23 research outputs found

    Distributionally Robust Optimization: A Review

    Full text link
    The concepts of risk-aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. This paper surveys main concepts and contributions to DRO, and its relationships with robust optimization, risk-aversion, chance-constrained optimization, and function regularization

    ํŒ๋งค์ด‰์ง„์„ ๋„์ž…ํ•œ ์ˆ˜์š” ๋ถˆํ™•์‹ค์„ฑ ์žฌ๊ณ ๊ด€๋ฆฌ ๋ชจํ˜•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ๋ฌธ์ผ๊ฒฝ.As the globalization of markets accelerates competition among companies, sales promotion, which refers to short-term incentives promoting sales of products or services, plays a prominent role. Although there are various types of sales promotions, such as price reduction, buy-x-get-y-free, and trade-in program, the common purpose is to induce the purchase of customers by offering benefits. This successful strategy has caught the attention of researchers, including operations management and supply chain management. Thus, various studies have been conducted to examine strategies for ongoing operations and to demonstrate the effects of the sales promotion, which are based on the strategic level. However, research at the tactical or operational level has been conducted insufficiently. This dissertation examines the inventory models considering (i) markdown sale, (ii) buy one get one free (BOGO), and (iii) trade-in program. First, the newsvendor model is considered. By introducing the decision variable, which represents the start time of markdown sale, the retailer can obtain the optimal combination of the start time of a markdown sale and an order quantity. Under certain conditions in a decentralized system, however, the start time of a markdown sale where the retailer obtains the highest profit is the least profitable for the manufacturer. To avoid irrational ordering behavior by a retailer against a manufacturer, a revenue-sharing contract is proposed. Second, the mobile application, ``My Own Refrigerator'', is considered in the inventory model. It enables customers to store BOGO products in their virtual storage for later use. That is, customers can drop by the store to pick up the extra freebies in the future. The promotion involves a high degree of uncertainty regarding the revisiting date because customers who buy the product do not need to take both products on the day of purchase. To deal with this uncertainty, we propose a robust multiperiod inventory model by addressing the approximation of a multistage stochastic optimization model. Third, the trade-in program is considered. It is one of the sales promotions that companies collect used old-generation products from customers and provide them with new-generation products at a discount price. It also helps to acquire the additional products which are required for the refurbishment service. A multiperiod stochastic inventory model based on the closed-loop supply chain system is proposed by incorporating the trade-in program and refurbishment service simultaneously. The stochastic optimization model is approximated to the robust counterpart, which features a deterministic second-order cone program.