123 research outputs found

    Design and Analysis of Optical Interconnection Networks for Parallel Computation.

    Get PDF
    In this doctoral research, we propose several novel protocols and topologies for the interconnection of massively parallel processors. These new technologies achieve considerable improvements in system performance and structure simplicity. Currently, synchronous protocols are used in optical TDM buses. The major disadvantage of a synchronous protocol is the waste of packet slots. To offset this inherent drawback of synchronous TDM, a pipelined asynchronous TDM optical bus is proposed. The simulation results show that the performance of the proposed bus is significantly better than that of known pipelined synchronous TDM optical buses. Practically, the computation power of the plain TDM protocol is limited. Various extensions must be added to the system. In this research, a new pipelined optical TDM bus for implementing a linear array parallel computer architecture is proposed. The switches on the receiving segment of the bus can be dynamically controlled, which make the system highly reconfigurable. To build large and scalable systems, we need new network architectures that are suitable for optical interconnections. A new kind of reconfigurable bus called segmented bus is introduced to achieve reduced structure simplicity and increased concurrency. We show that parallel architectures based on segmented buses are versatile by showing that it can simulate parallel communication patterns supported by a wide variety of networks with small slowdown factors. New kinds of interconnection networks, the hypernetworks, have been proposed recently. Compared with point-to-point networks, they allow for increased resource-sharing and communication bandwidth utilization, and they are especially suitable for optical interconnects. One way to derive a hypernetwork is by finding the dual of a point-to-point network. Hypercube Q\sb{n}, where n is the dimension, is a very popular point-to-point network. It is interesting to construct hypernetworks from the dual Q\sbsp{n}{*} of hypercube of Q\sb{n}. In this research, the properties of Q\sbsp{n}{*} are investigated and a set of fundamental data communication algorithms for Q\sbsp{n}{*} are presented. The results indicate that the Q\sbsp{n}{*} hypernetwork is a useful and promising interconnection structure for high-performance parallel and distributed computing systems

    Efficient parallel processing with optical interconnections

    Get PDF
    With the advances in VLSI technology, it is now possible to build chips which can each contain thousands of processors. The efficiency of such chips in executing parallel algorithms heavily depends on the interconnection topology of the processors. It is not possible to build a fully interconnected network of processors with constant fan-in/fan-out using electrical interconnections. Free space optics is a remedy to this limitation. Qualities exclusive to the optical medium are its ability to be directed for propagation in free space and the property that optical channels can cross in space without any interference. In this thesis, we present an electro-optical interconnected architecture named Optical Reconfigurable Mesh (ORM). It is based on an existing optical model of computation. There are two layers in the architecture. The processing layer is a reconfigurable mesh and the deflecting layer contains optical devices to deflect light beams. ORM provides three types of communication mechanisms. The first is for arbitrary planar connections among sets of locally connected processors using the reconfigurable mesh. The second is for arbitrary connections among N of the processors using the electrical buses on the processing layer and N2 fixed passive deflecting units on the deflection layer. The third is for arbitrary connections among any of the N2 processors using the N2 mechanically reconfigurable deflectors in the deflection layer. The third type of communication mechanisms is significantly slower than the other two. Therefore, it is desirable to avoid reconfiguring this type of communication during the execution of the algorithms. Instead, the optical reconfiguration can be done before the execution of each algorithm begins. Determining a right configuration that would be suitable for the entire configuration of a task execution is studied in this thesis. The basic data movements for each of the mechanisms are studied. Finally, to show the power of ORM, we use all three types of communication mechanisms in the first O(logN) time algorithm for finding the convex hulls of all figures in an N x N binary image presented in this thesis

    Efficient Algorithms for a Mesh-Connected Computer with Additional Global Bandwidth

    Full text link
    This thesis shows that adding additional global bandwidths to a mesh-connected computer can greatly improve the performance. The goal of this project is to design algorithms for mesh-connected computers augmented with limited global bandwidth, so that we can further enhance our understanding of the parallel/serial nature of the problems on evolving parallel architectures. We do this by first solving several problems associated with fundamental data movement, then summarize ways to resolve different situations one may observe in data movement in parallel computing. This can help us to understand whether the problem is easily parallelizable on different parallel models. We give efficient algorithms to solve several fundamental problems, which include sorting, counting, fast Fourier transform, finding a minimum spanning tree, finding a convex hull, etc. We show that adding a small amount of global bandwidth makes a practical design that combines aspects of mesh and fully connected models to achieve the benefits of each. Most of the algorithms are optimal. For future work, we believe that algorithms with peak-power constrains can make our model well adapted to the recent architectures in high performance computing.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150001/1/anyujie_1.pd

    Computing convexity properties of images on a pyramid computer

    Full text link
    We present efficient parallel algorithms for using a pyramid computer to determine convexity properties of digitized black/white pictures and labeled figures. Algorithms are presented for deciding convexity, identifying extreme points of convex hulls, and using extreme points in a variety of fashions. For a pyramid computer with a base of n simple processing elements arranged in an n 1/2 × n 1/2 square, the running times of the algorithms range from Θ(log n ) to find the extreme points of a convex figure in a digitized picture, to Θ( n 1/6 ) to find the diameter of a labeled figure, Θ( n 1/4 log n ) to find the extreme points of every figure in a digitized picture, to Θ( n 1/2 ) to find the extreme points of every labeled set of processing elements. Our results show that the pyramid computer can be used to obtain efficient solutions to nontrivial problems in image analysis. We also show the sensitivity of efficient pyramid-computer algorithms to the rate at which essential data can be compressed. Finally, we show that a wide variety of techniques are needed to make full and efficient use of the pyramid architecture.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41351/1/453_2005_Article_BF01759066.pd

    Scaling Simulations of Reconfigurable Meshes.

