63 research outputs found

    On load balancing via switch migration in software-defined networking

    Get PDF
    Switch-controller assignment is an essential task in multi-controller software-de๏ฌned networking. Static assignments are not practical because network dynamics are complex and dif๏ฌcult to predetermine. Since network load varies both in space and time, the mapping of switches to controllers should be adaptive to sudden changes in the network. To that end, switch migration plays an important role in maintaining dynamic switch-controller mapping. Migrating switches from overloaded to underloaded controllers brings ๏ฌ‚exibility and adaptability to the network but, at the same time, deciding which switches should be migrated to which controllers, while maintaining a balanced load in the network, is a challenging task. This work presents a heuristic approach with solution shaking to solve the switch migration problem. Shift and swap moves are incorporated within a search scheme. Every move is evaluated by how much bene๏ฌtitwillgivetoboththeimmigrationandoutmigrationcontrollers.Theexperimentalresultsshowthat theproposedapproachisabletooutweighthestate-of-artapproaches,andimprovetheloadbalancingresults up toโ‰ˆ 14% in some scenarios when compared to the most recent approach. In addition, the results show that the proposed work is more robust to controller failure than the state-of-art methods.Portuguese Science and Technology Foundation (FCT) - UID/MULTI/00631/2019;info:eu-repo/semantics/publishedVersio

    Distant Location Selection Using Genetic Algorithm for Live Migration Method in OpenFlow Networks

    Get PDF
    In the last decade, the massive undersea earthquake and Tsunami occurred in Taiwan on Tuesday December 26, 2006 and Japan on Friday March 11, 2011. Those natural disasters had affected the telecommunication in the worldwide. They disrupted the infrastructures including not only Internet services but also business and financial transactions. Thus, keeping the system and functions alive are particularly crucial to many organizations relying on them. Migration is one of the solutions to keep the systems alive. This paper introduces a migration technique to migrate network systems from origin sites to other remote sites. We propose a Genetic Algorithm (GA) approach to solve shortest path problems for selecting the best possible remote site prior to initiate a migration. Network virtualization in OpenFlow technology is particularly valuable in the implementation to relocate the systems by using network segmentation technique

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Network layer solutions for a content-centric internet

    Get PDF
    Nowadays most people exploit the Internet to get contents such as web pages, music or video files. These users only value โ€œwhatโ€ they download and are not interested about โ€œwhereโ€ content is actually stored. The IP layer does the opposite and cares about the โ€œwhereโ€ and not about the โ€œwhatโ€. This contrast between the actual usage of the Internet and the service offered by the IP layer is deemed to be the source of several problems concerning usability, performance, security and mobility issues. To overcome this contrast, research on the Future Internet is exploring novel so-called content-centric architectures, where the network layer directly provides users with contents, instead of providing communication channels between hosts. In this paper, we identify the main functionalities of a content-centric network (CONET), we discuss pros and cons of literature proposals for an innovative, content-centric network layer and we draw our conclusions, stating some general requirements that, in our opinion, a CONET should satisfy

    Network Access in a Diversified Internet

    Get PDF
    There is a growing interest in virtualized network infrastructures as a means to enable experimental evaluation of new network architectures on a realistic scale. The National Science Foundation\u27s GENI initiative seeks to develop a national experimental facility that would include virtualized network platforms that can support many concurrent experimental networks. Some researchers seek to make virtualization a central architectural component of a future Internet, so that new network architectures can be introduced at any time, without the barriers to entry that currently make this difficult. This paper focuses on how to extend the concept of virtualized networking through LAN-based access networks to the end systems. Our objective is to allow virtual networks that support new network services to make those services directly available to applications, rather than force applications to access them indirectly through existing network protocols. We demonstrate that this approach can improve performance by an order of magnitude over other approaches and can enable virtual networks that provide end-to-end quality of service

    ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ์˜ ์ž์› ํ• ๋‹น, ๊ฐ€๊ฒฉ ๊ฒฐ์ • ๋ฐ ๊ณ ์žฅ ๊ด€๋ฆฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์„œ์Šน์šฐ.๋„คํŠธ์›Œํฌ ๊ฐ€์ƒํ™”๋Š” ๋ฌผ๋ฆฌ์  ๋„คํŠธ์›Œํฌ์˜ ๊ณต์œ  ์ž์›๋“ค์„ ๋ณต์ˆ˜ ๊ฐœ์˜ ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ๋“ค์— ๋™์ ์œผ๋กœ ํ• ๋‹นํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ฃผ๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ์ž์› ํ• ๋‹น์˜ ์œ ์—ฐ์„ฑ๊ณผ ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ๋“ค ์‚ฌ์ด์˜ ๋…๋ฆฝ์„ฑ ๋•Œ๋ฌธ์—, ๋„คํŠธ์›Œํฌ ๊ฐ€์ƒํ™”๋Š” ๋„คํŠธ์›Œํฌ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฐ˜ ๊ธฐ์ˆ ๋กœ์จ ์ฃผ๋กœ ํ™œ์šฉ๋˜์–ด ์™”์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ธํ„ฐ๋„ท์˜ ๋‹ค์–‘ํ™”๋ฅผ ์ง€์›ํ•˜๊ธฐ ์œ„ํ•œ ๋น„์šฉ ํšจ์œจ ๋†’์€ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ์จ ์—ฌ๊ฒจ์ง€๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ์„œ๋น„์Šค์— ๋”ฐ๋ผ ๊ณ„์ธตํ™”๋œ ์ธํ„ฐ๋„ท์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ํ•˜๋‚˜์˜ ์ˆ˜๋‹จ์œผ๋กœ์จ, ๋„คํŠธ์›Œํฌ ๊ฐ€์ƒํ™”๋Š” ์—ฌ์ „ํžˆ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋งŽ์€ ๋„์ „ ๊ณผ์ œ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์€ ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ ํ™˜๊ฒฝ์—์„œ ์ค‘์š”ํ•œ ๋ช‡ ๊ฐ€์ง€ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ ์ฃผ์ œ๋“ค์„ ์ œ์‹œํ•˜๊ณ , ๊ทธ์— ๋Œ€ํ•œ ํšจ๊ณผ์ ์ธ ํ•ด๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ์˜ ๋‹ค์–‘ํ•œ QoS ์š”๊ตฌ์‚ฌํ•ญ์„ ๋งŒ์กฑ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋„คํŠธ์›Œํฌ ์ตœ์  ๋ถ„ํ•  ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. QoS์™€ ๋Œ€์—ญํญ ์ œํ•œ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ ๋ถ„ํ•  ๋ฌธ์ œ๋ฅผ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ๋ชจํ˜•ํ™”ํ•˜๊ณ , ๋ฌธ์ œ์˜ ๊ตฌ์กฐ์  ๋ณต์žก์„ฑ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ตœ๋‹จ ๊ฒฝ๋กœ ๋ผ์šฐํŒ…์— ๊ธฐ๋ฐ˜ํ•œ ํœด๋ฆฌ์Šคํ‹ฑ์„ ์ œ์•ˆํ•œ๋‹ค. ์‹ค์ œ ์ธํ„ฐ๋„ท ํ™˜๊ฒฝ์„ ๊ณ ๋ คํ•œ ๋Œ€๊ทœ๋ชจ ์‹คํ—˜์„ ํ†ตํ•ด, ์ œ์•ˆํ•œ ํœด๋ฆฌ์Šคํ‹ฑ์˜ ํšจ์œจ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ์—์„œ ์ฐจ๋“ฑ ์ ‘์† ์„œ๋น„์Šค๋ฅผ ์œ„ํ•œ ๊ฒฝ์ œ์„ฑ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์‚ฌ์šฉ์ž ๊ฐ€์ž… ๋ณ€๋™ ๋ชจํ˜•์ด ํ•œ ๊ฐ’์œผ๋กœ ์ˆ˜๋ ดํ•˜๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„ ์กฐ๊ฑด์„ ์œ ๋„ํ•˜๊ณ , ์ด๋Ÿฌํ•œ ์กฐ๊ฑด ํ•˜์—์„œ ์ธํ„ฐ๋„ท ์„œ๋น„์Šค ์ œ๊ณต์ž์˜ ์ˆ˜์ต์„ ์ตœ๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์ ์˜ ๊ฐ€๊ฒฉ ๊ฒฐ์ • ๋ฐฉ๋ฒ• ๋ฐ ๋Œ€์—ญํญ ๋ถ„ํ•  ๋ฐฉ๋ฒ•์„ ์ฐพ๋Š”๋‹ค. ์ˆ˜์น˜ ์‹คํ—˜์„ ํ†ตํ•ด, ์ ์ ˆํ•œ ๊ฐ€๊ฒฉ ๊ฒฐ์ •๊ณผ ๋Œ€์—ญํญ ๋ถ„ํ• ์ด ์ด๋ฃจ์–ด์ง„๋‹ค๋Š” ๊ฐ€์ • ํ•˜์—์„œ ์ฐจ๋“ฑํ™” ์„œ๋น„์Šค๊ฐ€ ๋‹จ์ผ ์„œ๋น„์Šค๋ณด๋‹ค ๋” ๋†’์€ ์ˆ˜์ต์„ฑ์„ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ ๊ฐ„ ํŠธ๋ž˜ํ”ฝ ์ „ํ™˜์„ ํ†ตํ•œ ๋น ๋ฅด๊ณ  ํšจ๊ณผ์ ์ธ ๊ณ ์žฅ ํšŒ๋ณต ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์„ ํ™œ์šฉํ•œ ๊ณ ์žฅ ํšŒ๋ณต ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜๋ฉด, ๋ชจ๋“  ๋งํฌ์— ๋Œ€ํ•œ ๋ฐฑ์—… ๊ฒฝ๋กœ๊ฐ€ ํ•ญ์ƒ ์กด์žฌํ•˜๋„๋ก ๋ฏธ๋ฆฌ ํ† ํด๋กœ์ง€๋ฅผ ์„ค๊ณ„ํ•ด์•ผ ํ•  ํ•„์š”๊ฐ€ ์—†๊ณ , ๊ฐ ๋ผ์šฐํ„ฐ์—์„œ ๊ทธ ๊ฒฝ๋กœ๋“ค์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์„ ๋ฏธ๋ฆฌ ํ•ด ๋†“์„ ํ•„์š”๊ฐ€ ์—†๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ œ์•ˆํ•œ ๊ณ ์žฅ ํšŒ๋ณต ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ๊ธฐ์ˆ ๋“ค๊ณผ ๊ฐ™์€ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์€ ๊ฐ€์ƒ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ธํ„ฐ๋„ท ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ค‘์š”ํ•œ ๋ฌธ์ œ๋“ค์„ ๋‹ค๋ฃจ๊ณ ์ž ํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ถ„์„ ๋ชจ๋ธ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ๋“ค์€ ํ˜„์žฌ ์ธํ„ฐ๋„ท์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ๋ฏธ๋ž˜ ์ธํ„ฐ๋„ท ์•„ํ‚คํ…์ฒ˜๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ์œ ์šฉํ•œ ์ง€์นจ์„ ์ œ๊ณตํ•  ๊ฒƒ์ด๋‹ค.Network virtualization is an emerging technology that enables the dynamic partitioning of a shared physical network infrastructure into multiple virtual networks. Because of its flexibility in resource allocation and independency among virtual networks, the network virtualization technology has not only been mainly deployed to build a testbed network, but also has come to be regarded as a cost-effective solution for diversifying the Internet. As a means of building the multi-layered Internet, network virtualization still faces a number of challenging issues that need to be addressed. This dissertation deals with several important research topics and provides effective solutions in network virtualization environment. First, I focus on the optimal partitioning of finite substrate resources for satisfying the diverse QoS requirements of virtual networks. I formulate virtual network partitioning problem as a mixed integer multi-commodity flow problem. Then, to tackle the structural complexity of the problem, I propose a simple heuristic based on shortest path routing algorithm. By conducting large-scale network experiments, I verify the efficiency and scalability of the heuristic. Next, I propose an economic model for tiered access service in virtual networks in order to remedy the deficiency of the existing tiered service schemes. I first derive a sufficient condition for stability of user subscription dynamics, and find the optimal pricing and capacity partitioning by addressing the revenue maximization problem of the tiered access service in a network virtualization environment. Numerical results show that the tiered service can be more profitable than the non-tiered service under proper pricing and capacity partitioning conditions. Last, I develop a fast and effective failure recovery mechanism through inter-virtual network traffic switching in virtual networks. The proposed failure recovery mechanism neither has topological constraints for the existence of backup paths, nor requires the pre-computation of them, but nevertheless guarantees as fast recovery as the existing failure recovery methods. This dissertation aims to address important issues in the virtual network-based Internet. I believe that the analysis and results in this dissertation will provide useful guidelines to improve the Internet.1 Introduction 1.1 Background and Motivation 1.2 Contributions and Outline of the Dissertation 2 Effective Partitioning for Service Level Differentiation in Virtual Networks 2.1 Introduction 2.2 Related Work 2.3 Model and Assumption 2.3.1 Business Model 2.3.2 Network Model 2.3.3 Traffic Demands 2.3.4 QoS Metric 2.4 Formulation 2.4.1 Objective 2.4.2 Substrate Partitioning Problem 2.4.3 Decomposition 2.5 Heuristic 2.6 Evaluation 2.6.1 Small Network Experiment 2.6.2 Large Network Experiment 2.7 Summary 3 Optimal Pricing and Capacity Partitioning for Tiered Access Service in Virtual Networks 3.1 Introduction 3.2 Motivating Example 3.3 A Tiered Service Model 3.3.1 Network Virtualization Environment 3.3.2 Effective Access Rate 3.3.3 Valuation Parameter and User Utility 3.3.4 User Subscription and the ISP Revenue 3.4 Non-tiered Service Analysis 3.4.1 User Subscription Dynamics 3.4.2 Optimal Pricing for Maximizing the ISP Revenue 3.5 Tiered Service Analysis 3.5.1 User Subscription Dynamics 3.5.2 Convergence of the User Subscription Dynamics 3.5.3 Optimal Pricing for Maximizing the ISP Revenue 3.6 Numerical Results 3.6.1 Non-tiered Service Example 3.6.2 Tiered Service Example 3.7 Related Work and Discussion 3.8 Summary 4 Inter-Virtual Network Traffic Switching for Fast Failure Recovery 4.1 Introduction 4.2 Background 4.3 Preliminaries 4.3.1 Virtual Network Model 4.3.2 Design Goals 4.3.3 Business Models and Switching Policy Agreement 4.3.4 Other Considerations 4.4 Failure Recovery based on Traffic Switching 4.4.1 Inter-VN Traffic Switching 4.4.2 Failure Recovery Process 4.5 Numerical Analysis 4.5.1 Delay 4.5.2 Congestion probability 4.6 Summary 5 Conclusion A Proofs of Lemmas A.1 Proof of Lemma 2 A.2 Proof of Lemma 3Docto