์‹œ์žฅ์˜ ์„ธ๊ณ„ํ™”์— ๋”ฐ๋ฅธ ๊ธฐ์—… ๊ฐ„์˜ ๊ฒฝ์Ÿ์ด ๊ฐ€์†ํ™”๋จ์— ๋”ฐ๋ผ, ๋‹จ๊ธฐ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ํ†ตํ•ด ๊ณ ๊ฐ์˜ ์ œํ’ˆ ๋˜๋Š” ์„œ๋น„์Šค ๊ตฌ๋งค๋ฅผ ์œ ๋„ํ•˜๋Š” ํŒ๋งค์ด‰์ง„์˜ ์—ญํ• ์ด ์ค‘์š”ํ•ด์กŒ๋‹ค. ๊ฐ€๊ฒฉ ์ธํ•˜, ํ–‰์‚ฌ์ƒํ’ˆ ์ฆ์ •, ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํŒ๋งค์ด‰์ง„ ์ „๋žต์ด ์กด์žฌํ•˜์ง€๋งŒ, ๊ณตํ†ต๋œ ์ฃผ์š” ๋ชฉ์ ์€ ๊ธฐ์—…์ด ๊ณ ๊ฐ์—๊ฒŒ ํ˜œํƒ์„ ์ œ๊ณตํ•˜์—ฌ ๊ณ ๊ฐ์˜ ์ˆ˜์š”๋ฅผ ์ฆ๋Œ€์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ํŒ๋งค์ด‰์ง„์˜ ์„ฑ๊ณต์ ์ธ ์ „๋žต์€ ๊ฒฝ์˜๊ณผํ•™ ๋˜๋Š” ๊ณต๊ธ‰๋ง๊ด€๋ฆฌ ๋ถ„์•ผ๋ฅผ ํฌํ•จํ•œ ๊ด€๋ จ ํ•™๊ณ„์˜ ๊ด€์‹ฌ์„ ์ด๋Œ์—ˆ๋‹ค. ์ง€์†์ ์ธ ์šด์˜์„ ์œ„ํ•œ ์ „๋žต์„ ๊ฒ€ํ† ํ•˜๊ณ  ์ „๋žต์  ์ˆ˜์ค€ ๊ณ„ํš์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํŒ๋งค ์ด‰์ง„์˜ ํšจ๊ณผ๋ฅผ ์ž…์ฆํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์šด์˜ ์ˆ˜์ค€์˜ ์†Œ๋งค์—…์ฒด ์ž…์žฅ์—์„œ์˜ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” (i) ๋งˆํฌ ๋‹ค์šด (ii) buy one get one free (BOGO), ๋ฐ (iii) ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ €, ์‹ ๋ฌธ๊ฐ€ํŒ์› ๋ชจํ˜•์— ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฐ์ • ๋ณ€์ˆ˜๋ฅผ ๋„์ž…ํ•˜์—ฌ ์ตœ์ ์˜ ๋งˆํฌ ๋‹ค์šด ์‹œ์ž‘ ์‹œ์ ๊ณผ ์ฃผ๋ฌธ๋Ÿ‰์˜ ์กฐํ•ฉ์„ ์ œ๊ณตํ•˜๋Š” ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์˜ ํŠน์ • ์กฐ๊ฑด์—์„œ๋Š” ์†Œ๋งค์—…์ž๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ์ด์ต์„ ์–ป๋Š” ์‹œ์ ์ด ์ œ์กฐ์—…์ž์—๊ฒŒ ๋‚ฎ์€ ์ˆ˜์ต์„ฑ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์กฐ์—…์ž์— ๋Œ€ํ•œ ์†Œ๋งค์—…์ž์˜ ๋น„ํ•ฉ๋ฆฌ์  ์ฃผ๋ฌธ์„ ๋ง‰๊ธฐ ์œ„ํ•œ ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด์ต๋ถ„๋ฐฐ๊ณ„์•ฝ์„ ํ†ตํ•œ ์ค‘์•™์ง‘๊ถŒํ™” ์‹œ์Šคํ…œ์€ ๋ถ„์‚ฐ ์‹œ์Šคํ…œ์—์„œ ์–ป์€ ์ด์ต์— ๋น„ํ•ด ์†Œ๋งค์—…์ž์™€ ์ œ์กฐ์—…์ž์˜ ์ด์ต์„ ํ–ฅ์ƒ์‹œํ‚ด์„ ์ˆ˜์น˜์‹คํ—˜์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ชจ๋ฐ”์ผ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ``๋‚˜๋งŒ์˜ ๋ƒ‰์žฅ๊ณ ''๋ฅผ ๊ณ ๋ คํ•œ ์žฌ๊ณ ๋ชจํ˜•์„ ๊ณ ๋ คํ•œ๋‹ค. ์ด ์•ฑ์„ ํ†ตํ•ด BOGO ํ–‰์‚ฌ์ œํ’ˆ์„ ๊ตฌ๋งคํ•œ ๊ณ ๊ฐ์€ ์ฆ์ •ํ’ˆ์„ ๊ตฌ๋งค ๋‹น์ผ ๋‚  ๊ฐ€์ ธ๊ฐ€์ง€ ์•Š๊ณ  ๋ฏธ๋ž˜์— ์žฌ๋ฐฉ๋ฌธํ•˜์—ฌ ์ˆ˜๋ นํ•  ์ˆ˜ ์žˆ๋Š” ํ˜œํƒ์„ ๋ฐ›๋Š”๋‹ค. ํ•˜์ง€๋งŒ ์†Œ๋งค์—…์ž ์ž…์žฅ์—์„œ๋Š” ๊ณ ๊ฐ์ด ์ฆ์ •ํ’ˆ์„ ์–ธ์ œ ์ˆ˜๋ นํ•ด ๊ฐˆ ์ง€์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋ฉฐ ์ด๋Š” ๊ธฐ์กด์˜ ์žฌ๊ณ ๊ด€๋ฆฌ ์šด์˜๋ฐฉ์‹์—๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ๊ฐ์˜ ์žฌ๋ฐฉ๋ฌธ์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•œ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์„ ์ˆ˜๋ฆฝํ•˜๋ฉฐ ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค. ์…‹์งธ, ๋ฆฌํผ์„œ๋น„์Šค์™€ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์„ ๊ณ ๋ คํ•œ ํํšŒ๋กœ ๊ณต๊ธ‰๋ง ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์˜ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์žฌ๊ณ ๊ด€๋ฆฌ๋ชจํ˜•์„ ์ œ์•ˆํ•œ๋‹ค. ์‹ ์„ธ๋Œ€ ์ œํ’ˆ, ๋ฆฌํผ์„œ๋น„์Šค ๋ฐ ํŠธ๋ ˆ์ด๋“œ์ธํ”„๋กœ๊ทธ๋žจ์— ๋Œ€ํ•œ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ๋ถˆํ™•์‹คํ•œ ์ˆ˜์š”์— ๋Œ€ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐ˜์˜ํ•จ์— ๋”ฐ๋ผ ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์ด ์ˆ˜๋ฆฝ๋œ๋‹ค. ๋ณต์ˆ˜๊ธฐ๊ฐ„ ์ถ”๊ณ„๊ณ„ํš ์žฌ๊ณ ๋ชจํ˜•์˜ ๊ณ„์‚ฐ์ด ์–ด๋ ต๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ๊ฐ•๊ฑด์ตœ์ ํ™” ๋ชจํ˜•์œผ๋กœ ๊ทผ์‚ฌํ™”ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Sales promotion 1 1.2 Inventory management 3 1.3 Research motivations 6 1.4 Research contents and contributions 8 1.5 Outline of the dissertation 10 Chapter 2 Optimal Start Time of a Markdown Sale Under a Two-Echelon Inventory System 11 2.1 Introduction and literature review 11 2.2 Problem description 17 2.3 Analysis of the decentralized system 21 2.3.1 Newsvendor model for a retailer 21 2.3.2 Solution procedure for an optimal combination of the start time of the markdown sale and the order quantity 25 2.3.3 Profi t function of a manufacturer 25 2.3.4 Numerical experiments of the decentralized system 27 2.4 Analysis of a centralized system 35 2.4.1 Revenue-sharing contract 35 2.4.2 Numerical experiments of the centralized system 38 2.5 Summary 40 2.5.1 Managerial insights 41 Chapter 3 Robust Multiperiod Inventory Model with a New Type of Buy One Get One Promotion: "My Own Refrigerator" 43 3.1 Introduction and literature review 43 3.2 Problem description 51 3.2.1 Demand modeling 52 3.2.2 Sequences of the ordering decision 54 3.3 Mathematical formulation of the IMMOR 56 3.3.1 Mathematical formulation of the IMMOR under the deterministic demand 58 3.3.2 Mathematical formulation of the IMMOR under the stochastic demand 58 3.3.3 Distributionally robust optimization approach for the IMMOR 60 3.4 Computational experiments 76 3.4.1 Experiment 1: tractability of the RIMMOR 77 3.4.2 Experiment 2: robustness of the RIMMOR 78 3.4.3 Experiment 3: e ect of duration of the expiry date under the different customers' revisiting propensities 78 3.5 Summary 83 3.5.1 Managerial insights 83 Chapter 4 Robust Multiperiod Inventory Model Considering Refurbishment Service and Trade-in Program 85 4.1 Introduction 85 4.2 Literature review 91 4.2.1 Effects of the trade-in program and strategic-level decisions for the trade-in program 91 4.2.2 Inventory or lot-sizing model in a closed-loop supply chain system 94 4.2.3 Distinctive features of this research 97 4.3 Problem description 100 4.3.1 Demand modeling 103 4.3.2 Decision of the inventory manager 105 4.4 Mathematical formulation 108 4.4.1 Mathematical formulation of the IMRSTIP under the deterministic demand model 108 4.4.2 Mathematical formulation of the IMRSTIP under the stochastic demand model 110 4.4.3 Distributionally robust optimization approach for the IMRSTIP 111 4.5 Computational experiments 125 4.5.1 Demand process 125 4.5.2 Experiment 1: tractability of the RIMRSTIP 128 4.5.3 Experiment 2: approximation error from the expected value given perfect information 129 4.5.4 Experiment 3: protection against realized uncertain factors 130 4.5.5 Experiment 4: di erences between modeling demands from VARMA and ARMA 131 4.5.6 Experiments 5 and 6: comparisons of backlogged refurbishment service with or without trade-in program 133 4.6 Summary 136 Chapter 5 Conclusions 138 5.1 Summary 138 5.2 Future research 140 Bibliography 142 Chapter A 160 A.1 160 A.2 163 A.3 163 A.4 164 A.5 165 A.6 166 Chapter B 168 B.1 168 B.2 171 B.3 172 Chapter C 174 C.1 174 C.2 174 ๊ตญ๋ฌธ์ดˆ๋ก 179Docto

