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Abstract

The United Kingdom’s (UK’s) Climate Change Act 2008 sets a “net zero” target on green-
house gas emissions by 2050. The Act has triggered the Electricity Market Reform (EMR)
started in 2013, which aims at decarbonising electricity supply, ensuring the security of
supply, and minimising the cost of energy to consumers. This thesis focus on policies and
instruments that support the EMR. Chapter 1 provides a review of the UK’s Climate Change
Act, with a focus on the energy sector. Chapters 2 and 3 focus on the British decarbonisa-
tion policy levied on the electricity sector. Chapter 4 studies competition in the wholesale
electricity market, to investigate the existence of market power. Chapter 5 examines the
impact of dynamic retail tariffs and demand response, which are possible instruments to
secure electricity supply. Chapter 6 concludes.

Decarbonisation requires increasing the capacity of renewable energy to phase out carbon
insensitive fossil plants, and the British Carbon Price Support (CPS, a carbon tax) gives
adequate, credible and sufficiently durable carbon price signals for low-carbon investments.
Chapter 2 studies the impact of the CPS on the CO2 emission reduction of wind in the Great
Britain’s (GB’s) electricity market. We show how to measure the Marginal Displacement
Factor (MDF, tonnes CO2/MWh) of wind. The short-run (SR) MDF is estimated economet-
rically while the long-run (LR) MDF is calculated from a unit commitment model of the
GB system in 2015. We examine counter-factual fuel and carbon price scenarios. The CPS
lowered the SR-MDF by 7% in 2015 but raised the LR-MDF (for a 25% increase in wind
capacity) by 18%. We discuss reasons for the modest differences in the SR- and LR-MDFs.

Being a unilateral carbon tax, the CPS can distort electricity trade with external markets.
Chapter 3 shows how to estimate the deadweight cost of the distortion and possible external
global benefits from reduced emissions, and investigate econometrically the impact of the
CPS on GB’s cross-border electricity trade with France and The Netherlands. Over 2015-
2018 the CPS raised GB day-ahead electricity price by about e11/MWh, after allowing
for replacement by cheaper imports. It raised French wholesale prices by 3.5% and Dutch
wholesale prices by 2.8%. The CPS increased GB imports by 12 TWh/yr, thereby reducing
carbon tax revenue by 100 m/yr. Congestion income increased by e150 m/yr, half transferred
to foreign interconnector owners. The unilateral CPS created e80 m/yr deadweight loss,
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about 32% of the initial social value created by the interconnector, or 4% of the global
emissions benefit of the CPS at e2 bn/yr. About 0.9% of the CO2 emission reduction is
undone by France and The Netherlands, the monetary loss of which is about e18 m/yr.

Cost pass-through rates give a useful perspective of market competition, which determines
whether consumers are overwhelmed by the market power. Chapter 4 studies how generation
costs are passed through to electricity wholesale prices in GB between 2015 and 2018. Our
empirical results fail to reject 100% pass-through rates for gas prices, carbon prices, and
exchange rates, indicating a competitive GB wholesale electricity market. We observe higher
pass-through rates in peak compared to off-peak periods, because generators bidding at a
lower rate during off-peak periods to supply at minimum load to avoid the cost of shutting
down and starting up. We extend the argument by assessing generators’ bidding behaviour.
The study also considers how two key events occurred during the examined period – the
drastic decline in the GBP/EUR exchange rate since the Brexit referendum, and major
reformation of the EU Emissions Trading System – have affected the electricity bill to a
typical domestic household, showing that they have increased the average annual bills by
e49(£41)/year/household, or a 7% rise.

Finally, one possible solution to the security of electricity supply is demand response,
which is usually achieved through dynamic tariffs by offering consumers financial incentives
to shift or reduce peak load to off-peak periods. In Chapter 5, we construct an agent-based
model in which the retailer sets dynamic tariffs to maximize profit, and consumers respond
to the prices. The model suggests that in the baseline scenario, the dynamic tariff would
generate for the retailer an additional e7.35 of annual profit from the average household.
For a firm equal in size to British Gas in 2017, this is equivalent to e40 million of total
benefit. With market regulations, the dynamic tariff will benefit consumers and retailers alike,
resulting in a win–win condition. We also find that the interaction between demand-side
management stimuli and market regulation can further reduce consumer-level electricity
demand, increase retail profit, and lower consumers’ electricity bills.
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Chapter 1

A Decade of the UK Climate Change Act:
With a focus on the power sector

1.1 Introduction

Aiming at creating an unprecedented legal architecture for the British climate action, the
Parliament of the United Kingdom (UK) passed the Climate Change Act (hereafter Act) at
the end of 2008 (CISL [39]).

Being one of the earliest binding and long-term framework laws on climate governance
globally, the Act enjoys the following five features (Fankhauser et al. [58]). First, it sets a
statutory long-term emission target, mandating that the total greenhouse gas (GHG) emissions
(within the UK) in 2050 must be at least 80% lower than the 1990 level. This target can
be gradually achieved by incorporating the second feature, which sets five-year carbon
budgets on a rolling basis. Each budget would provide a five-year, statutory cap on the total
GHG emission over that period. The third feature is the provision of continual adaptation
planning by introducing climate change risks and adaptation responses to public and private
sectors for decision-making. Fourth, the Act created an independent advisory body, namely
the Committee on Climate Change (CCC), to recommend and monitor mitigation and
adaptation, and to enhance the long-term credibility of the Act. Finally, the Act assigns clear
responsibilities and reporting obligations on the government to account to the Parliament,
third parties (such as the CCC) and the court (if necessary) to ensure climate policy remains
on track.

This chapter gives an overview of the achievement of the UK’s Climate Change Act
during the past decade, in particular in the power sector. It also discusses lessons for other
countries. In Section 1.2, we focus on decarbonisation policies levied on the power sector
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and discuss the associated impacts. Section 1.3 briefly summarises decarbonisation processes
in other sectors. Section 1.4 discusses the UK’s achievements on emissions reduction and
lessons for other countries. Section 1.5 gives the roadmap to meet the newly proposed
net-zero target by 2050 and the potential challenges. Finally, Section 1.6 concludes.

1.2 Impacts on the power generation sector

GHG mitigation in the power generation sector was the government’s highest priority for
tackling climate change in 2008. It has triggered the Electricity Market Reform (EMR) which
aims at decarbonising electricity supply, minimising the cost of energy to consumers, and
ensuring the security of supply. Some policies introduced in this section, such as Contracts for
Difference and Carbon Price Floor, were part of the initial EMR package. Other policies also
contributed to the emissions reduction in the UK, including policies subsidising renewable
energy and the EU air quality Directives, and we will discuss those policies in detail in this
section.

Figure 1.1 presents the UK’s GHG emissions by sectors between 1990-2019. Since
2008, the UK’s total GHG emissions have been reduced by 33.4% from 643 MtCO2e to
435 MtCO2e.1 About 62% of the total GHG emissions reduction since 2008 came from the
power sector.

The profound success in decarbonising the power sector mainly came from displacing
fossil fuels by renewable energy such as wind and solar photovoltaics (PV). Electricity
generated from fossil fuels has been drastically reduced from 76% in 2008 to 46% in 2018,2

and in 2019 the UK generated more electricity from renewables than fossil fuels for the first
time since the Industrial Revolution. The UK’s carbon intensity of electricity generation has
been drastically reduced from 0.496 tCO2/MWh in 2008 to (expected) 0.233 tCO2/MWh in
2020.3

Another factor that drives the successful decarbonisation is switching the baseload supply
from coal-fired power plants to CCGTs. In 2008, about 29.5% of domestic electricity demand
came from coal. This number was reduced to 1.6% in 2019. Besides carbon taxes, the gradual
phase-out of coal-fired power plants over the past five years also played a non-trivial role. To
some lesser extent, the lower domestic electricity generation also contributed to the GHG
emissions reduction. In 2018, the UK’s domestic electricity generation fell by 14.5% relative
to the 2008 level.

1See GOV.UK
2See energyscanner.
3See GOV.UK.

https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2019
https://www.energyscanner.com/uk-fuel-mix/
https://www.gov.uk/government/collections/government-conversion-factors-for-company-reporting
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Fig. 1.1 The UK’s Greenhouse Gas Emissions by Sectors, 1990-2019

Source: 2018 UK Greenhouse Gas Emissions, Final figures.

The drastic change was mostly brought about by energy policies such as carbon prices,
renewable subsidies, demand-side policies, and air quality directives (regulations). In the
rest of this section, we will focus on each of these policies and discuss their impacts on
decarbonising the power sector.

1.2.1 Carbon prices

The UK electricity sector has been participating in the EU Emission Trading System (ETS)
since its first introduction in 2005. It will remain in the system until 31 December 2020. The
EU ETS is a “cap and trade” scheme where a total emission cap is set each year. Large GHG
emitters are allowed to trade the emission permits with one another. Hence the ETS price is
fluctuating based on the supply and demand of the total emission permits. On top of the ETS,
the British electricity generators also pay a fixed carbon tax called the Carbon Price Support
(CPS), introduced in 2013 and stabilised at £18/tCO2 since 1 April 2015.

The merit order effect ranks the available sources of electricity supply based on ascending
order of (marginal) prices, formulating the electricity supply curve. The two carbon prices
(the ETS and the CPS) have made coal the more expensive fuel (than gas) in Britain’s
electricity generation. Therefore, a newly built wind farm (who has close-to-zero marginal
cost of electricity generation) would displace the more carbon-intensive fuel (i.e. coal instead
of gas), substantially reducing GHG emissions (See Chapter 2).

https://www.gov.uk/government/statistics/final-uk-greenhouse-gas-emissions-national-statistics-1990-to-2018
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The future of the UK carbon price remains unclear. The latest policy paper published
by Her Majesty’s Revenue and Customs (HMRC [79]) proposes several possibilities to
replace the EU ETS. On the one hand, the government has proposed a Carbon Emission Tax
(CET) in its Budget 2018 (HMRC [78]). The CET will cover all stationary installations that
are currently participating in the EU ETS, and the proposed rate was £16/tCO2. Another
possibility is to have an Emission Trading System for the UK, which replaces the EU ETS. It
is possible to link the UK ETS with the EU ETS if it meets both sides’ interests. Either way,
the aim is to maintain a high carbon price in the electricity sector so that the UK would meet
its ambitious 2050 GHG emission target.

Using LCP’s EnVision model of the GB power sector, Ofgem [116] concludes that carbon
pricing is the most important policy in achieving GB’s decarbonisation targets, contributing
more emissions reduction than the combination of renewable subsidies, demand-side policies,
and air quality directives. In Chapter 2, we estimate that in 2015 the CPS reduced the total
GHG emissions in the GB electricity system by 44.5 MtCO2, or 5.6% of the total GHG
emissions in 1990.

Despite the fact that the CPS has substantially reduced GHG emission in the GB power
generation sector, other EU countries refused to introduce a comparable carbon tax to match.4

As GB is currently trading electricity with several continental countries via interconnectors
(i.e. underwater electricity cables), the unilateral CPS would distort trade and result in
carbon leakage. In Chapter 3, we estimate that between 2015-2018, the monetary value of
trade distortion is e80 million/year, or about 32% of the social value (i.e. market surplus
from trading) created by the interconnector. We also estimate that about 0.9% of the CO2

emissions reduction from the CPS was undone by France and The Netherlands.
At the time of writing, GB is interconnected with France, Belgium, The Netherlands,

and the island of Ireland. There are three more interconnectors under construction and two
more in early development. The trade distortion and carbon leakage can be much greater as
interconnector capacity increases. This could be resolved via equalising the carbon prices
between GB and the EU, probably by convincing the EU to implement a carbon tax that is
similar to the British CPS.

1.2.2 Renewable subsidies

Various renewable subsidies were implemented since the beginning of the 21st century.
As one of the main support mechanisms for large-scale renewable electricity projects, the

4In the summer of 2019, the Dutch Parliament failed to pass a vote on a proposal to introduce a Dutch
Carbon Price Floor.
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Renewable Obligation Certificates (ROCs) were first introduced in GB in 2002, and since
2005, Northern Ireland took part in the initiative.

