6,534 research outputs found

    Estimation-based synthesis of H∞-optimal adaptive FIR filtersfor filtered-LMS problems

    Get PDF
    This paper presents a systematic synthesis procedure for H∞-optimal adaptive FIR filters in the context of an active noise cancellation (ANC) problem. An estimation interpretation of the adaptive control problem is introduced first. Based on this interpretation, an H∞ estimation problem is formulated, and its finite horizon prediction (filtering) solution is discussed. The solution minimizes the maximum energy gain from the disturbances to the predicted (filtered) estimation error and serves as the adaptation criterion for the weight vector in the adaptive FIR filter. We refer to this adaptation scheme as estimation-based adaptive filtering (EBAF). We show that the steady-state gain vector in the EBAF algorithm approaches that of the classical (normalized) filtered-X LMS algorithm. The error terms, however, are shown to be different. Thus, these classical algorithms can be considered to be approximations of our algorithm. We examine the performance of the proposed EBAF algorithm (both experimentally and in simulation) in an active noise cancellation problem of a one-dimensional (1-D) acoustic duct for both narrowband and broadband cases. Comparisons to the results from a conventional filtered-LMS (FxLMS) algorithm show faster convergence without compromising steady-state performance and/or robustness of the algorithm to feedback contamination of the reference signal

    Feedback linearization control for a distributed solar collector field

    Get PDF
    This article describes the application of a feedback linearization technique for control of a distributed solar collector field using the energy from solar radiation to heat a fluid. The control target is to track an outlet temperature reference by manipulating the fluid flow rate through the solar field, while attenuating the effect of disturbances (mainly radiation and inlet temperature). The proposed control scheme is very easy to implement, as it uses a numerical approximation of the transport delay and a modification of the classical control scheme to improve startup in such a way that results compared with other control structures under similar conditions are improved while preserving short commissioning times. Experiments in the real plant are also described, demonstrating how operation can be started up efficiently.Ministerio de Ciencia y TecnologĂ­a DPI2004-07444-C04-04Ministerio de Ciencia y TecnologĂ­a DPI2005-0286

    Advances In Internal Model Principle Control Theory

    Get PDF
    In this thesis, two advanced implementations of the internal model principle (IMP) are presented. The first is the identification of exponentially damped sinusoidal (EDS) signals with unknown parameters which are widely used to model audio signals. This application is developed in discrete time as a signal processing problem. An IMP based adaptive algorithm is developed for estimating two EDS parameters, the damping factor and frequency. The stability and convergence of this adaptive algorithm is analyzed based on a discrete time two time scale averaging theory. Simulation results demonstrate the identification performance of the proposed algorithm and verify its stability. The second advanced implementation of the IMP control theory is the rejection of disturbances consisting of both predictable and unpredictable components. An IMP controller is used for rejecting predictable disturbances. But the phase lag introduced by the IMP controller limits the rejection capability of the wideband disturbance controller, which is used for attenuating unpredictable disturbance, such as white noise. A combination of open and closed-loop control strategy is presented. In the closed-loop mode, both controllers are active. Once the tracking error is insignificant, the input to the IMP controller is disconnected while its output control action is maintained. In the open loop mode, the wideband disturbance controller is made more aggressive for attenuating white noise. Depending on the level of the tracking error, the input to the IMP controller is connected intermittently. Thus the system switches between open and closed-loop modes. A state feedback controller is designed as the wideband disturbance controller in this application. Two types of predictable disturbances are considered, constant and periodic. For a constant disturbance, an integral controller, the simplest IMP controller, is used. For a periodic disturbance with unknown frequencies, adaptive IMP controllers are used to estimate the frequencies before cancelling the disturbances. An extended multiple Lyapunov functions (MLF) theorem is developed for the stability analysis of this intermittent control strategy. Simulation results justify the optimal rejection performance of this switched control by comparing with two other traditional controllers

    RealTime Implementation Of An Internal-Model-Principle Signal Identifier

    Get PDF
    This thesis presents a new means approach of tuning an adaptive internal model principle based signal identification algorithm whose computational costs are low enough to allow a realtime implementation. The algorithm allows an instantaneous Fourier decomposition of nonstationary signals that have a strongly predictable component. The algorithm is implemented as a feedback loop resulting in a closed loop system with a frequency response of a bandpass filter with notches at the frequencies of the Fourier decomposition. This is achieved through real time selection of the coefficients of the transfer functions in the feedback loop. Previous work showed how the dynamics of the algorithm could be chosen to be represented by a bandpass filter with notches. However this involved solving a large set of coupled linear equations. This thesis shows how the equations can be decoupled into pairs of linear equations which have explicit solutions. In other word, rules for explicitly solving for these parameters are given that only involve evaluating frequency responses at the frequencies of the instantaneous Fourier decomposition. Last but not the least, alternative approach for choosing suitable coefficients to eliminate the DC component of the signal under consideration has been proposed as well by replacing a frequency response of a bandpass filter with lowpass filter and adding a model of the constant signal to the feedback loop

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version

    Adaptive rejection of finite band disturbances - theory and applications

    Get PDF
    Le chapitre présente les techniques de rejection adpative de perturbation inconnue mais de bande finie. Plusieurs exemples sont mentionnés et l'application au rejet adaptatifs de perturbation inconnues sur une suspension active est décrite en détailThe techniques for adaptive rejection of unknown finite band disturbances are reviewed. Several applications are mentionned and the application to the adaptive rejection of unknown disturbances on an active suspension is presented in detail

    Observer based friction cancellation in mechanical systems

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and The Graduate School of Engineering and Science of Bilkent University, 2014.Thesis (Master's) -- Bilkent University, 2014.Includes bibliographical references leaves 55-58.In real life feedback control applications of mechanical systems, friction and time delays are two important issues that might have direct effects on the performance of systems. Hence, an adaptive nonlinear observer based friction compensation for a special time delayed system is presented in this thesis. Considering existing delay, an available Coulomb observer is modified and closed loop system is formed by using a Smith predictor based controller as if the process is delay free. Implemented hierarchical feedback system structure provides two-degree of freedom and controls both velocity and position separately. For this purpose, controller parametrization method is used to extend Smith predictor structure to the position control loop for different types of inputs and disturbance attenuation. Simulation results demonstrate that without requiring much information about friction force, the method can significantly improve the performance of a control system in which it is applied.OdabaƟ, CanerM.S
    • 

    corecore