the numerator. This will save
256 subtractions. Calculating the numerator and denominator
separately does not cause many problems on the Xentium other
than the possibility of a saturation. This risk is minimal since
the input values are 16-bit, the Xentium has 32 bit adders, and
there are only 256 additions performed.

The division is a bit more challenging. The Xentium, like
many DSPs, does not offer any hardware division possibilities.
It is possible to do multiplication on the Xentium, therefore we
choose to do an approximation. The basic idea is to multiply
with the inverse and calculating the inverse with the help of the
Newton-Rhapson approach [6], which is depicted in equation



8. In equation 8 xk+1 relates to the increasing accuracy of
1∑

m,n
(xm,n,i−1−µi−1)2

of equation 2, while a in equation 8 is

the value of
∑
m,n(xm,n,i−1 − µi−1)2.

The main benefit is now that the division has been trans-
formed in multiplications and subtractions only.

xk+1 := xk −
f(xk)
f ′(xk)

:= xk −
(1/xk − a)
(−1/x2

k)
= xk + (xk − ax2

k)

:= xk(2− axk) (8)

The default Xentium design offers a 16 × 16 multiplier with
which the approximation can be done. It takes 4 iterations
to calculate a good enough approximation. Since it is known
in what range α should be, the starting value, xk, can be
determined at design time. The input however does need to be
scaled down since the numerator and denominator are larger
than 16 bits. This is not so much of a problem for this specific
implementation since the result, α, will be quantized. The 256
different values α relate to the 8 most significant bits of α
this means that the effect of less accurate approximation is
discarded since the 8 least significant bits of α have little
effect on the final result.

C. LSBs

The error vector and following calculation to determine
the maximum number of LSBs is pretty straight forward.
The Xentium has a max instruction with which it is easy to
determine the maximum error by means of a simple for loop.
The log2 of this value is determined with the use of the exp
instruction which returns the number of sign bits. For example
the binary representation of the decimal value 3 on an 8 bit
machine would be 00000011. The exp function will return 6
in this case. This together with a subtraction determines the
number of LSBs, k−1, that need to be retained for each pixel
value in the current block.

D. Bit packing

One of the more difficult operations is to pack the k −
1 LSBs in a 32-bit word. In hardware this is rather simple
since a simple shift register would suffice and the same holds
for a higher level language of which an implementation is
shown in listing 1. The bits currently available in the word are
represented by bits_a and k represents the number of bits
that need to be retained for each value. The reason this proved
to be a difficult operation on the Xentium is the conditional
store on line 10 and because of the relation between the output
value within the conditional part and the value outside the
conditional part, lines 12 and 14. An implementation has been
made but it took quite some time to get the schedule right and
make optimal use of the hardware available.

1 int bits_a = 32;
2

3 for(int i=0; i<256; i++)
4 {
5 bits_a = k;
6 value = test_data[i] & ((1<<k)-1);
7

8 if(bits_a<0)
9 {

10 output |= (value >>abs(bits_a));
11 output = 0;
12 bits_a = 32-abs(bits_a);
13 }
14 output |= (value << bits_a);
15 }

Listing 1. Shift c++ pseudocode

E. Map

To create the encoded map, several operations are combined.
The indexes of the values which are larger than the pre-
defined maximum error are determined first. From those
specific values the k-th bit is also stored. The stored bits are
packed together in pretty much the same way as described
in section IV-D. The indexes gathered from the previous
operation are subtracted from eachother so their respective
difference remains. This is to get the values needed for the
differential Huffman encoder. A small example of this is
illustrated in figure 5, in which part of an image block of
16 × 16 is shown. All of the values in the block are used as
input for equation 6. In this example the values on indexes
1 and 18 cause a 1 in the map afterwhich their respective
difference is used as input for the Huffman encoder.

0

16

1

17

2

18

Fig. 5. Map encoding example

The Huffman encoder is very sequential since each differ-
ential index value needs to be matched with its encoded value
according to the code table. The code table is predefined and
build at design time based on simulation data. The specific
codeword is loaded from memory and packed. The packing is
done in the same way as in IV-D with the exception that the
length of the code word is used instead of k. The length of the
code word is determined by a subtraction with the word length,
32, with the result of the exp function on that codeword.