The ROCs obliged licenced electricity suppliers to source a certain proportion of the
electricity they supply from renewable sources. The obligation, escalating yearly between
2010-2017, substantially reduced GHG emission in the UK energy generation sector. Be-
tween 1 April 2016 and 31 March 2017, 22.2% of the total electricity supplied within the
UK was from renewable sources, and 28.3 MtCO2e emissions were avoided through renew-
able generation under the scheme (Ofgem [114]), which equals to 3.6% of the total GHG
emissions in 1990.

Since 2017, the Renewable Obligation scheme has been closed to new entrances (while
the existing participants remain until 2037), replaced by the Contracts for Difference (CfD)
scheme introduced in the Energy Act 2013.

The first allocation round of the CfD scheme ran from October 2014 to March 2015.
Under the CfDs scheme, a low carbon electricity generator sign a private contract with a
government-owned company, and the generator is paid the difference between the “strike
price” and the “reference price”. The “strike price” refers to a price reflecting the cost
of investing in a particular low-carbon technology, and the “reference price” refers to the
market price of electricity in the GB market, such as the wholesale price. The CfDs scheme
hence incentivises low-carbon investments in the electricity generation sector by providing
renewable generators with a high and stable revenue stream and hedging the risks from
exposure to the volatile wholesale markets.

Renewable energy generators also enjoyed other subsidies such as Levy Exemption
Certificates (LECs) between 2001-2015 and Feed-in Tariffs (FiT) between 2010-2019. The
LECs exempted renewable generators from paying the Climate Change Levy (CCL), an
energy consumption tax, hence giving renewable generators competitive advantages in the
market. The FiT scheme, on the other hand, subsidised small-scale low-carbon electricity
generators by paying a “generation tariff” to whoever generates their own electricity from
renewable energy technologies such as solar panels and wind turbines. Therefore, under the
FiT scheme, any individual or party connected to the grid became a “prosumer” and can
either consume or sell electricity.

Using the EnVision model, Ofgem [116] estimates that renewable subsidies are the
second-most significant contributor to the GHG emissions reduction in the energy generation
sector, reduced cumulative emissions by 235 MtCO2 between 2010-2018, or 38% of total CO2

mitigation from key decarbonisation policies (introduced in this chapter) in the energy sector.
It is also worth mentioning that the scale of emissions reduction might be underestimated
because, in the long run, the sector may benefit from learning-by-doing.
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1.2.3 Demand-side policies

Both carbon prices and renewable subsidies are supply-side policies (except the FiT scheme,
which targets on both supply and demand sides). Meanwhile, demand-side policies are also
recognised as useful policy tools to achieve emissions reduction targets. Besides aiming
at reducing energy demand, demand-side policies also aim to make energy demand more
flexible and compatible with the growing capacity of variable renewable energy sources in
the fuel mix.

Among various demand-side policies, the rollout of smart meters will play a crucial
part in a future low-carbon energy system. Smart meters, some with in-house displays,
automatically record and transmit households’ energy consumptions to their energy suppliers
on a real-time basis. It allows households to participate in dynamic tariff schemes, where
electricity prices are time-varying to incentivise households to shift electricity demand from
high-price to low-price periods. In Chapter 5, we estimate that dynamic tariffs bring benefits
to both households and retailers if the market regulator sets specific rules which shift the
market gain from retailers to consumers.

In a low-carbon energy system of the future, with over 80% of electricity coming from
variable renewable energy and greater electrification of transport and heat, smart meters
would be crucially important to balance supply and demand of electricity. Furthermore,
the long-run effects of smart meters and dynamic tariffs cannot be ignored – they make
low-carbon technologies more attractive to households and incentivise them to switch to
more energy-efficient and smart household appliances.

Two other on-going demand-side policies include the Energy Company Obligation (ECO)
began in April 2013 and the Renewable Heat Incentive (RHI) for domestic (1 April 2014
onwards) and non-domestic customers (15 July 2009 onwards). The ECO scheme obliges
energy suppliers to promote energy efficiency measures to domestic energy users, including
actions on replacing and upgrading inefficient heating systems. The RHI scheme, on the
other hand, provides financial incentives to renewable heat such as solar thermal panels and
biomass boilers.

Before the ECO scheme, other demand-side policies were also contributing to GHG
emissions reduction. One example is the Carbon Emissions Reduction Target (CERT) that ran
between 1 April 2008 and 31 December 2012. The CERT required large gas and electricity
suppliers to achieve carbon emissions reduction targets from domestic premises in Britain.
Another example would be the Community Energy Saving Programme (CESP) that ran from
1 October 2009 to 31 December 2012. The CESP set an overall CO2 emissions reduction
target on energy companies, and required energy suppliers and generators to deliver energy-
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saving measures to domestic consumers in low-income areas. In the end, the CESP achieved
about 85% of its initial CO2 emissions reduction target (Watson and Bolton [151]).

1.2.4 EU air quality Directives

Alongside the domestic policies and laws, UK emitters are also under the air quality regula-
tions imposed by the EU. One example is the Large Combustion Plants (LCPs) Directive that
entered into force on 27 December 2001. The Directive targeted power plants whose rated
thermal input is equal to or greater than 50 MW, and aimed to reduce emissions of acidifying
pollutants, particles, and ozone precursors. The impact of the EU air quality Directives has
been substantial. Between 2004 and 2015, the EU-wide SO2, NOx, and dust emissions from
large combustion plants were reduced by 77%, 49.5%, and 81%, respectively.5 German et al.
[71] estimate that of the observed emissions reduction, 71% of SO2, 38% of NOx, and 75%
of dust were due to the improvement in the emission factor, driven by EU legislations.

Another example is the Industrial Emissions Directive (IED) transposed into legislation by
the EU Member States in 2013. The IED aimed to reduce harmful industrial emissions across
the EU via better application of the “best available techniques” – the existing techniques
that are optimal for remissions reductions. At the time of writing, a backwards-looking
evaluation of the IED is ongoing.6 The expectation is that the IED would increase legislation
effectiveness, improve the environment (mainly by causing the early retirement of polluting
plants), and stimulate innovation.

1.3 The Decarbonisation Progresses in Other Sectors

In 2019, the UK’s GHG emissions were 55% of those in 1990, on the way to the initial 2050
target of 80%.7 The power sector has been so far the most successful sector in decarbonisation,
masking the failure in other sectors.

Business sectors, in which GHG emissions mostly come from industrial, commercial,
and miscellaneous combustion, are contributing the second-highest amount of emissions
reduction. The reduction is mostly due to the accelerating delivery of renewable energy,
benefited from initiatives such as the RE1008 that sets a public goal for 100% renewable
energy used by influential businesses by a particular year. In the near future, a new and low-
carbon economy would require new business models that reflect changes in society. A good

5See EEA.
6See Thomson Reuters Practical Law
7See Provisional UK greenhouse gas emissions national statistics 2018.
8See The Climate Group.

https://www.eea.europa.eu/data-and-maps/data/lcp-9
https://uk.practicallaw.thomsonreuters.com/w-024-6818?comp=pluk&transitionType=Default&contextData=(sc.Default)&OWSessionId=f0b609b7d60d48838c5af1d328cf8e5a&skipAnonymous=true&firstPage=true
https://www.gov.uk/government/statistics/provisional-uk-greenhouse-gas-emissions-national-statistics-2018
https://www.theclimategroup.org/RE100
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example is the sharing economy, which refers to an economic model where people acquire,
provide, and share access to goods and service that is often facilitated by a community-based
on-line platform. The sharing economy would potentially lowers GHG emissions (Wosskow
[160]) and grew by 60% in the 18 months between January 2016 and July 2017 in the UK
(Ozcan et al. [120]).

The GHG emissions in the transport sector have been rather flat during the past decade
(see Figure 1.1). However, research has shown that the electrification in the transport sector
is experiencing a tipping point, where the sale of electric vehicles (EV) in the UK seems to
be experiencing an exponential growth (CISL [39]). The growing share of electric vehicle on
the road should have a significant effect on GHG mitigation, given the low carbon intensity
of electricity. However, it is still challenging to decarbonise the aviation sector, as it is neither
possible to electrify commercial air travel by 2050 nor to offset the vast amount of GHG
from aviation by afforestation, although biofuels offer a potential solution if their carbon
intensity can be reduced.

The residential sector also experienced limited decarbonisation progress during the
past decade. Benefiting from successful decarbonisation in electricity generation, GHG
emissions in the residential sector were reduced by 15% between 2008 and 2018. However,
the decarbonisation in the construction (of buildings) process is still challenging. Stronger
regulation approaches are advocated to boost energy efficiency in old buildings (CISL [38])
and tight standards for new buildings.

Figure 1.1 shows that in the UK between 2008-2018, the GHG emissions from the
agricultural sector were stable at 45MtCO2e/year, or about 10% of the total GHG emission in
2018.9 The agricultural sector is considered as one of the hardest sectors to decarbonise, and
stronger regulatory policies should be brought to the table, such as financial support on the
emissions reduction, greater investment on emissions reduction technology, and accelerating
the rate of tree planting (CCC [32]).

To summarise, heat, transport and business sectors are the next battlefields for decarboni-
sation. Substantially decarbonising the power sector is the foundation for the electrification
of transport and business sectors. Therefore, decarbonisation in the power sector should be
the top priority for most countries.

1.4 Achievements and Lessons

Besides the achievement in the environmental outcomes and the reform of the power sector,
the Climate Change Act has also been successful in other areas. Fankhauser et al. [58]

9See GOV.UK

https://www.gov.uk/government/statistics/electricity-section-5-energy-trends
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interviewed 33 stakeholders and experts in the field of climate change and summarised three
major achievements of the Act so far.

First, the Act has transformed the political debate on climate change. The delivery of
detailed reports, such as the annual reports by the CCC and the carbon budgets every five
years, provide focal points on climate change-related debates. The CCC reports have become
the key resource for policymakers, business stakeholders, public media, and academics to
conduct policy analysis.

The second achievement is that the need for decarbonisation is now widely accepted. The
UK’s main political parties have invested a significant amount of political resources in the
Act, lowering the risk of political back-tracking (of the Act). The carbon budgets and the
CCC also establish strong guardrails against deviations from the long-term path, enabling
the UK to maintain its commitments to tackle down climate change.

Finally, one of the unexpected success of the Act is that the UK has become the in-
ternational leader of climate change. The Act is one of the factors that the UK played a
leadership role in the negotiation of the Paris Agreement. Not only politicians but also private
companies draw on the Act on the international stage of climate legislation.

However, Fankhauser et al. [58] also argue that there are still issues with the Climate
Change Act. For example, the gap between the emission target and the policies designed to
implement them has been widened – as discussed in Section 3, apart from its success in the
power sector, the progresses in other sectors seems to have stalled. It has also been pointed
out that mitigating the effects of climate change like flooding have not been effectively
covered by the Act.

The Climate Change Act provides lessons to other countries, especially those who intend
to legislate their GHG emissions reduction targets. Fankhauser et al. [58](p.1) summarise four
key aspects that the UK’s Climate Change Act brings to the international climate law-making:

“A comprehensive framework law is an essential tool to coordinate and advance
climate action with respect to both reducing greenhouse gas emissions and
climate resilience; a good climate law contains statutory targets, assigns clear
duties and responsibilities and provides clarity about the long-term direction
of travel; economy-wide, multi-year targets, set well in advance, help to define
a clear, yet flexible path towards the long-term climate objective; a strong
independent body is critically important to ensure consistent policy delivery and
evidence-based decision-making.”

The decarbonisation in the power sector plays a fundamental role to achieve the long-term,
ambitious emissions reduction target. Here, we summarise the UK’s lessons on decarbonising
power sectors.
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First, among the decarbonisation policies, carbon prices and renewables support play
crucial roles. A carbon price in the energy sector potentially makes coal the more expensive
fuel, and newly built wind farms would then displace the more polluting coal-fired power
plants instead of CCGTs. On the other hand, if the social cost of carbon is estimated to be
high (which is the case in most recent literature, see e.g. Stern [143]), renewable support
would bring benefit to the economy in the long-run (Cullen [45]).

Next, the rapid decline in the cost of renewable energy (Ilas et al. [84]) indicates that
stable and credible policies (such as CfD and FiT) stimulate learning-by-doing. Therefore,
subsidising other new but costly decarbonisation technologies such as producing hydrogen
for a variety of uses including storage and generation later and Carbon Capture and Storage
(CCS) could also potentially create learning-by-doing.

Third, in the future, the balancing of supply and demand will be challenging in a highly
renewable power system. Besides flexible technologies such as pumped storage and storing
hydrogen, demand-side policies can substantially lower balancing costs. Therefore, a long-
term plan to incentivise demand response10 is essential.

Last but not least, it is important to keep the energy bill affordable to consumers, and
a competitive energy market drives down costs and prices. Although this last lesson is not
directly related to decarbonisation policies, it is crucial for the redistribution of social welfare.
In 2016, an average household used 4% of their total expenditure on energy, raised from 3%
in the early 2000s. For households in the bottom 10% of the income distribution, the number
increases to 8.4% (relative to less than 6% in the early 2000s).11

1.5 Targeting on net zero

Despite the aforementioned achievements in decarbonisation, the CCC [32] estimates that
the UK is not on track to its 2023 decarbonisation commitment in the fourth (2023-2028)
carbon budget. Hence it urges the government to set clear, stable, and well-designed policies.
The CCC also recommended that it was feasible, cost-effective, and necessary for the UK to
set a “net zero” GHG emissions target by 2050. In June 2019, the UK’s Parliament passed
legislation targeting to reduce the GHG emissions to "net zero" by 2050. This has made the
UK the first major economy to target on a zero-carbon future.

Net zero, also known as "carbon neutrality", seeks to completely offset the emitted GHGs
via natural carbon sinks such as oceans and forests, and artificial carbon sinks such as CCS

10Balancing supply and demand from the demand side.
11See Ofgem.

https://www.ofgem.gov.uk/data-portal/energy-spend-percentage-total-household-expenditure-uk
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systems for biomass. The target covers all sectors of the economy, including international
aviation and shipping that were initially ignored.

The net-zero target is considered to be a great opportunity for the power sector because
completely decarbonising the sector is essential for achieving this target. This would require
the government to develop a highly renewable power system. In a pathway to achieving a
net-zero power sector, the UK government has set a goal to deploy 40 GW of offshore wind
by 2030.12

In simulating the UK power system beyond 2030, the National Infrastructure Commission
(NIC [106]) demonstrates that a power system relying on renewables and flexible technologies
such as hydrogen-powered generation could be substantially cheaper (by 30%) than a power
system that relies heavily on nuclear power plants (such as the current situation where nuclear
power plants contribute about 20% of the UK’s annual electricity supply). On the other hand,
the development of CCS enables bioenergy to displace nuclear power stations and generate
baseload.

The net-zero target cannot be achieved by the power sector alone. Policies targeting
on efficient buildings and low-carbon heating, EV markets, CCS clusters, afforestation and
peatland restoration, as well as low-carbon farming facilities must be ramped up significantly
and delivered with far greater urgency. That means strong government leadership is required,
and support from businesses and communities is also needed.

1.6 Conclusion

The UK’s Climate Change Act so far has been of a great success, especially in decarbonising
the power sector. The UK’s experience brings valuable lessons to other countries, especially
those who have not yet legislated a carbon reduction target by a certain year.

The UK is also among the first countries to set a net-zero target, which would require it to
fully decarbonise the energy sector and then electrify (most) other sectors to take advantage
of the low carbon intensity of electricity. This indicates that the power sector is playing a
central role in achieving carbon emissions reduction targets.

It is also worth noticing that carbon mitigation does not necessarily conflict with economic
growth. From 2009 to the end of 2019, the UK’s GDP has grown by 20%, while its total
GHG emissions have been reduced by 32%. Although one may argue that the UK’s GDP
growth could be even higher without the emissions reduction target, BEIS [15] shows that
between 1990-2016, while the emissions reduction in the UK (42%) has been fallen at a

12See renews.

https://renews.biz/56613/uk-conservatives-confirm-40gw-offshore-wind-pledge/
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much higher rate than other G7 countries (3% on average), the UK’s GDP is growing at a
faster rate (67%) than others (61%).



Chapter 2

The Impact of a Carbon Tax on the CO2

Emissions Reduction of Wind

2.1 Introduction

Energy policy aims to reduce emissions at least long-run cost while ensuring reliability.
Policies to support wind or solar panels electricity (PV), improve efficiency, or shift peak
demand need to be assessed on the cost of the emissions reduced. Ofgem [115] in its State
of the market 2018 is a good example, comparing the cost effectiveness of various UK
energy policies. This chapter shows how to estimate CO2 reductions in electricity from wind
deployment in both the short and long run. Both need to be estimated to adequately measure
carbon savings. The chapter shows how to measure these savings.

We demonstrate this by measuring the CO2 displaced by wind in Britain as the price of
carbon varies. The UK Government introduced a Carbon Price Floor from 2013. This takes
the form of a carbon tax (the Carbon Price Support, CPS) on fuels used to generate electricity.
The CPS is added to the EU Allowance (EUA) price to give the total extra cost of the carbon
content of fossil fuels. By 2015 this was sufficiently high to dramatically impact the fuel
mix in generation, as shown in Figure 2.1. The share of coal fell from 41% in 2013 to 6% in
2018. Great Britain1 therefore offers an excellent test-bed for the impact of a carbon tax (the
CPS) as the fuel mix is likely to affect the carbon displaced by wind. Wind is hard to forecast
with much accuracy day-ahead when the time comes to decide which types of generation to
commit and run. As wind varies from moment to moment, the carbon displaced will depend
on the plant operating and its flexibility. We study this short-run impact econometrically to
find the main drivers of the short-run displacement achieved.

1Northern Ireland was exempt from the CPS as it forms part of the Single Electricity Market with Ireland,
who declined to adopt a Carbon Price Floor.
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Fig. 2.1 GB generation per quarter by fuel type (legends order the same as fillcolours)

Source: Elexon Portal

Policies are chosen for their long-run impact. Governments set targets for the future
share of renewable electricity and carbon budgets. These policies will affect the future fuel
mix, and hence the dispatchable plant available daily. We determine this long-run impact
with a unit commitment dispatch model of the 2015 GB system. We examine the effect of
increasing wind capacity by varying amounts up to 25%. Long run has the conventional
meaning that it is a period over which wind capacity can change, in contrast to the short run
in which wind capacity is fixed but its output varies. We study the impact of the CPS in 2015.
The first counterfactual has no CPS, but just the EUA price. The second looks to the CPS
in 2018 after the EU Emissions Trading System was reformed, which raised the GB carbon
price substantially above its 2015 level.

This chapter argues that policies to reduce emissions require an analysis of both the
short-run and long-run impacts. Increased wind capacity raises the expected amount of wind
generation, which can be estimated using a deterministic unit commitment model. After plant
has been committed, realised wind and demand will likely differ from forecast. Committed
plant will need to adjust their output. These responses are better captured by a short-run
econometric model that also reflects actual behaviour in a liberalised market that may differ
for various reasons from an efficient centrally dispatched system.

The Marginal Displacement Factor (MDF) measures the CO2 reduced by an extra 1 MWh
of wind, which depends on the plant mix and fuel and carbon prices. The MDF of renewables

https://www.elexonportal.co.uk/news/latest
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will therefore vary over countries and time. The MDF is useful for determining the extra
support to offer low-carbon technologies if the market price of carbon is below its social cost.
It can be (and is) also used to measure the cost-effectiveness of carbon policy interventions.

The econometric estimates also give the short-run Marginal Emission Factor (MEF) of
demand — the change in emissions resulting from a change in demand of 1 MWh (tonnes
CO2/MWh). This can be used to estimate the impact of carbon prices on wholesale prices.

The next section briefly reviews related literature before describing the British Carbon
Price Floor and developments in the EU Emissions Trading System, their impact on GB
carbon prices over time and the evolution of GB fuel costs. Section 2.4 summarises the merit
order effect to motivate wind MDF’s dependence on relative fuel costs. Section 2.6 derives
the SR-MDF of wind; Section 2.7 measures the LR-MDF. Section 2.8 contrasts the SR and
LR-MDFs and discusses their use in policy analysis. Section 2.9 concludes.

2.2 Literature review

We have only found one ex post econometric analysis (Staffell [142]) of the performance of
the GB CPS — even though Britain’s CPS has been in place for over five years. Staffell [142]
explains why CO2 emissions fell by 46% in the three years to June 2016, whereas our aim is
to explore the underlying mechanism driving changes in the MDF. The econometrics also
identifies the marginal price-setting plant, which can be compared with the increase in the
GB electricity prices from CPS, to estimate the CPS cost pass-through to the GB electricity
prices (see Chapter 3).

Our SR-MDF estimates overlap the period that Thomson et al. [147] studied econometri-
cally (2009-2014). They find that in 2010, a period of intermediate coal costs, the MDF was
0.61 tCO2/MWh. Counterintuitively, this fell to 0.48 tCO2/MWh in 2014 (when the CPS
was introduced, although at a low level) when coal became more expensive. We aim to better
understand these changes in the MDF, which Thomson et al. [147] note might be due to the
“unusual operation of the system in 2012-14”. We confirm Thomson’s findings and show the
reason for the apparently counter-intuitive findings.

Most studies make “instantaneous” CO2 emissions as the dependent variable in regres-
sions (Wheatley [154], Thomson et al. [147], Kaffine et al. [87], Novan [110], Callaway
et al. [27]). Instead we use half-hourly coal and gas generation as dependent variables and
develop non-linear econometric models to estimate the marginal fuel (coal and gas, MWh)
displacement per MWh of wind and its dependence on the fuel cost difference. Staffell [142]
and Cullen [45] also use coal and gas generation as dependent variables but study the impact
in more parsimonious linear forms. Our non-linear estimates provide wind’s MDF. The
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conventional approach estimates MDFs directly. Our indirect estimate has two advantages.
First, it explains the underlying mechanisms that drive the dynamics of the MDF. Second,
it allows us to study counterfactuals without the CPS and with higher carbon prices, which
would be difficult without knowing the underlying mechanisms.

The CPS raises coal variable cost more than CCGTs, potentially changing the merit order.
Similarly, Cullen and Mansur [46], Fell and Kaffine [63], and Brehm [23] find that carbon
taxes or low gas prices reduce emissions by displacing coal.

2.3 The British Carbon Price Floor

The Carbon Price Floor (CPF) was announced in the 2011 Budget to come into effect in April
2013. It was intended to raise the price of carbon in the GB electricity supply industry to
£(2011)30/tCO2 by 2020 (the dashed line at current prices in Figure 2.2) and £(2011)70/tCO2

by 2030, sufficient to make mature zero-carbon generation competitive. The CPF adds the
Carbon Price Support (CPS, a carbon tax added to the EUA price) on electricity fuels. The
CPS was originally set at £4.94/tCO2. By April 2013, the EUA price had fallen to just under
£4/tCO2 so the effective price was far below the desired level (Figure 2.2). The CPS was
raised in 2014 to £9.55/tCO2 and again in 2015 to £18.08/tCO2, to bring the price back to
the desired CPF trajectory.

Fig. 2.2 Evolution of the European Allowance (EUA) price and CPF, £/tCO2

Source: investing.com

https://www.investing.com/commodities/carbon-emissions
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Initially the UK Government hoped that other EU countries would be attracted by this
fiscally appealing solution to the politically intractable problem of ETS reform. Other EU
Member States declined to follow (until recently when the Dutch Government announced
plans for a CPF). Faced with a potentially large mismatch between the cost of generating
electricity in Britain and on the Continent, the Chancellor froze the CPS at £18/tCO2 from
2016-17 through 2020-21.2 Figure 2.2 shows the increasing divergence between the EU and
GB CO2 prices. In November 2017 the EU finally agreed to reform the ETS, introducing a
Market Stability Reserve that allows surplus EUAs to be cancelled (Newbery et al. [104]).
Figure 2.2 shows the EUA price sharply rising, taking the GB price above the original CPF
trajectory.

The impact has been dramatic. Figure 2.3 shows the variable fuel costs from 2012-18,
with and without the CPS. It was not until April 2015, when the CPS was almost doubled,
that the variable coal cost rose above the variable cost of more efficient CCGTs. Figure 2.1
shows the resulting massive switch from coal to gas.

