24 research outputs found

    Half-Duplex Relaying for the Multi-User Channel: Capacity Bounds, Fading Channel Performance and Asymptotical Behaviour

    Get PDF
    Multiple-input multiple-output (MIMO) scheme is able to improve the modern communications system performance in terms of increased throughput or reliability. As a virtually distributed antenna scheme, the relaying can enhance the communication system performance while there is no physical size limitation at the end user. Through decades, many relaying schemes have been extensively investigated for different channels. When the relay is close to the destination in a static channel and perfect channel state information (CSI) is available at the relay in a slow fading channel, the compress-and-forward (CF) scheme is often applied since it performs better than other relaying schemes. However, the CF scheme requires the relay to perform two-step operation (quantization and WZ binning), which increases the cost of implementing such scheme. In addition, having perfect CSI at the relay is not always possible in a wireless channel. To address these problems caused by the nature of the CF scheme, the generalized quantize-and-forward (GQF) scheme is proposed in this dissertation for the half-duplex (HD) multi-user channel. In this dissertation, the first part focuses on studying the half-duplex (HD) relaying in the Multiple Access Relay Channel (MARC) and the Compound Multiple Access Channel with a Relay (cMACr). A GQF scheme has been proposed to establish the achievable rate regions. Such scheme is developed based on the variation of the Quantize-and-Forward (QF) scheme and single block with two slots coding structure. The achievable rates results obtained can also be considered as a significant extension of the achievable rate region of Half-Duplex Relay Channel (HDRC). Furthermore, the rate regions based on GQF scheme are extended to the Gaussian channel case. The scheme performance is shown through some numerical examples. In contrast to conventional Full-Duplex (FD) MARC and Interference Relay Channel (IRC) rate achieving schemes which apply the block Markov encoding and decoding in a large number of communication blocks, the GQF developed are based on the single block coding strategies, which are more suitable for the HD channels. When the relay has no access to Channel State Information (CSI) of the relay-destination link, the GQF is implemented in the slow Rayleigh fading HD-MARC. Based on the achievable rates inequalities, the common outage probability and the expected sum rates are derived. Through numerical examples, we show that in the absence of CSI at the relay, the GQF scheme outperforms other relaying schemes. When the end users have different quality-of-service (QoS) requirements for slow fading channel, it is more precise to use the individual outage related parameters to quantify the scheme performance. The individual outage probability and total throughput are characterized for the HD-MARC. The numerical examples show that the outage probability of the individual users is lower than that of classic Compress-and-Forward (CF) scheme. The Diversity Multiplexing Tradeoff (DMT) is often applied as a figure of merit for different communication schemes in the asymptotically high SNR slow fading channels. The CF scheme achieves the optimal DMT for high multiplexing gains when the CSI of the relay-destination (R-D) link is available at the relay. However, having the CSI of R-D link at relay is not always possible due to the practical considerations of the wireless system. In this dissertation, the DMT of the GQF scheme is derived without R-D link CSI at the relay. Moreover, the GQF scheme achieves the optimal DMT for the entire range of multiplexing gains

    A Critical Review of Physical Layer Security in Wireless Networking

    Get PDF
    Wireless networking has kept evolving with additional features and increasing capacity. Meanwhile, inherent characteristics of wireless networking make it more vulnerable than wired networks. In this thesis we present an extensive and comprehensive review of physical layer security in wireless networking. Different from cryptography, physical layer security, emerging from the information theoretic assessment of secrecy, could leverage the properties of wireless channel for security purpose, by either enabling secret communication without the need of keys, or facilitating the key agreement process. Hence we categorize existing literature into two main branches, namely keyless security and key-based security. We elaborate the evolution of this area from the early theoretic works on the wiretap channel, to its generalizations to more complicated scenarios including multiple-user, multiple-access and multiple-antenna systems, and introduce not only theoretical results but practical implementations. We critically and systematically examine the existing knowledge by analyzing the fundamental mechanics for each approach. Hence we are able to highlight advantages and limitations of proposed techniques, as well their interrelations, and bring insights into future developments of this area

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    Cooperative diversity in wireless networks : algorithms and architectures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 179-187).To effectively combat multipath fading across multiple protocol layers in wireless networks, this dissertation develops energy-efficient algorithms that employ certain kinds of cooperation among terminals, and illustrates how one might incorporate these algorithms into various network architectures. In these techniques, sets of terminals relay signals for each other to create a virtual antenna array, trading off the costs-in power, bandwidth, and complexity-for the greater benefits gained by exploiting spatial diversity in the channel. By contrast, classical network architectures only employ point-to-point transmission and thus forego these benefits. After summarizing a model for the wireless channel, we present various practical cooperative diversity algorithms based upon different types of relay processing and re-encoding, both with and without limited feedback from the ultimate receivers. Using information theoretic tools, we show that all these algorithms can achieve full spatial diversity, as if each terminal had as many transmit antennas as the entire set of cooperating terminals. Such diversity gains translate into greatly improved robustness to fading for the same transmit power, or substantially reduced transmit power for the same level of performance. For example, with two cooperating terminals, power savings as much as 12 dB (a factor of sixteen) are possible for outage probabilities around one in a thousand. Finally, we discuss how the required level of complexity in the terminals makes different algorithms suitable for particular network architectures that arise in, for example, current cellular and ad-hoc networks.by J. Nicholas Laneman.Ph.D

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore