3,551 research outputs found

    Analysis of cyclic delay diversity on DVB-H systems over spatially correlated channel

    Get PDF
    The objective of this work is to research and analyze the performance of Cyclic Delay Diversity (CDD) with two transmit antenna on DVB-H systems operating in spatially correlated channel. It is shown in this paper that CDD can achieve desirable transmit diversity gain over uncorrelated channel with or without receiver diversity. However, in reality, the respective signal paths between spatially separated antennas and the mobile receiver is likely to be correlated because of insufficient antenna separation at the transmitter and the lack of scattering effect of the channel. Under this spatially correlated channel, it is apparent that CDD cannot achieve the same diversity gain as obtained under the uncorrelated channel. In this paper, a new upper bound on the pairwise error probability (PEP) of the CDD with spatial correlation of two transmit antennas is derived. The upper bound is used to study the CDD theoretical error performance and diversity gain losses over a generalized spatially correlated Rayleigh channel. This theoretical analysis is validated by the simulation of DVB-H systems with two transmit antennas and the CDD scheme. Both the theoretical and simulated results give the valuable insight that the CDD ability to perform well with a certain amount of channel correlation

    Performance Analysis of Iteratively Decoded Variable-Length Space-Time Coded Modulation

    No full text
    It is demonstrated that iteratively Decoded Variable Length Space Time Coded Modulation (VL-STCM-ID) schemes are capable of simultaneously providing both coding gain as well as multiplexing and diversity gain. The VL-STCM-ID arrangement is a jointly designed iteratively decoded scheme combining source coding, channel coding, modulation as well as spatial diversity/multiplexing. In this contribution, we analyse the iterative decoding convergence of the VL-STCM-ID scheme using symbol-based three-dimensional EXIT charts. The performance of the VL-STCM-ID scheme is shown to be about 14.6 dB better than that of the Fixed Length STCM (FL-STCM) benchmarker at a source symbol error ratio of 10?4, when communicating over uncorrelated Rayleigh fading channels. The performance of the VL-STCM-ID scheme when communicating over correlated Rayleigh fading channels using imperfect channel state information is also studied

    Performance Analysis of MIMO-MRC in Double-Correlated Rayleigh Environments

    Full text link
    We consider multiple-input multiple-output (MIMO) transmit beamforming systems with maximum ratio combining (MRC) receivers. The operating environment is Rayleigh-fading with both transmit and receive spatial correlation. We present exact expressions for the probability density function (p.d.f.) of the output signal-to-noise ratio (SNR), as well as the system outage probability. The results are based on explicit closed-form expressions which we derive for the p.d.f. and c.d.f. of the maximum eigenvalue of double-correlated complex Wishart matrices. For systems with two antennas at either the transmitter or the receiver, we also derive exact closed-form expressions for the symbol error rate (SER). The new expressions are used to prove that MIMO-MRC achieves the maximum available spatial diversity order, and to demonstrate the effect of spatial correlation. The analysis is validated through comparison with Monte-Carlo simulations.Comment: 25 pages. Submitted to the IEEE Transactions on Communication

    Full-Rate, Full-Diversity Adaptive Space Time Block Coding for Transmission over Rayleigh Fading Channels

    No full text
    A full-rate, full-diversity Adaptive Space Time Block Coding (ASTBC) scheme based on Singular Value Decomposition (SVD) is proposed for transmission over Rayleigh fading channels. The ASTBC-SVD scheme advocated is capable of providing both full-rate and full-diversity for any number of transmit antennas, Nt, provided that the number of receive antennas, Nr, equals to Nt. Furthermore, the ASTBC-SVD scheme may achieve an additional coding gain due to its higher product distance with the aid of the block code employed. In conjunction with SVD, the “water-filling” approach can be employed for adaptively distributing the transmitted power to the various antennas transmit according to the channel conditions, in order to further enhance the attainable performance. Since a codeword constituted by Nt symbols is transmitted in a single time slot by mapping the Nt symbols to the Nt transmit antennas in the spatial domain, the attainable performance of the ASTBC-SVD scheme does not degrade, when the channel impulse response values vary from one time slot to the next. Hence, the proposed ASTBC-SVD scheme is attractive in the context of both uncorrelated and correlated Rayleigh fading channels. The performance of the proposed scheme was evaluated, when communicating over uncorrelated Rayleigh fading channels. Explicitly, an Eb/N0 gain of 2.5 dB was achieved by the proposed ASTBC-SVD scheme against Alamouti’s scheme [1], when employing Nt = Nr = 2 in conjunction with 8PSK

    Performance Analysis of Selection Combining Over Correlated Nakagami-m Fading Channels with Constant Correlation Model for Desired Signal and Cochannel Interference

    Get PDF
    A very efficient technique that reduces fading and channel interference influence is selection diversity based on the signal to interference ratio (SIR). In this pa¬per, system performances of selection combiner (SC) over correlated Nakagami-m channels with constant correlation model are analyzed. Closed-form expressions are obtained for the output SIR probability density function (PDF) and cumulative distribution function (CDF) which is main contribution of this paper. Outage probability and the average error probability for coherent, noncoherent modulation are derived. Numerical results presented in this paper point out the effects of fading severity and cor¬relation on the system performances. The main contribu¬tion of this analysis for multibranch signal combiner is that it has been done for general case of correlated co-channel interference (CCI)

    Space-Time-Frequency Shift Keying for Dispersive Channels

    No full text
    Inspired by the concept of the Space-Time Shift Keying (STSK) modulation, in this paper we proposed the Space-Frequency Shift Keying (SFSK) modulation as well as the Space-Time-Frequency Shift Keying (STFSK) concept which spreads the transmit signal not only across the space and time domains, but also the frequency domain. The performance of STSK modulation is degraded by about 2 dB, when the channel changes from uncorrelated frequency-flat fading to the frequency-selective environment of the 6-tap COST207 model. By contrast, as a benefit of Frequency Shift keying, the SFSK and STFSK schemes are capable of maintaining their performance also in frequency-selective fading environments. Finally, we demonstrate that the STSK and SFSK schemes constitute special cases of the STFSK modulatio
    corecore