    Partial Program Admission by Path Enumeration

    Get PDF
    Real-time systems on non-preemptive platforms require a means of bounding the execution time of programs for admission purposes. Worst-Case Execution Time (WCET) is most commonly used to bound program execution time. While bounding a program\u27s WCET statically is possible, computing its true WCET is difficult without significant semantic knowledge. We present an algorithm for partial program admission, suited for non-preemptive platforms, using dynamic programming to perform explicit enumeration of program paths. Paths - possible or not - are bounded by the available execution time and admitted on a path-by-path basis without requiring semantic knowledge of the program beyond its Control Flow Graph (CFG)

    Efficient Mapping of Virtual Networks onto a Shared Substrate

    Get PDF
    Virtualization has been proposed as a vehicle for overcoming the growing problem of internet ossification [1]. This paper studies the problem of mapping diverse virtual networks onto a common physical substrate. In particular, we develop a method for mapping a virtual network onto a substrate network in a cost-efficient way, while allocating sufficient capacity to virtual network links to ensure that the virtual network can handle any traffic pattern allowed by a general set of traffic constraints. Our approach attempts to find the best topology in a family of backbone-star topologies, in which a subset of nodes constitute the backbone, and the remaining nodes each connect to the nearest backbone node. We investigate the relative cost-effectiveness of different backbone topologies on different substrate networks, under a wide range of traffic conditions. Specifically, we study how the most cost-effective topology changes as the tightness of pairwise traffic constraints and the constraints on traffic locality are varied. In general, we find that as pairwise traffic constraints are relaxed, the least-cost backbone topology becomes increasingly tree-like . We also find that the cost of the constructed virtual networks is usually no more than 1.5 times a computed lower bound on the network cost and that the quality of solutions improves as the traffic locality gets weaker
    • โ€ฆ
    corecore