5 research outputs found

    Distributive Laws and Decidable Properties of SOS Specifications

    Full text link
    Some formats of well-behaved operational specifications, correspond to natural transformations of certain types (for example, GSOS and coGSOS laws). These transformations have a common generalization: distributive laws of monads over comonads. We prove that this elegant theoretical generalization has limited practical benefits: it does not translate to any concrete rule format that would be complete for specifications that contain both GSOS and coGSOS rules. This is shown for the case of labeled transition systems and deterministic stream systems.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Distributive Laws for Monotone Specifications

    Get PDF
    Turi and Plotkin introduced an elegant approach to structural operational semantics based on universal coalgebra, parametric in the type of syntax and the type of behaviour. Their framework includes abstract GSOS, a categorical generalisation of the classical GSOS rule format, as well as its categorical dual, coGSOS. Both formats are well behaved, in the sense that each specification has a unique model on which behavioural equivalence is a congruence. Unfortunately, the combination of the two formats does not feature these desirable properties. We show that monotone specifications - that disallow negative premises - do induce a canonical distributive law of a monad over a comonad, and therefore a unique, compositional interpretation.Comment: In Proceedings EXPRESS/SOS 2017, arXiv:1709.0004

    Structural operational semantics for non-deterministic processes with quantitative aspects

    Get PDF
    General frameworks have been recently proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format and a corresponding notion of bisimulation for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function GSOS (WF-GSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness and completeness of the WF-GSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: Extended version of arXiv:1406.206
    corecore