    Get PDF
    This dissertation deals with reconfigurable bus-based models, a new type of parallel machine that uses dynamically alterable connections between processors to allow efficient communication and to perform fast computations. We focus this work on the Reconfigurable Mesh (R-Mesh), one of the most widely studied reconfigurable models. We study the ability of the R-Mesh to adapt an algorithm instance of an arbitrary size to run on a given smaller model size without significant loss of efficiency. A scaling simulation achieves this adaptation, and the simulation overhead expresses the efficiency of the simulation. We construct a scaling simulation for the Fusing-Restricted Reconfigurable Mesh (FR-Mesh), an important restriction of the R-Mesh. The overhead of this simulation depends only on the simulating machine size and not on the simulated machine size. The results of this scaling simulation extend to a variety of concurrent write rules and also translate to an improved scaling simulation of the R-Mesh itself. We present a bus linearization procedure that transforms an arbitrary non-linear bus configuration of an R-Mesh into an equivalent acyclic linear bus configuration implementable on an Linear Reconfigurable Mesh (LR-Mesh), a weaker version of the R-Mesh. This procedure gives the algorithm designer the liberty of using buses of arbitrary shape, while automatically translating the algorithm to run on a simpler platform. We illustrate our bus linearization method through two important applications. The first leads to a faster scaling simulation of the R-Mesh. The second application adapts algorithms designed for R-Meshes to run on models with pipelined optical buses. We also present a simulation of a Directional Reconfigurable Mesh (DR-Mesh) on an LR-Mesh. This simulation has a much better efficiency compared to previous work. In addition to the LR-Mesh, this simulation also runs on models that use pipelined optical buses

    Simulations and Algorithms on Reconfigurable Meshes With Pipelined Optical Buses.

    Get PDF
    Recently, many models using reconfigurable optically pipelined buses have been proposed in the literature. A system with an optically pipelined bus uses optical waveguides, with unidirectional propagation and predictable delays, instead of electrical buses to transfer information among processors. These two properties enable synchronized concurrent access to an optical bus in a pipelined fashion. Combined with the abilities of the bus structure to broadcast and multicast, this architecture suits many communication-intensive applications. We establish the equivalence of three such one-dimensional optical models, namely the LARPBS, LPB, and POB. This implies an automatic translation of algorithms (without loss of speed or efficiency) among these models. In particular, since the LPB is the same as an LARPBS without the ability to segment its buses, their equivalence establishes reconfigurable delays (rather than segmenting ability) as the key to the power of optically pipelined models. We also present simulations for a number of two-dimensional optical models and establish that they possess the same complexity, so that any of these models can simulate a step of one of the other models in constant time with a polynomial increase in size. Specifically, we determine the complexity of three two-dimensional optical models (the PR-Mesh, APPBS, and AROB) to be the same as the well known LR-Mesh and the cycle-free LR-Mesh. We develop algorithms for the LARPBS and PR-Mesh that are more efficient than existing algorithms in part by exploiting the pipelining, segmenting, and multicasting characteristics of these models. We also consider the implications of certain physical constraints placed on the system by restricting the distance over which two processors are able to communicate. All algorithms developed for these models assume that a healthy system is available. We present some fundamental algorithms that are able to tolerate up to N/2 faults on an N-processor LARPBS. We then extend these results to apply to other algorithms in the areas of image processing and matrix operations

    Interconnection Networks Embeddings and Efficient Parallel Computations.

    Get PDF
    To obtain a greater performance, many processors are allowed to cooperate to solve a single problem. These processors communicate via an interconnection network or a bus. The most essential function of the underlying interconnection network is the efficient interchanging of messages between processes in different processors. Parallel machines based on the hypercube topology have gained a great respect in parallel computation because of its many attractive properties. Many versions of the hypercube have been introduced by many researchers mainly to enhance communications. The twisted hypercube is one of the most attractive versions of the hypercube. It preserves the important features of the hypercube and reduces its diameter by a factor of two. This dissertation investigates relations and transformations between various interconnection networks and the twisted hypercube and explore its efficiency in parallel computation. The capability of the twisted hypercube to simulate complete binary trees, complete quad trees, and rings is demonstrated and compared with the hypercube. Finally, the fault-tolerance of the twisted hypercube is investigated. We present optimal algorithms to simulate rings in a faulty twisted hypercube environment and compare that with the hypercube
    • …
    corecore