Fig. 2.3 Electricity generation cost by fuels for generators

Source: BEIS Quarterly Energy Prices

The rest of this chapter quantifies the impact of the CPS on the carbon savings from wind,
which, as Figure 2.1 shows, has been increasing rapidly.3 We estimate both the short-run

2See the document from the House of Commons.
3The same approach could in principle be applied to carbon savings from solar PV or smart charging of

battery electric vehicles, but the necessary data are not currently readily available.

https://www.gov.uk/government/statistical-data-sets/prices-of-fuels-purchased-by-major-power-producers
http://researchbriefings.files.parliament.uk/documents/SN05927/SN05927.pdf
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(SR) and long-run (LR) Marginal Displacement Factors (MDFs). The short-run impacts are
studied econometrically over a period of varying fuel and CPS prices and varying plant mix
and wind capacity, providing statistically highly significant estimates of the short-run impact
of wind. We use an hourly unit commitment dispatch model of British electricity (described
in Chyong et al. [37]) to compute the long-run impact of the CPS. Wind capacity is increased
by 25%, leaving the plant mix and fuel prices constant, and varying the level of the CPS.
We expect the short-run MDF (SR-MDF) to differ from the long-run MDF (LR-MDF), as
the SR-MDF estimates the impact of variable (imperfectly predicted) wind on generation
given the existing wind capacity. The LR-MDF considers a deterministic world over the plant
commitment horizon in which the known increase in wind capacity leads to an accurately
forecast wind output. Plant is efficiently scheduled to meet accurately predicted residual
demand. The two estimates may differ for various reasons discussed below. Both estimates
are needed to inform policy.

Table 2.1 gives thermal efficiencies and emissions.4 Coal has more than twice the carbon
intensity of gas. A CPS of £18/tCO2 raises the marginal coal cost by £15.7/MWhe and
efficient CCGTs by £6/MWhe, reducing the relative cost of gas by nearly £10/MWhe. (The
average baseload price from 2011-13 was £47/MWhe).

Table 2.1 Characteristics of GB fuel types

Fuel Price Capacity Efficiency CO2
£/MWhth GW GCV t/MWhe

Coal £6.57 17.1 35.6% 0.871
CCGT new £15.87 14.2 55.1% 0.333
CCGT older £15.87 5.2 52% 0.352
CCGT oldest £15.87 7.6 36% 0.511

Note: GCV is Gross Calorific Value (Higher Heat Value), subscripts th refer to thermal content, e electric
output. Efficiencies are often quoted for the more impressive Lower Heat Value. For gas the LHV is 90% of the
HHV, downgrading the 61.2% nominal efficiency to 55.1% HHV. The oldest CCGTs are often running
inefficiently part-loaded or in open-cycle mode for fast balancing response.

Figure 2.3 shows the coal cost first exceeded efficient CCGT costs in Q2 2015. Before
then, the dark green spread (the average wholesale prices less the coal cost including the
EUA plus CPS) was £7.7/MWhe while the clean spark spread (average wholesale prices less
the cost of CCGT including carbon cost) was £3/MWhe, making coal the preferred base-load
and gas the mid-merit plant. From November 2015 to June 2017 the dark green spread fell to
-£1.8/MWh (a loss running all the time, but higher priced hours would still give a positive

4See Statista.

https://www.statista.com/statistics/548964/thermal-efficiency-coal-fired-stations-uk/
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spread), while the average clean spark spread rose to £8.9/MWh, shifting gas from mid-merit
to base load, and coal to mid-merit or peaking load.

Coal has normally been the major swing fuel in winter months, and indeed on a cold
winter day (09:30 February 27, 2018) CCGTs were producing 19.4 GW but coal was
producing 11.1 GW, its maximum.5 On a calm sunny summer day (15:40 August 3, 2018),
CCGTs were producing 17.8 GW, coal only 0.5 GW, wind down to 1.1 GW and solar up at
4.8 GW.

2.4 The Merit Order Impact of Carbon Pricing

Renewables (wind, solar PV, and run-of-river hydro) and nuclear power have zero variable
carbon emissions and low variable costs, so if available, they will displace more expensive
fossil generation. The merit order for conventional (dispatchable) plant ranks plant in
increasing variable cost, with residual demand (total demand less renewable generation)
determining the marginal conventional plant displaced by renewables. Exactly which fossil
generation will be displaced depends on their position in the merit order but also on which
are able to adjust their output. The static merit order impact of renewables capacity in
displacing fossil plant is well-understood (Clò et al. [40], Cludius et al. [41], Deane et al.
[49], Green and Vasilakos [74], Ketterer [89]). The impact of variations in renewable output
needs attention to plant dynamics.

Figure 2.4 shows the Q2 2016 merit order of GB nuclear, coal and CCGT plant (excluding
biomass, combined heat and gas (CHP), pumped storage, interconnectors and renewables)
with either just the EUA or with the added CPS at £18/tCO2. At EUA carbon prices coal
is cheaper than all CCGTs. With the CPS, efficient CCGTs displace coal, but that is still
cheaper than the less efficient CCGTs, some of which are potentially operating as balancing
units in open-cycle mode.

Figure 2.5a shows the half-hourly generation by fuel types in two consecutive days in
January 2017. Exports are shown as negative imports and pumped storage either is a negative
generation (when pumping) or positive. The negative amount is subtracted from the stable
nuclear output, so negative nuclear implies that pumping demands power.

The horizontal lines in Figure 2.5b show the marginal costs of generating with gas in
high efficiency CCGTs, including carbon at £18/tCO2, the middle one is coal and the higher

5Real time data are available from Gridwatch; the installed capacity for coal was 11.1 GW in 2017 (instead
of the value of 17.1 GW in 2015 in Table 2.1), see the Transparency Platform. One further reason for the
significant reduction in coal capacity is because the Large Combustion Plant Directive required expensive
refurbishment causing some generators to close coal-fired capacity in the years leading up to 2016.

http://gridwatch.co.uk/
https://transparency.entsoe.eu/
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Fig. 2.4 Merit order for conventional generation plant, Q2 2016

Source: Fuel prices from BEIS Table 3.2.1; thermal efficiency and capacity for fossil fuel plants from DUKES.

the least efficient CCGT , with peaking open cycle gas turbines in the upper tail in Figure 2.4.
Figure 2.5b also plots the spot market prices and coal and gas generation for the two days.

The vertical lines in Figure 2.5 show where coal changes from having a negative dark
green spread to positive or vice versa (where the spot market prices intersect with the coal
cost). Coal plant is costly to restart, so if needed later will run at minimum load, and ramp up
to deliver when demand and prices rise. Wind varies between 6.7 GW and 4.3 GW but this
variation is dwarfed by demand varying from 25-49 GW. Coal and gas generation follow load
and any adjustment in response to wind variations are swamped by load variations. However,
while load is reasonably predictable, wind is less predictable and likely to rely more on the
balancing market, for which flexible plant is at a premium (Thomson et al. [147]).

2.5 Data

The values for the Carbon Price Support (CPS) are published by the Government HoC
[80]. The carbon content of natural gas is well-defined at 0.1839 tCO2/MWhth, and the
carbon intensity for coal is 0.310 tCO2/MWhth from DECC’s Greenhouse gas reporting -
Conversion factors. Table 2.2 gives the carbon prices used.

The quarterly prices of fuels into power stations are published by the Department for
Business, Energy, and Industrial Strategy (BEIS, previously by the Department of Energy

https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes
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Fig. 2.5 Generation, prices and costs by half-hour, 15-16 Jan 2017

(a) Half-hourly output (legends order the same as fillcolours)

(b) Half-hourly spot market prices and generation costs

Source: Elexon Portal

and Climate Change, or DECC) as Table 3.2.1 and give gas and coal prices per kWhth. Both
include delivery and other costs from the spot prices (National Balancing Point (NBP) for
gas, various for coal but often the Rotterdam Coal Futures (ARA) west Europe prices).
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Table 2.2 CPS rates in fiscal years beginning

01/04/2013 01/04/2014 01/04/2015 01/04/2016
gas /MWhth £0.91 £1.75 £3.34 £3.31
coal /MWhth £1.59 £2.95 £5.65 £5.57
CPS £/tCO2 £4.95 £9.52 £18.16 £18.00

Source: Climate Change Levy Rates

The gas price is less constant than the coal price as coal is more illiquid and storable,
while the fuel prices published by BEIS only varies quarterly. It is fine to use quarterly prices
but prices at higher frequency would provide more variation hence smaller standard errors
on the estimates. Therefore, the daily spot natural gas futures price is downloaded from
the InterContinental Exchange,6 which is the same as the NBP gas price; we then average
the daily spot price by years and quarters, and take difference between the BEIS quarterly
prices and the quarterly averaged spot prices to calculate the delivery and other costs for each
quarter of each year; finally, we top up the daily spot price by the delivery and other costs
and obtain the daily gas price, which includes delivery and other costs. The daily coal price
is obtained by smoothing the BEIS quarterly coal price to avoid sudden rises and falls at the
border of two consecutive quarters.

The average thermal efficiency for coal-fired power plants is fixed at 35.6%, and the
weighted (by capacity) average thermal efficiency for efficient CCGTs is fixed at 54.5%
(ranging from 51.4% to 55.1% for efficient CCGTs). Given this, the carbon emission factor
for coal is

0.31(tCO2/MWhth)÷0.356 = 0.871(tCO2/MWhe),

and for efficient CCGTs is

0.1839(tCO2/MWhth)÷0.545 = 0.337(tCO2/MWhe).

Then the generation costs for coal and efficient gas are respectively calculated using the
formula:

Generation Cost = Fuel Price÷Thermal Efficiency+(CPS+EUA)×Emission Factor.

The data for half-hourly generation by fuel type were downloaded from the Elexon Portal.
For each year there are some (half-)hours with misrecorded data. Specifically, whenever
the CCGT generation is lower than 1000 MW, we treat it as misrecording and replace it by

6See InterContinental Exchange.

https://www.gov.uk/guidance/climate-change-levy-rates
www.theice.com
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“NA”; we also remove the data where the half-hourly change in total electricity supply is
above 3000 MW - this ensures the removal of most outliers.

The EUA prices are downloaded from investing.com7 and are converted to GBP using
the exchange rate from the same data source.8

2.6 Econometric Analysis

The short-run marginal displacement factor (SR-MDF) measures the marginal CO2 savings
of wind with the existing wind capacity from 2012-17. This covers the period before the
implementation of the CPS (pre Q2 2013), the period when it was implemented and raised
twice (Q2 2013 - Q2 2016) and when it is fixed at £18/tCO2 (post Q2 2016). Thomson
et al. [147] estimate the SR-MDF from 2009-14. Our data overlaps their period, providing a
credibility check.

The SR-MDF can barely be estimated via a back of the envelope estimate method by
simply averaging the emission factors of coal and gas plants. Instead, the SR-MDF is an
weighted average of the emission factors and without investigating which fuel type responds
to wind, we are unable to identify the weights. In this section, we describe the econometric
methods that estimates the weights, which are then used to estimate the SR-MDF.

2.6.1 The short-run impact of wind

The conventional approach to estimate the SR-MDF (Hawkes [76], Thomson et al. [147],
Staffell [142]) uses the following model:

∆Et = a∆Dt +b∆Wt + ct +ut , (2.1)

where ∆Et is the half-hourly first difference of the system CO2 emissions (tCO2), and ∆Dt

(MWh) and ∆Wt (MWh) are the first differences of electricity demand and wind output
respectively. Coefficient a is the marginal emission factor (MEF) (tCO2/MWh) of demand
and −b is the SR-MDF (tCO2/MWh) of wind. ct is other system effects which can be
half-hourly specific, and ut is an unobserved error term.9

By definition,
∆Et = eC∆Ct + eG∆Gt + eO∆Ot , (2.2)

7See investing.com.
8See investing.com
9Most related research uses unit-level data to capture unit heterogeneity. We show that a much cruder

dataset gives qualitatively similar results.

https://www.investing.com/commodities/carbon-emissions
https://www.investing.com/currencies/eur-gbp
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where Ct , Gt and Ot are electricity generated from Coal-fired stations, Gas (CCGTs) and
Other energy sources; eC, eG and eO are the CO2 emission intensities for coal, gas (efficient
CCGTs) and other fuel sources. Ot consists of energy sources which are negligible (open-
cycle gas turbines and oil), must-runs (combined heat and power and biomass), and imports,
which do not count as GB sources of emissions.10 Therefore, eO∆Ot is close to zero because
either eO = 0 (for imports) or ∆Ot ≈ 0 (for the must-run and negligible energy sources).

Pumped Storage (PS) charges off-peak using mostly fossil generation to generate during
high price hours and provide fast reserve (available within 1 minute). If residual demand
increases, replacement supply is needed. Given that PS required earlier fossil generation
there is an obvious question of its carbon content. However, PS provides arbitrage, balancing
and ancillary services to the extent of its capacity, regardless of wind output that primarily
affects timing, and will not vary with wind output. Although PS output responds to changes
in wind, its effective MDF is zero.

Substituting ∆Et in (2.1) by (2.2) suggests the following regressions:

∆Ct = α0 +α1∆Wt +α2∆Dt +θ
′Xtθ
′Xtθ
′Xt + εt , (i)

∆Gt = β0 +β1∆Wt +β2∆Dt +δ
′Xtδ
′Xtδ
′Xt +µt , (ii)

where XtXtXt is a vector of half-hourly dummy variables. First differences means that we do not
need to worry about non-stationary processes.11 Consequently, we have:

eCα2 + eGβ2 ≈ a = MEF,

−(eCα1 + eGβ1)≈−b = SR-MDF.

The SR-MDF is estimated indirectly from regressions (i) and (ii) instead of (2.1). This
indirect approach identifies the underlying drivers of the dynamics of the SR-MDF (i.e. the
shares of coal and gas displaced by wind). Second, the non-linear version of (i) and (ii)
discussed below allows us to study different counterfactual carbon prices. Staffell [142] uses
a similar linear approach, finding that only fossil plant and imports adjust output to wind
changes, supporting our two-step estimation. As wind supply depends on wind speed, ∆Wt

10Nuclear, solar, wind, run-of-river hydro are not included in (2.2) because none of them generates GHG.
11One may also argue that the error terms between (i) and (ii) are negatively correlated because if one unit is

unavailable to meet a given level of demand, another unit might take over, suggesting a preferable Seemingly
Unrelated Regression (SUR). However, when the covariates between the two regressions are exactly identical,
the SUR estimates is equivalent to the equation-by-equation Ordinary Least Squares (OLS) (Takeshi 144,
p.197). This also applies to the non-linear regressions below.
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can be treated as exogenous. As the half-hourly domestic demand is price-inelastic (Clò et al.
[40]), ∆Dt is also treated as exogenous.

The slope coefficients α1 and β1 are the marginal fuel displacement of wind, measuring
the changes in coal and gas generation caused by a wind change, conditional on the change
in demand and time dummies. We expect both α̂1 and β̂1 to be negative, and |α̂1 + β̂1| to
be close to but smaller than 1 — as a proportion of wind changes can be compensated by
imports and pumped storage. The coefficients α2 and β2 measure the response of coal and gas
generation to demand changes. We again expect both α̂2 and β̂2 to be positive and |α̂2 + β̂2|
to be less than 1.

The magnitudes of α1 and β1 depend on total energy demand (hence the time of the day) as
well as the actual merit order between coal and gas, which is determined by PDt ≡ PC

t −PGe

t ,
the difference in variable coal (PC

t ) and efficient CCGT costs (PGe

t ) (hereafter the cost
differential).12,13 Each day is separated into two periods: off-peak (23:00-07:00) and peak
(07:00-23:00)14 From Figures 2.4 and 2.5, the base-load plant is sufficient for energy demand
during (most of the) off-peak hours and the mid-merit plant is the marginal fuel for (most
of the) peak hours.15,16 We further split the two sub-samples into PDt < 0, (COAL-BASE)
and PDt ≥ 0 (GAS-BASE) depending on which fuel is expected to run on base load, and run
regressions (i) and (ii) on each sub-sample. (Data sources are in Section 2.5.)

The results are shown in Table 2.3. All estimates for the coefficients of ∆Wt and ∆Dt

are statistically significant at the 0.1% level, and their signs follow our initial intuition.
Specifically, during off-peak periods it is normally the base-load plant that responds to
changes in wind supply and/or electricity demand. Table 2.3a shows that when coal is the
base load, coal responds more strongly to wind and demand changes — if ∆Wt increases by 1
MW, ∆Ct would on average drop by 0.52 MW while ∆Gt would on average only drop by 0.41
MW. This changes when PDt becomes positive — a 1 MW increase in ∆Wt will only reduce
∆Ct by 0.15 MW, much less than the 0.75 MW reduction in ∆Gt . The story is similar for the
impact of ∆Dt on ∆Ct and ∆Gt when coal supplies the base load, where a 1 MW increase in
∆Dt would increase ∆Ct by 0.42 MW and ∆Gt by 0.55 MW. However, when gas supplies the

12Because inefficient CCGT plants only count for a small proportion of energy supply and only supply energy
in very cold winter days, we only consider the cost differential between coal and efficient CCGT (gas) plants.

13We use daily gas prices, smoothed quarterly coal prices, and daily EU ETS prices to calculate the cost
differential. Details in Section 2.5. Coal and gas costs are invariant within days.

14The definition on peak and off-peak is from Npower based on London, Eastern and East Midlands. The
results are not sensitive to changing the peak period to 08:00-23:00 or 07:00-22:00.

15In Figure 2.4, the boundary between base load and mid-merit load in GB should be slightly above 30GW,
after taking CHP, biomass, and renewables into consideration.

16This is the case for 2012-2017, when solar PV is on average lower than 1 GW. With significant solar,
one can separate the data base on the residual demand instead of time of the day, but that will complicate
interpretation and the post-estimate counterfactual application.

https://customerservices.npower.com/app/answers/detail/a_id/179/~/what-are-the-economy-7-peak-and-off-peak-periods%3F
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Table 2.3 Estimation results from linear regressions (i) and (ii)

(a) Off-peak period (23:00-07:00)

∆Ct ∆Gt
COAL-BASE GAS-BASE COAL-BASE GAS-BASE

(Intercept) −5.19 −11.11∗ 18.01∗ 17.23∗

(8.87) (5.51) (8.38) (8.24)

∆Wt −0.52∗∗∗ −0.15∗∗∗ −0.41∗∗∗ −0.75∗∗∗

(0.02) (0.01) (0.02) (0.01)

∆Dt 0.42∗∗∗ 0.20∗∗∗ 0.55∗∗∗ 0.74∗∗∗

(0.00) (0.00) (0.00) (0.00)

Time Dummies YES YES YES YES

R2 0.66 0.51 0.79 0.87
Obs. 17441 17062 17441 17062

(b) Peak period (07:00-23:00)

∆Ct ∆Gt
COAL-BASE GAS-BASE COAL-BASE GAS-BASE

(Intercept) 251.22∗∗∗ −130.50∗∗∗ −115.21∗∗∗ 180.63∗∗∗

(9.83) (8.28) (12.53) (11.68)

∆Wt −0.15∗∗∗ −0.15∗∗∗ −0.66∗∗∗ −0.65∗∗∗

(0.01) (0.01) (0.01) (0.01)

∆Dt 0.14∗∗∗ 0.21∗∗∗ 0.64∗∗∗ 0.61∗∗∗

(0.00) (0.00) (0.00) (0.00)

Time Dummies YES YES YES YES

R2 0.49 0.50 0.85 0.84
Obs. 34830 34072 34830 34072
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

base load, a 1 MW increase in ∆Dt would only increase ∆Ct by 0.20 MW while increasing
∆Gt by 0.74 MW.

From Table 2.3b, during peak periods, the magnitude of changes in the coefficients of
∆Wt for coal is negligible. Gas has always been dominant in responding to wind changes
during peak periods — a 1 MW increase in ∆Wt is on average accompanied by a 0.66 MW
fall in ∆Gt when coal is the base load, and by a 0.65 MW fall otherwise. This might be
because demand is high and more variable during peak periods; therefore flexible gas plants
are better able to adjust to wind variations. In off-peak periods when coal provides the base
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load, CCGTs are likely to run at their minimum stable output and hence have limited ability
to respond to an increase in wind supply.17

2.6.2 The role of generation cost differentials

Previous subsection suggests that the impacts of ∆Wt and ∆Dt on ∆Ct and ∆Gt depend on the
cost differential (PDt), especially for off-peak periods.18 We expect this dependency to be
non-linear:

∆Ct = α0 + f (PDt) ·∆Wt + k(PDt) ·∆Dt +θ
′Xtθ
′Xtθ
′Xt + εt , (iii)

∆Gt = β0 +g(PDt) ·∆Wt + l(PDt) ·∆Dt +δ
′Xtδ
′Xtδ
′Xt +µt , (iv)

where f (PDt), k(PDt), g(PDt), and l(PDt) are fourth degree polynomial functions of PDt ,
selected using the Bayesian Information Criterion (BIC)19:

f (PDt) = α1,0 +α1,1PDt +α1,2PD2
t +α1,3PD3

t +α1,4PD4
t .

Regressions (iii) and (iv) are more robust and make more sense of the varying sensitivity of
the merit order to the cost differential.

We expect the magnitudes of f (PDt) and k(PDt) during off-peak periods to decrease
with PDt . As coal cost increases relative to gas, coal will be less sensitive to changes in wind
and total demand in off-peak periods, as it is moved off from base load. Furthermore, PDt

is expected to have its highest influence close to zero, the tipping point that determines the
base-load fuel. Therefore we expect the slopes of f̂ (PDt), k̂(PDt), ĝ(PDt), and l̂(PDt) to
be the highest around PDt = 0. Similarly, the magnitudes of g(PDt) and l(PDt) off-peak
should increase with PDt , with the highest slopes at PDt = 0.

In peak periods, we expect PDt to have negligible impact on f̂ (PDt), ĝ(PDt), k̂(PDt)

and l̂(PDt) as gas provides flexible response regardless of the cost difference.
The detailed estimation results are shown in Appendix A.1. The non-linear partial

effects of ∆Wt on ∆Ct and ∆Gt (i.e. ̂∂∆Ct/∂∆Wt and ̂∂∆Gt/∂∆Wt) and the corresponding

17In spite of the negligible change in the coefficients of ∆Wt , the direction of changes in the coefficients
of ∆Dt still suggests that as coal becomes more expensive (from COAL-BASE to GAS-BASE), coal shifts to
mid-merit. Specifically, during peak periods, a 1 MW change in energy demand is on average accompanied by
a 0.14 MW change in coal generation when coal is the base load but by a 0.21 MW change otherwise.

18We find no evidence of an asymmetric partial effect when wind rises and falls (∆Wt > 0 v.s. ∆Wt ≤ 0),
and demand increases and declines (∆Ct +∆Gt > 0 v.s. ∆Ct +∆Gt ≤ 0). Running regressions separately for
weekdays and weekends does not change the story. See Appendix A.1.

19The test for the joint significance of the polynomial terms are all statistically significant at the 0.1% level.
For example, in f (PDt), the null hypothesis is α1,1 = α1,2 = α1,3 = α1,4 = 0.



28 The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind

Fig. 2.6 The estimated partial effects of ∆Wt on ∆Ct and ∆Gt , regressions (iii) and (iv)

(a) partial effects of ∆Wt on ∆Ct , off-peak (b) partial effects of ∆Wt on ∆Gt , off-peak

(c) partial effects of ∆Wt on ∆Ct , peak (d) partial effects of ∆Wt on ∆Gt , peak

99% confidence intervals are plotted in Figure 2.6, with the x-axis representing the cost
differential, PDt , and y-axis representing marginal effects. Overall, the partial effects are
negative, and | ̂∂∆Ct/∂∆Wt + ̂∂∆Gt/∂∆Wt | is about 0.85, smaller than 1 (this is clearer in
Table 2.5 below). Probing more deeply, if the regressions are run with 5 minute data the sum
is lower, and if run aggregating the half-hourly data to daily data, the sum is close to 1.20

The explanation is that in the very short run (5 minutes) CCGT and pumped storage (PS)
respond, and gradually coal responds (if in merit) displacing PS, so that over the half hour
coal had a higher share than over the 5 minutes. Similarly, over the course of the day, PS
allows in-merit coal to play a larger role and so raising the total emissions displaced by that
day’s extra wind.