    AI alignment and generalization in deep learning

    Full text link
    This thesis covers a number of works in deep learning aimed at understanding and improving generalization abilities of deep neural networks (DNNs). DNNs achieve unrivaled performance in a growing range of tasks and domains, yet their behavior during learning and deployment remains poorly understood. They can also be surprisingly brittle: in-distribution generalization can be a poor predictor of behavior or performance under distributional shifts, which typically cannot be avoided in practice. While these limitations are not unique to DNNs -- and indeed are likely to be challenges facing any AI systems of sufficient complexity -- the prevalence and power of DNNs makes them particularly worthy of study. I frame these challenges within the broader context of "AI Alignment": a nascent field focused on ensuring that AI systems behave in accordance with their user's intentions. While making AI systems more intelligent or capable can help make them more aligned, it is neither necessary nor sufficient for alignment. However, being able to align state-of-the-art AI systems (e.g. DNNs) is of great social importance in order to avoid undesirable and unsafe behavior from advanced AI systems. Without progress in AI Alignment, advanced AI systems might pursue objectives at odds with human survival, posing an existential risk (``x-risk'') to humanity. A core tenet of this thesis is that the achieving high performance on machine learning benchmarks if often a good indicator of AI systems' capabilities, but not their alignment. This is because AI systems often achieve high performance in unexpected ways that reveal the limitations of our performance metrics, and more generally, our techniques for specifying our intentions. Learning about human intentions using DNNs shows some promise, but DNNs are still prone to learning to solve tasks using concepts of "features" very different from those which are salient to humans. Indeed, this is a major source of their poor generalization on out-of-distribution data. By better understanding the successes and failures of DNN generalization and current methods of specifying our intentions, we aim to make progress towards deep-learning based AI systems that are able to understand users' intentions and act accordingly.Cette thรจse discute quelques travaux en apprentissage profond visant ร  comprendre et ร  amรฉliorer les capacitรฉs de gรฉnรฉralisation des rรฉseaux de neurones profonds (DNN). Les DNNs atteignent des performances inรฉgalรฉes dans un รฉventail croissant de tรขches et de domaines, mais leur comportement pendant l'apprentissage et le dรฉploiement reste mal compris. Ils peuvent รฉgalement รชtre รฉtonnamment fragiles: la gรฉnรฉralisation dans la distribution peut รชtre un mauvais prรฉdicteur du comportement ou de la performance lors de changements de distribution, ce qui ne peut gรฉnรฉralement pas รชtre รฉvitรฉ dans la pratique. Bien que ces limitations ne soient pas propres aux DNN - et sont en effet susceptibles de constituer des dรฉfis pour tout systรจme d'IA suffisamment complexe - la prรฉvalence et la puissance des DNN les rendent particuliรจrement dignes d'รฉtude. J'encadre ces dรฉfis dans le contexte plus large de ยซl'alignement de l'IAยป: un domaine naissant axรฉ sur la garantie que les systรจmes d'IA se comportent conformรฉment aux intentions de leurs utilisateurs. Bien que rendre les systรจmes d'IA plus intelligents ou capables puisse aider ร  les rendre plus alignรฉs, cela n'est ni nรฉcessaire ni suffisant pour l'alignement. Cependant, รชtre capable d'aligner les systรจmes d'IA de pointe (par exemple les DNN) est d'une grande importance sociale afin d'รฉviter les comportements indรฉsirables et dangereux des systรจmes d'IA avancรฉs. Sans progrรจs dans l'alignement de l'IA, les systรจmes d'IA avancรฉs pourraient poursuivre des objectifs contraires ร  la survie humaine, posant un risque existentiel (ยซx-risqueยป) pour l'humanitรฉ. L'un des principes fondamentaux de cette thรจse est que l'obtention de hautes performances sur les repรจres d'apprentissage automatique est souvent un bon indicateur des capacitรฉs des systรจmes d'IA, mais pas de leur alignement. En effet, les systรจmes d'IA atteignent souvent des performances รฉlevรฉes de maniรจre inattendue, ce qui rรฉvรจle les limites de nos mesures de performance et, plus gรฉnรฉralement, de nos techniques pour spรฉcifier nos intentions. L'apprentissage des intentions humaines ร  l'aide des DNN est quelque peu prometteur, mais les DNN sont toujours enclins ร  apprendre ร  rรฉsoudre des tรขches en utilisant des concepts de ยซcaractรฉristiquesยป trรจs diffรฉrents de ceux qui sont saillants pour les humains. En effet, c'est une source majeure de leur mauvaise gรฉnรฉralisation sur les donnรฉes hors distribution. En comprenant mieux les succรจs et les รฉchecs de la gรฉnรฉralisation DNN et les mรฉthodes actuelles de spรฉcification de nos intentions, nous visons ร  progresser vers des systรจmes d'IA basรฉs sur l'apprentissage en profondeur qui sont capables de comprendre les intentions des utilisateurs et d'agir en consรฉquence