V. RESULTS

The results presented here indicate the performance of the
Xentium processing tile that is currently still under develop-



ment; prototype software development tools have been applied
for the given implementation and some of the features offered
by the Xentium hardware have not been fully exploited.

The results have been verified with a reference Matlab
implementation. The main difference between the Matlab
result and the Xentium implementation is the accuracy of
the division before quantization. This does not affect the final
result because after quantization the results are equal again.

Table I shows the results obtained for the different parts of
the algorithm. The cycle count is split up in the number of
cycles required before entering the main loop of the kernel,
the main loop and the number of cycles after the loop. In the
case of the leased-squared-error the cycles after the loop are
for the division operation. The total throughput for a single
tile at 200Mhz would be around , 200∗106

(4149/256) = 12.3 ∗ 106,
12.3 MSamples per second. A single block can be processed
in, 4149

200∗106 ≈ 20us. Do note that this is for a single tile and
by employing more tiles an almost linear speedup is expected.

Kernel cycle count

Average 2+ 2*254 + 2
LSE 4 + 2*256 + 28
LSBs 2+256+2
Bit packing 5+5*255+5
Map 6+6*256+6
Total 4149

TABLE I
CYCLE COUNT FOR DIFFERENT KERNELS OF

A 16× 16 BLOCK

From the results it can be seen that the architecture does
perform well in cases where a lot of operations can be done
on the same data. In the case of the least squared estimator
which roughly requires 1790 operations can be done in 544
clock cycles. Looking at the map and the bit packing kernel
which both do not require that many operations on the same
data can not benefit much from the high degree of parallelism
available on the Xentium.

VI. CONCLUSIONS

Based on the results obtained the platform looks very
promising. It can also be said that the algorithm is indeed of
low complexity for embedded DSP like systems. Two things
that are lacking on the current platform are hardware division
and an efficient solution to the bit packing problem. If an
higher accuracy solution is needed for the division a look-up-
table solution might be employed. The result is quantized over
256 levels which means that a look-up-table holding the 256
results of the division can suffice.

An efficient solution to the bit packing problem does not
exist for the current platform. When the current implementa-
tion is not sufficient, as a last resort a special unit could be
designed and this problem can then be offloaded into hardware.

This means that the amount of clock cycles for bit packing
goes down from 5 + 5 ∗ 255 + 5 to about 256 clock cycles,
depending on the hardware implementation. This saves about
1030 clock cycles.

The algorithm works on blocks of 16×16 samples. Because
the blocks can be processed independently the algorithm lends
itself very well to parallel processing. The algorithm only
needs the samples of one block, the corresponding samples
of the previous band and a few other constants. The amount
of data fits easily in the local memory of the Xentium. Because
most memory accesses are local this means that the algorithm
runs efficiently in the Xentium tile.

For an image of 1024 × 1024 pixels with 50 bands this
mend that the whole image of 64× 4 blocks can be encoded
in 64× 64× 50× 20us ≈ 4s. Using a chip with 64 Xentium
tiles, this would mean an encoding rate of 64

4 ≈ 16 images
with 50 bands per second.

Overall it can be said that this multi-tiled architecture does
have potential when it comes to high throughput demanding
algorithms like hyperspectral image compression. A better
conclusion can be made when an actual instrument is chosen
and accurate specifications are available.

VII. FUTURE WORK

As the Xentium architecture is still under development it
will be interesting to see how the platform performs when it
reaches a more mature stage. Currently the tooling does not
make it trivial to implement the algorithm as a whole and the
developer is encouraged to split up the problem into several
smaller kernels. When the tooling is better equipped to deal
with the algorithm as a single unit it will be of interrest to
see what the overall performance gain is. This way a better
assessment can be made whether or not this platform could
be used on-board.

One of the other things that is of great interrest is the power
consumption of the whole platform when this algorithm is run.
Another interesting question is how the data should be routed
to the tiles of the SoC. In the EU FP7 CRISP project [7] we
are working on a prototype implementation of a SoC with 8
Xentium cores interconnected by a NoC.

Finally we will investigate how the implementation results
(speed as well as energy consumption) compares with other
implementations like standard DSP processors and FPGAs.
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