Figures 2.6a and 2.6b show off-peak relationships. The slopes of the curves reflect the
impact of PDt on switching the merit order: the steeper the slope, the stronger the impact.
The shapes follow our earlier expectations — upward (downward) sloping with the steepest

20See Appendix Table A.4 for the regression results using daily data.
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Fig. 2.7 The estimated partial effects of ∆Dt on ∆Ct and ∆Gt , regressions (iii) and (iv)

(a) partial effects of ∆Dt on ∆Ct , off-peak (b) partial effects of ∆Dt on ∆Gt , off-peak

(c) partial effects of ∆Dt on ∆Ct , peak (d) partial effects of ∆Dt on ∆Gt , peak

slopes near PDt = 0, and with descending slopes as PDt moves away from zero, meaning
that PDt has little impact on the marginal fuel displaced by wind when the cost difference
becomes large.

Thus in 2013 when PD2013
t =−£13.5, a 1 MW change in wind supply in off-peak periods

on average leads to a -0.56 MW change in coal generation and a -0.40 MW change in gas
generation. In 2017 when PD2017

t =£13.5, a 1 MW change in wind supply would on average
result in a -0.06 MW change in coal generation and a -0.83 MW change in gas generation.

Figures 2.6c and 2.6d plot the peak relationships. The curvatures for the partial effects
are more moderate than those in Figures 2.6a and 2.6b. This suggests that gas is always more
responsive to wind variations during peak periods due to its flexibility. At the margin, 1 MW
of wind displaces 0.09-0.22 MW of coal and 0.59-0.72 MW of gas.

Figures 2.7 shows the partial effects of ∆Dt on ∆Ct and ∆Gt (i.e., ̂∂∆Ct/∂∆Dt and
̂∂∆Gt/∂∆Dt).21 Again, Figures 2.7a and 2.7b plot the off-peak partial effects, and 2.7c and

21The 99% confidence bands are too narrow to be observable.
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2.7d plot the peak partial effects. All partial effects are always positive, and ̂∂∆Ct/∂∆Dt +
̂∂∆Gt/∂∆Dt is very close to | ̂∂∆Ct/∂∆Wt + ̂∂∆Gt/∂∆Wt | for any given PDt within the

interval of study. Again, the impact of demand variations is buffered by pumped storage,
leading to different emissions impacts over different time scales from 5 minutes up to one
day.

The curvatures for the off-peak partial effects meet our initial expectations — downward
sloping for coal and upward sloping for gas. As the generation cost for coal becomes higher
(i.e. PDt increases), gas becomes more sensitive to demand changes during off-peak periods.
Thus when PD2013

t =−£13.5, for a 1 MW change in the energy demand, coal on average
contributes 0.42 MW and gas on average 0.58 MW. When PD2017

t =£13.5, a 1 MW increase
in demand would on average increase coal generation by only 0.10 MW and gas generation
by 0.82 MW.

As with wind, in peak periods the marginal effects of demand do not vary much with
PDt . At the margin, 10%-23% of demand change is met by coal and 59%-66% by gas.

Besides the different signs, the impact of wind is similar to the impact of demand. In
off-peak, the base load fuel is at the margin and responds to wind/demand changes. In
peak hours, flexible CCGTs always provide the response. Any further differences between
the partial effects of wind and demand are explained by the difference in predictability of
wind and demand. As demand is more predictable, less flexible coal plant can be suitably
scheduled ahead of time. Table 2.5 compares the two responses.

2.6.3 Short-run marginal displacement factor of wind

The estimation results from Figure 2.6 allow us to calculate the marginal CO2 displacement of
wind since 2012. For each half hour, given the generation cost differential, we first calculate
the partial effects of ∆Wt on ∆Ct and ∆Gt . Then, we multiply the estimated partial effects by
the emission coefficients of coal and efficient CCGTs respectively to obtain the SR-MDF.22

The calculation is done separately for peak and off-peak and then combined to deliver the
final result. Figure 2.8 plots the quarterly average SR-MDF of wind,23 where the dotted
curve represents the marginal cost differential between coal and gas (PDt), which is to be
read from the right-hand y-axis.

Figure 2.8 shows that the SR-MDF of wind in off-peak periods is decreasing during the
period, with no strong trend for peak periods. The reason is straight-forward from Figure 2.6.
When coal is cheaper and on base loading (before Q2 2015), coal responds more to wind

22We use the emission factor of 0.871 tCO2/MWh for coal-fired power plants, and a weighted average of
0.337 tCO2/MWh for efficient CCGTs.

23The corresponding Marginal Emission Factors (MEFs) are listed in Appendix Table A.5.
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Fig. 2.8 The short-run marginal displacement factors of wind

changes during off-peak periods. Since coal has a higher emission intensity than gas, the
marginal CO2 displacement of wind is higher when coal is the marginal fuel during these
off-peak hours before Q2 2015. In peak hours demand is more variable, prices are higher,
so CCGTs are in-merit and better able in respond quickly to variations in wind, so the cost
differential has little impact on the peak SR-MDF of wind. The solid curve is the average
SR-MDF after combining peak and off-peak periods, which is also in general negatively
correlated with the generation cost differential (PDt). The negative relationship is mainly
driven by the dynamics of the SR-MDF during off-peak periods. In addition, the gradual
phase-out of coal-fired power plants over this period also plays a non-trivial role on the
decline of the SR-MDF.

The CPS almost doubled after Q2 2015, causing efficient CCGTs to provide base-load
power, displacing coal. Since then, wind primarily displaces gas in both peak and off-peak
periods causing the SR-MDF for off-peak periods to fall. Thus from Q1 2012 to Q2 2015, a
1 MWh short-run increase in wind supply would on average reduce CO2 emissions by 0.43
tonnes; while from Q2 2015 to Q4 2017, it would on average only reduce CO2 emissions by
0.36 tonnes.

The period 2012-2017 slightly overlaps with that studied (2009-2014) by Thomson et al.
[147]. Figure 2.9 shows a comparison of the results. We also used the best readily available



32 The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind

data to replicate Thomson et al.’s results and extend their estimates to 2016 (the detailed
numbers are shown in Appendix Table A.6 together with details for the replication).24

Fig. 2.9 Comparisons on the patterns of annual MDFs, tCO2(eq)/MWh

Despite using a rather cruder (but more accessible) data set, the replicated results on
the SR-MDF are very close to those from Thomson et al. [147], especially for the years
between 2010-2013. On the other hand, our estimates from non-linear regressions are overall
smaller than those from Thomson et al. [147] and the replicated results, because we are using
completely different emission factors25 as well as different estimation methods. Despite that,
the pattern for the dynamics of our estimated SR-MDF overlaps with the replicated results
except for 2012, perhaps because we treat imports as overseas CO2 emission and exclude
their contribution.26 Our results can be more intuitively explained by the merit-order effect
given the fuel cost movements shown in Figure 2.3. Although the CPS was introduced on 1
April 2013, efficient CCGTs did not become base load until Q2 2015. Without a switch in
the merit order there is no reason for any drastic change in the SR-MDF in 2013.

24We use the five-minute average generation by fuel type data from the Elexon portal which is only available
up to Q1 2017.

25Thomson et al. [147] use well-to-tank net calorific values (NCV) and as a result, the average emission
factors for coal (with 35.6% efficiency) and efficient gas (with an average of 54.5% efficiency) are, respectively
1.12 tCO2eq/MWh and 0.416 tCO2eq/MWh, much higher than the carbon emission coefficients found by other
studies. See UK Parliament.

26It would be possible, but challenging, to determine the marginal plant and hence emissions from the
transmission-constrained Continental electricity market.

https://www.elexonportal.co.uk/article/view/216?cachebust=p3a16b2n35
https://www.parliament.uk/documents/post/postpn_383-carbon-footprint-electricity-generation.pdf
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Table 2.4 Marginal generation costs by fuels

Marginal Cost £/MWhe

no CO2 zero CPS base CPS high CPS
Coal £18.46 £23.68 £39.36 £50.68
CCGT new £28.80 £30.80 £36.79 £41.12
CCGT older £30.52 £32.63 £38.97 £43.54
CCGT oldest £44.08 £47.15 £56.35 £62.99
Carbon Cost £/tCO2 £6.00 £24.00 £37.00

To compare the SR-MDF with the LR-MDF to be discussed in the next section, we
estimate the SR-MDFs under three difference carbon price scenarios — no CPS (full carbon
price £6/tCO2), base CPS (full carbon price £24/tCO2), and high CPS (full carbon price
£37/tCO2). We choose these three particular carbon prices because the average EUA price
for 2015 is around £6/tCO2,27 then the zero and base CPS cases simulate the 2015 fuel mix
with and without the CPS. £37/tCO2 corresponds to the high 2018 EUA price induced by the
Market Stability Reserve. Table 2.4 gives the electricity generation cost by fuels under the
three proposed scenarios, based on the fuel price and plant efficiencies given in Table 2.1.

Table 2.5 SR-MDF for the three carbon price scenarios

Carbon Costs
£6/tCO2 £24/tCO2 £37/tCO2

Cost Differentials
£-6.98/MWh £2.70/MWh £9.70/MWh

−∂∆C/∂∆W 0.29 0.24 0.15
−∂∆G/∂∆W 0.56 0.60 0.69
SR-MDF 0.44 0.41 0.36
∂∆C/∂∆D 0.28 0.26 0.18
∂∆G/∂∆D 0.58 0.60 0.67
MEF 0.44 0.43 0.38

Notes: −∂∆C/∂∆W is the coal Displacement Factor (DF, the decrease in Coal output for 1 MWh of Wind),
−∂∆G/∂∆W is the gas DF and SR-MDF = −∂∆CO2/∂∆W is the displacement of CO2 in tCO2/MWh of extra
wind.

The SR-MDF and MEF under the three carbon price scenarios are given in Table 2.5,
where the partial effects are averaged over peak and off-peak periods. As the carbon price
increases, both −∂∆C/∂∆W and ∂∆C/∂∆D decline, and both −∂∆G/∂∆W and ∂∆G/∂∆D
increase. This is driven by the merit-order switch during off-peak periods. The CPS forces
gas (instead of coal) to respond to wind (and demand) changes during off-peak periods.

27The exact 2015 average was £5.85/tCO2.
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During peak periods flexible gas always provides the main response to wind (and demand)
changes. As coal has a much higher emission factor, both SR-MDF and MEF decline with
carbon prices.

2.6.4 The SR-MDF without the CPS

By treating fuel prices as exogenous, we can calculate the marginal effects of ∆Wt on ∆Ct and
∆Gt without the CPS by adjusting the generation cost differential (PDt) in the regressions
(iii) and (iv). We then multiply the marginal effects by the corresponding emission factors to
derive the SR-MDF without the CPS. The patterns are shown in Figure 2.10.

Fig. 2.10 SR-MDF with and without the CPS

Without the CPS, the SR-MDF would stay relatively high, so the average SR-MDF in
2015 would be 0.44 tCO2/MWh instead of 0.41 tCO2/MWh, or 7% higher, while in 2017 it
would be 0.40 tCO2/MWh instead of 0.33 tCO2/MWh, or 21% higher. The explanation is
that without the CPS, both coal and gas costs would be lower, but the generation cost from
coal would be much lower. Coal would continue on base loading, being the marginal off-peak
fuel until late 2017, when the gas and EUA prices increase and coal becomes mid-merit even
without the CPS. This explains why the SR-MDF stays high until late 2017. During this
period, without the CPS, marginal wind displaces more CO2, although the CPS shifts supply
from coal to gas, reducing overall emissions.
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2.7 Modelling the Long-run Carbon Savings from Wind

The long-run carbon savings from additional wind capacity is studied using a simulation
model to determine dispatch with and without a significant increase in wind capacity. Deane
et al. [49] do this for EU scenarios in 2030 and 2050, using Plexos to minimize total costs
over a year. They assume inelastic time varying demand, and take account of pumped storage
and “operational and technical constraints” (presumably transmission capacities, ramping,
minimum load and other plant characteristics). Ofgem [115] uses the LCP EnVision model
to simulate not just dispatch but also investment and retirements from 2010-2017 to simulate
counterfactuals with and without some or all of the policy interventions, including the CPS.
Ofgem is interested in the increase in wholesale electricity costs and the policy costs, but
ignores any longer-run benefits (learning spill-overs inducing climate change mitigation
elsewhere, as in Newbery [103]).