    Stochastic Model Predictive Control for Eco-Driving Assistance Systems in Electric Vehicles

    Get PDF
    Electric vehicles are expected to become one of the key elements of future sustainable transportation systems. The first generation of electric cars are already commercially available but still, suffer from problems and constraints that have to be solved before a mass market might be created. Key aspects that will play an important role in modern electric vehicles are range extension, energy efficiency, safety, comfort as well as communication. An overall solution approach to integrating all these aspects is the development of advanced driver assistance systems to make electric vehicles more intelligent. Driver assistance systems are based on the integration of suitable sensors and actuators as well as electronic devices and software-enabled control functionality to automatically support the human driver. Driver assistance for electric vehicles will differ from the already used systems in fuel-powered cars such as electronic stability programs, adaptive cruise control etc. in a way that they must support energy efficiency while the system itself must also have a low power consumption. In this work, an eco-driving functionality as the first step towards those new driver assistance systems for electric vehicles will be investigated. Using information about the internal state of the car, navigation information as well as advanced information about the environment coming from sensors and network connections, an algorithm will be developed that will adapt the speed of the vehicle automatically to minimize energy consumption. From an algorithmic point of view, a stochastic model predictive control approach will be applied and adapted to the special constraints of the problem. Finally, the solution will be tested in simulations as well as in first experiments with a commercial electric vehicle in the SnT Automation & Robotics Research Group (SnT ARG)

    Distributionally robust project crashing with partial or no correlation information

    No full text
    Crashing is shortening the project makespan by reducing activity times in a project network by allocating resources to them. Activity durations are often uncertain and an exact probability distribution itself might be ambiguous. We study a class of distributionally robust project crashing problems where the objective is to optimize the first two marginal moments (means and SDs) of the activity durations to minimize the worstโ€case expected makespan. Under partial correlation information and no correlation information, the problem is solvable in polynomial time as a semidefinite program and a secondโ€order cone program, respectively. However, solving semidefinite programs is challenging for large project networks. We exploit the structure of the distributionally robust formulation to reformulate a convexโ€concave saddle point problem over the first two marginal moment variables and the arc criticality index variables. We then use a projection and contraction algorithm for monotone variational inequalities in conjunction with a gradient method to solve the saddle point problem enabling us to tackle large instances. Numerical results indicate that a manager who is faced with ambiguity in the distribution of activity durations has a greater incentive to invest resources in decreasing the variations rather than the means of the activity durations
    corecore