804 research outputs found

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Distributed differential beamforming and power allocation for cooperative communication networks

    Get PDF
    Many coherent cooperative diversity techniques for wireless relay networks have recently been suggested to improve the overall system performance in terms of the achievable data rate or bit error rate (BER) with low decoding complexity and delay. However, these techniques require channel state information (CSI) at the transmitter side, at the receiver side, or at both sides. Therefore, due to the overhead associated with estimating CSI, distributed differential space-time coding techniques have been suggested to overcome this overhead by detecting the information symbols without requiring any (CSI) at any transmitting or receiving antenna. However, the latter techniques suffer from low performance in terms of BER as well as high latency and decoding complexity. In this paper, a distributed differential beamforming technique with power allocation is proposed to overcome all drawbacks associated with the later techniques without needing CSI at any antenna and to be used for cooperative communication networks. We prove through our analytical and simulation results that the proposed technique outperforms the state-of-the-art techniques in terms of BER with comparably low decoding complexity and latency

    Performance of cluster-based cognitive multihop networks under joint impact of hardware noises and non-identical primary co-channel interference

    Get PDF
    In this paper, we evaluate outage probability (OP) of a cluster-based multi-hop protocol operating on an underlay cognitive radio (CR) mode. The primary network consists of multiple independent transmit/receive pairs, and the primary transmitters seriously cause co-channel interference (CCI) to the secondary receivers. To improve the outage performance for the secondary network under the joint impact of the CCI and hardware imperfection, we employ the best relay selection at each hop. Moreover, the destination is equipped with multiple antennas and uses the selection combining (SC) technique to enhance the reliability of the data transmission at the last hop. For performance evaluation, we first derive an exact formula of OP for the primary network which is used to calculate the transmit power of the secondary transmitters. Next, an exact closed-form expression of the end-to-end OP for the secondary network is derived over Rayleigh fading channels. We then perform Monte-Carlo simulations to validate the derivations. The results present that the CCI caused by the primary operations significantly impacts on the outage performance of the secondary network
    • …
    corecore