We use our simple hourly unit commitment model of the 2015 GB power system (Chyong
et al. [37]) to examine the impacts of varying wind capacity on fuel mix and hence CO2

emissions, for three carbon prices and two levels of wind capacity. In contrast to Ofgem
[115], we do not model plant entry and exit, although the plant we simulate in 2015 is the
plant listed as then present and consistent with our central carbon price (Ofgem [115], Figure
A3, p.9). Thus we can examine the impact of additional wind capacity on future carbon
savings. All cases take the plant available in 2015, but hold demand and all outputs (including
interconnector flows) other than coal, gas, and pumped storage at their 2015 values.28 The
reference case takes the actual wind output in each hour of 2015 (an average wind year), and
holds fuel and carbon prices constant across the year, so that variations in fuel prices and
trade do not confound the variations of interest. The assumed fuel and the three carbon costs
(EUA price plus CPS) are shown in Table 2.1, with the installed capacities, efficiencies and
carbon intensities of key generation units.

The simulation determines an optimal hourly dispatch with predictable future demand
and outputs of wind over the period of optimization. The simulations are re-run with 25%
more wind in each hour (i.e. with 25%29 more installed capacity at each location) to see how
much coal and gas output is displaced in each hour and the resulting carbon savings, which
in turn depend on the carbon price. Pumped storage (PS) is endogenous but only in arbitrage
mode. Its more valuable use in short-term balancing cannot be handled in this deterministic
model. The hourly resolution inevitably conceals short-run variations and represents the

28From Elexon Portal.
29The 2015 average wind generation is 3.7 GW. The 25% increase raises average wind generation to 4.6 GW,

compared to the 2017 average wind generation of 5.1 GW. The increase is small in magnitude, and therefore is
treated as a marginal increase. We also ran a 5% and 10% increase of wind, confirming that the LR-MDF is
consistent with varying wind changes.

https://www.elexonportal.co.uk/news/latest
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predictable component of plant commitment. We compare and contrast the long-run and
short-run analyses in Table 2.6 and in Section 2.8.

Efficient unit commitment models fall short of describing market outcomes, as plant
owners will typically set prices as a mark-up on their variable costs, by different amounts
depending on their competitive position and their need to remain on the system. Interconnec-
tor flows and pumped storage will depend on market prices, not the system marginal cost.
Modelling market prices at an hourly resolution is an enterprise with to date limited success,
hence the need to interpret simulation results with care. Our deterministic modelling reduces
the need for more flexible plant, probably increasing the role of coal in adjusting to changes,
and understating total system costs.

Table 2.6 shows that the fuel price differences in the 2015 CPS case are small (£2.7/MWh)
compared to differences in variable O&M costs, so that the effective operating costs of coal
and gas are almost identical. That makes the optimal dispatch very sensitive to minimum
down times and minimum stable generation. Small changes in these parameters lead to
surprisingly large changes in ∆C/∆W , and so should be treated with a degree of caution.
When fuel price differences are sufficiently large the results are more robust to changes in
the technical parameters. GB coal stations expect a very limited remaining life since the
CPF was introduced, and have therefore likely reduced maintenance and moved outside
the operating ranges that would be desirable for long and trouble-free operation, so taking
industry standards for these parameters may not describe recent operating conditions. One
of the advantages of our simple unit commitment model is that it can throw light on such
sensitivities and thus indicate their robustness or its lack.

Table 2.6 gives the summary results that can be directly compared with the short-run
results in Table 2.5. The first column shows that without the CPS and just the EUA of
£6/tCO2, the change (∆) in wind output over the year of 8.11 TWh leads to a fall in CO2

of 4.17 million tonnes, so the LR-MDF (shown as −∆CO2/∆W ) is 0.51 tCO2/MWh. The
SR-MDF is shown immediately below and is lower as the less predictable short-run response
relies more on gas, while the long-run predictable change in wind allows more coal to be
scheduled to adjust.

With the CPS at its actual value of £18/tCO2, the CO2 price is £24/tCO2, and the LR-MDF
is 0.60 tCO2/MWh, again higher than the SR-MDF and for similar reasons. The fact that the
LR-MDF increases with the CPS while the SR-MDF falls is discussed in more detail below,
but primarily reflects the very close variable costs of coal and gas (when variable O&M costs
are included, making the MDF very sensitive to technical parameters such as ramp rates
and minimum stable generation. A small increase in the minimum stable generation of coal
considerable lowers the LR-MDF.
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As with the SR-MDF, there is a slight fall in the LR-MDF moving to a CO2 price of
£37/tCO2. Summarising, the LR-MDF of wind rises from 0.51 (tCO2/MWh) at zero CPS, to
0.60 with a CPS of £18/tCO2, then it slightly falls to 0.57 at the highest carbon price as coal
is squeezed out of the system.

Table 2.6 Displacement factors for the three carbon price scenarios, 2015 generation mix

Carbon Costs
£6/tCO2 £24/tCO2 £37/tCO2

Cost Differentials
£-6.98/MWh £2.7/MWh £9.7/MWh
TWh ∆CO2 TWh ∆CO2 TWh ∆CO2

∆C -2.77 -2.41 -3.95 -3.44 -3.55 -3.09
∆G -5.26 -1.76 -4.07 -1.39 -4.50 -1.54
∆W 8.11 -4.17 8.11 -4.83 8.11 -4.64
−∆C/∆W 0.34 0.49 0.44
−∆G/∆W 0.65 0.50 0.56
LR-MDF 0.51 0.60 0.57
(SR-MDF) (0.44) (0.41) (0.36)
∆C/∆Pc TWh/£ -4.62 -0.24
∆G/∆Pc TWh/£ 4.62 0.25
∆CO2/∆Pc Mt/£ -2.47 -0.12

Notes: −∆C/∆W is the coal Displacement Factor (DF, the decrease in Coal output for 1 MWh of Wind),
−∆G/∆W is the gas DF and SR-MDF = −∆CO2/∆W is the displacement of CO2 in tCO2/MWh of extra wind.
∆X/∆Pc is the change in output of X (coal, gas or CO2) for a £1 increase in the CO2 price going from
£6-24/tCO2 or from £24-37/tCO2, measured at the base level of wind.

Note that in Table 2.6, coal and gas changes (−∆C/∆W −∆G/∆W ) add up to about unity
following a 1 MWh of wind change, while in Table 2.5, the sum of changes is about 0.85
MWh, with the rest mainly coming from pumped storage and imports. If the half-hourly
data are aggregated to daily data, the econometric estimate of this sum is also about unity,
suggesting that the difference is largely explained by pumped storage that averages to nearly
zero over the day. The long-run model aggregates over a year, which has the same effect as
daily averaging. Furthermore, the unit commitment model makes the assumption that only
coal, gas, and pumped storage respond to wind changes, as imports are held at their actual
2015 levels. If the price impact of more wind had been considered, prices would have been
lower, reducing net imports slightly, so increasing fossil generation and slightly raising the
LR-MDF. Against that, higher wind capacity would likely lead to coal exit, countering this
effect.
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The last three lines of Table 2.6 give the estimated average impact of raising the carbon
price Pc by £1/tCO2 on the output of coal, gas and CO2.30 The CPS switches the merit order,
so that on average a £1/tCO2 increase in the CPS (over the range zero CPS to £18/tCO2)
significantly lowers coal generation by 4.62 TWh/year, displaced by gas. Since gas plants
emit less CO2, the CPS saves 2.47 million tCO2/£/year. Increasing the total CO2 price
further to £37/tCO2 has a more moderate impact on the fuel mix and emissions — a £1/tCO2

increase in the CO2 price results in 0.24 TWh decline in coal generation (displaced by gas)
and 0.12 million tCO2 reduction. This is because increasing the carbon cost from £24/tCO2

to £37/tCO2 does not change the merit order.
We also calculate the capacity factor (CF)31 as well as the coefficient of variation (CV)

for the reference wind cases, summarised in Table 2.7. In the zero CPS case coal has a CF of
83% and a coefficient of variation (CV) of output of 25%, while gas has a CF of 22% (CV
91%), consistent with coal on base load and gas providing mid-merit variable output. As gas
is displaced by the extra wind, its carbon benefit is low.

Table 2.7 Capacity factors (CF) and coefficients of variation (CV), 2015 base wind

Carbon Costs
£6/tCO2 £24/tCO2 £37/tCO2

CF CV CF CV CF CV
Coal 83% 25% 18% 118% 16% 129%
CCGT 22% 91% 70% 29% 72% 29%

The situation changes considerably with the CPS at £18/tCO2. Coal output is lower and
more variable (CF falls to 18% and CV rises to 118%), while gas CF rises to 70% (CV 29%),
consistent with gas on base load with coal displaced by the extra wind, raising its carbon
benefit. This case is very similar to the high carbon cost (£37/tCO2) case, because of the
same merit order.

PS is endogenous in the simulations and will be driven by peak and off-peak variable
cost differences, which will vary between different wind capacity scenarios. However,
it is important to remember that actual PS is partly driven by arbitrage, which is driven
by wholesale price differences that likely differ from variable cost differences. The main
revenue earner for pumped storage is providing balancing and ancillary services, which are

30Calculated by differencing the outputs at £6/tCO2 and £24/tCO2 and dividing by £18/tCO2 (=24-6) to
give the first set of values (in the £24/tCO2 column) and similarly differencing the outputs at £37/tCO2 and
£24/tCO2 to give the final column.

31This is given by the average output relative to the maximum observed output, which is below the nominal
capacity. This seems a more relevant measure for CCGTs, where there is a large tail of less efficient plant that
would otherwise give a very low CF for gas as a whole.
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not modelled. To test for robustness, we re-run all simulations with half the effective PS
capacity (the rest reserve for balancing), and reassuringly, the results are close.

As PS has a round trip efficiency of about 75%, if more storage is required, then losses
will lead to more MWh of fossil generation, so the sum of the output changes of coal, gas
and wind is slightly (1%) more than zero. However, variations in pumped storage do not lead
to changes in emissions, as we assume that all pumped storage will be used over the course
of the day either in arbitrage or balancing mode, regardless of the actual wind output.

As an additional test for the robustness of the wind scenarios, the model was re-run with
10% and 5% more wind capacity, and these confirm that the LR-MDFs are within 0.01 of
those at 25% extra capacity.

2.7.1 The variation of LR-MDFs with Residual Demand

Figure 2.11 graphs a rolling average of the various displacement factors against resid-
ual demand.32 The graph shows the displacement of coal output (−∆C/∆W ), gas output
(−∆G/∆W ), pumped storage output (−∆PS/∆W ), and the implied carbon saving, the LR-
MDF (−∆CO2/∆W , tCO2/MWh) as a function of residual demand (taken as the sum of coal,
gas and pumped storage) for the 2015 power system, the actual 2015 CPS, and reference
wind case. It also shows the deviation of the average wind over these hours compared to the
annual average. We expect a low residual demand (RD) to represent off-peak and high RD to
represent peak hours.

When the total CO2 price is £24/tCO2, coal is mid-merit and gas is base load. When RD is
low, wind displaces mostly gas as coal is running at minimum stable levels, but at higher RD
when prices are high enough to make coal profitable, coal can respond flexibly (−∆C/∆W
rises to above unity) while gas is base load and hardly varying (−∆G/∆W approaches zero).
Coal (and CO2) displacements move in counterpoint with gas, as −∆C/∆W −∆G/∆W −
∆PS/∆W = 1, and averaged over many hours ∆PS/∆W is small, as the graph show. Thus
the LR-MDF for wind is smaller at low levels of RD, and higher at high RD. As a result the
LR-MDF is larger than for the zero CPS case discussed below.

Figure 2.12 repeats this for the case with no CPS (just the EUA £6/tCO2). This time coal
does not respond at all at high RD when it is at base load, but does respond more strongly
than gas at low RD, so the LR-MDF is high at low RD (off-peak) and lower for higher RD
(peak periods) leading to a lower average LR-MDF.

32The graphs are constructed by first ranking the simulated hourly generation by residual demand, averaging
the MW of coal, gas, pumped storage and wind over 672 ranked non-consecutive hours, and then calculating
the ratios of interest based on the averaged outputs. This smooths out unimportant fluctuations caused mainly
by pumped storage which differs for the same hours but with different levels of wind capacity. Residual demand
is averaged over the same number of hours (672).
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Fig. 2.11 Displacement factors v.s. residual demand, £24/tCO2

Fig. 2.12 Displacement factors v.s. residual demand, £6/tCO2

Finally, at the very high carbon prices seen towards the end of 2018 (£37/tCO2), the
patterns are extremely similar to the actual 2015 CPS case in Figure 2.11, and are plotted in
Appendix Figure A.1.
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2.8 Comparing the long-run and short-run carbon savings

Our LR-MDF measures the impact of more wind capacity on the merit order under different
carbon prices, but holding other plant and trade flows constant. More wind turbines lower
the residual demand, edging out the most expensive fuel plants. When the variable cost for
coal plant is higher than gas, a large increase in wind capacity would likely force the closure
of some coal stations, until the wholesale price rises enough to make the remaining stations
sufficiently profitable. As plant exit is not included, the LR model may over-estimate the
maximum output that coal can supply. Coal exit would likely reduce the LR-MDF at higher
carbon prices. When the coal is entirely phased-out, building more wind turbines is likely to
displace the less efficient CCGTs (which are still less carbon-intensive than coal).

In the short-run (the period in which plants are committed to deliver in future hours) the
carbon savings will be affected by the types of plant that respond to the volatile hour-to-hour
wind changes (some are predictable day-ahead and intra-day while some are not). Which
plant can increase or decrease output sufficiently rapidly will depend on its flexibility and
the cost of ramping up and down, and this may not be the plant where the residual demand
meets the static merit order. However, the full impact of changes in wind output in any short
period continues to be felt later in the day, as initially the more flexible pumped storage takes
the strain, but unwinds later in the day, allowing coal (if in merit) time to respond. Thus the
half-hourly MDFs are likely to be lower than the daily MDFs (as we found econometrically).
When coal plants are entirely phased out, CCGTs are likely to be the only fossil plant that
responds to wind changes, while electricity storage and cross-border trading may play more
important roles in avoiding excess wind curtailment and providing more reliable balancing
and ancillary services.

Tables 2.5 and 2.6 give the SR and LR impacts of wind. The difference between LR- and
SR-MDFs is mainly the difference between short-run responses to volatility (an equal chance
of an increase and decrease in wind output over a short period of time, here half an hour) and
certainty of an increase in wind from installing more wind capacity. Over the course of a
day, short-run fluctuations in output are buffered by pumped storage (PS) and flexible CCGT,
but later on if coal is in merit (on base-load), it can replenish the PS. It is arguable that it is
the shorter run MDF that is relevant, as if wind changes did not precipitate changes in PS
output, then the larger variations in demand would have depleted the PS, with the same fuel
replenishing PS off-peak. With the predictable fluctuations in demand and wind considered
in the unit-commitment model, PS plays only an arbitrage role and in-merit coal can be
scheduled to respond to these predicted variations in residual demand, raising the MDF.

In the long-run, wind supply is driven by wind capacity, and building more wind turbines
would certainly increase predictable wind output, phasing out the more expensive fossil
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plants. In the short-run, wind output solely depends on wind speed. Forecast errors and
varying (residual) demand require more flexible plant rather than the cheaper scheduled plant
to respond to the wind changes.

The LR-MDF rises (from 0.51 to 0.60 or by 18% for 2015 data) as the total carbon price
rises from £6/tCO2 to £24/tCO2. This is because the CPS moves coal from base-load to
mid-merit where raising wind capacity is expected to displace coal rather than gas. In the
deterministic model, coal can be scheduled to vary in response to future predicted wind
variations and so plays a larger role than in the short-run econometric estimates, leading to a
higher (and in this case an increase in the) MDF.

The econometric analysis shows that flexible CCGTs always respond to wind changes
during peak periods; while for off-peak periods, the cheaper fuel responds to wind changes
(the more costly fuel is likely at minimum load). In 2015 the variable costs of coal and gas
are fairly close, and the £18/tCO2 of CPS made coal more expensive than gas, shifting the
marginal fuel for off-peak periods from coal to gas. As a result, the SR-MDF without CPS is
higher than the SR-MDF with the CPS. Precisely, the CPS in 2015 lowered the SR-MDF
from 0.44 to 0.41 (all tCO2/MWh) or by 7%.

The relevant policy issue is whether increasing wind capacity reduces emissions, and
the answer will be primarily driven by the LR-MDF. However, it is also worth noticing that
the actual operation of the electricity system in real time requires flexible responses coming
from possibly different plants than the apparently marginal plants suggested by the static
merit order. If the increase in wind penetration has on average raised wind generation by 1
GW, then the amount of CO2 displaced by the 1 GW of wind will depend on the LR-MDF. If
the increase in wind penetration makes wind more volatile and increases the (half-hourly)
changes of wind supply by an average of 0.1 GW, then the SR-MDF will explain the impact
of that 0.1 GW of wind changes on CO2 emission. When CCGTs become the only type
of fossil plants in the market following the phase-out of coal plants, the LR- and SR-MDF
converge as only gas is left to respond to long-run and short-run changes in wind supply.

2.9 Conclusion

This chapter has investigated the effect of the Carbon Price Support (CPS) on the carbon
saving from wind by examining the impact of wind on the more carbon-intensive coal and
less carbon-intensive CCGT outputs. The evolution of the fuel mix from 2010-2017 strongly
suggests that gas has displaced coal, and that wind has displaced both, but as the clean spark
and dark spreads have varied substantially over this period with varying fuel and carbon
prices, a more detailed examination was undertaken to tease out the various effects. The
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unit commitment simulation model explores the effect of different total carbon prices on
the carbon savings from a significant increase (25%) in installed wind capacity, holding
fuel prices constant. At 2015 gas and coal prices, the CPS at an additional £18/tCO2 on an
EUA price of £6/tCO2 switches coal from base-load to mid-merit, so now coal rather than
gas is displaced by extra wind capacity, increasing the carbon benefits of wind investment
modestly. At higher total carbon prices, coal output decreases and moves more to peak
hours, resulting in a smaller carbon savings from wind investment. This increase is, however,
sensitive to technical parameters that are hard to identify in ageing coal plant, and could
easily be reversed to a fall in the LR-MDF with the CPS.

The short-run impact of half-hourly varying wind on the fuel mix and emissions was
explored econometrically. Variations in fuel and carbon prices as well as wind capacity and
final demand over a longer time period (2012-2017) identify the drivers of the Marginal
Displacement Factor (MDF) of wind quite precisely. The econometric study suggests that the
SR-MDF depends on demand (i.e. which fuel type is running at the margin), the merit order,
and the flexibility of fossil plants. Specifically, when demand is low (off-peak), base-load
plant responds more strongly to short-run wind changes. However, when demand is high
and so is its variability, more flexible CCGTs are better able to respond. Hence CCGTs are
the marginal fuel during peak hours (07:00-23:00) regardless of the merit order, while coal
would only be the marginal fuel during off-peak hours (23:00-07:00) when coal provides the
base load. The CPS switches the merit order moving coal to mid-merit, but the more flexible
CCGTs become the marginal fuel for the entire day, lowering the SR-MDF slightly.

We argue that following an increase in wind capacity, the LR-MDF explains the impact
of increasing wind penetration on CO2 emission, while the SR-MDF explains the impact of
increasing wind volatility (i.e. half-hourly wind changes) on CO2 emission.

Both the simulation and the econometrics confirm that the impact of wind depends quite
sensitively on the state of the system — which plant are running and whether they are
constrained by minimum loads, capacity, or ramping limits, which in turn depend on the
time period over which wind varies. The fuel mix depends on fuel and carbon prices and the
levels of residual demand. Different countries have very different plant mixes, and so the
carbon benefits of additional renewables capacity will also vary, while over time, fuel and
carbon prices as well as the plant mix will also vary. This chapter shows how the emissions
benefits can be measured for a given plant mix and set of fuel and carbon prices, implying
that country level detailed modelling will be needed to understand their impacts.





Chapter 3

The Cost of Trade Distortion: Britain’s
Carbon Price Support and Cross-border
Electricity Trade

3.1 Introduction

For economists, the natural policy instrument to reduce CO2 emissions is a price on carbon,
preferably via a tax rather than a tradable permit, given the persistence of CO2 and uncertain-
ties about cost and damage functions (e.g. Nordhaus [109], Weitzman [152], Andersson [8]).
It is not the only instrument, and there are strong arguments for performance and emission
standards (as distributionally more acceptable, or more acceptable to lobby groups, and as
a powerful incentive to develop more efficient and lower emitting technologies). Direct
innovation support, or indirect demand-pull through renewables targets also play their part.
The EU’s Renewable Energy Directive (2009/28/EC) therefore created the first multi-nation
Emissions Trading System (the EU ETS), put in place efficiency targets (and more detailed
industry-specific standards for vehicles, housing, appliances, etc.) and set country-specific
targets for renewable energy.

Although a carbon tax may create considerable carbon benefit to the world, its impact
can be reduced for two reasons - some leakage of carbon through imports and some cost
increases because of a failure to equate the full social marginal cost of the carbon-intensive
traded goods (e.g. Babiker [10], Elliott et al. [55], Aichele and Felbermayr [4]). Regional
schemes like the EU ETS partially mitigate this by agreeing a uniform carbon price for some
industries (the covered sector responsible for about half the total EU’s emissions). Initially
the EU ETS delivered plausible carbon prices, rising to nearly e30/tonne CO2, but with
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the end of the first trading period and no banking, prices fell to zero. The second period
started well, but the 2008 financial crisis and increased renewables targets reduced demand
for allowances (EUAs), causing prices to fall, reaching their lowest level in 2011.

The prolonged failure of the EU ETS to give adequate, credible and sufficiently durable
carbon price signals caused increasing concern in almost all Member States, but no country
was effective in forming a coalition to reform the ETS in the first few years after 2008, and,
with the earlier exception of Nordic countries, no country was willing to impose additional
carbon taxes, fearing carbon leakage. The United Kingdom (UK) was, however, leading
the world in imposing legally-binding emissions targets through the Climate Change Act
2008 and was facing an increasingly urgent need for new generation investment. In response
to both pressures, as part of the evolving Electricity Market Reform, the UK Government
announced plans for a Carbon Price Floor (CPF) to come into effect in April 2013, intended
to make up for the failure of the EU ETS. The CPF was implemented by publishing a Great
Britain (GB)1 Carbon Price Support (CPS) added to the EUA price to increase it to the
projected CPF. The CPS grew from £4.94/tCO2 in 2013 to £9.55/tCO2 in 2014, and has been
stabilised since 2015 at £18/tCO2.

Consequently, the total GB carbon cost rose from £5/tCO2 in early 2013 to nearly
£40/tCO2 by the end of 2018. Figure 3.1 shows the evolution of the (nominal) GB and the
EU carbon prices. The two curves start diverging in 2013, with the gap becoming wider
in 2014 and 2015. The dashed line represents the GB carbon cost target when the CPF
was announced. It was not until late 2018 that the GB carbon cost finally met the initial
trajectory, thanks to the reform of the EU ETS, which introduced a Market Stability Reserve
that removes excess EUAs and increases its price (Newbery et al. [104]).

While the EU ETS should harmonise carbon prices and thus reduce distortions within the
EU, it is still prone to leakage to the rest of the world. The main industries affected by carbon
leakage are carbon-intensive traded goods such as steel, aluminium and cement. Fowlie et al.
[67] choose US cement for a case study as it has experienced up to 20% import penetration,
and is also highly concentrated. The electricity sector is, however, considerably more carbon
intensive. In the EU-28, electricity accounts for just over 20% of total greenhouse gas
(GHG) emissions, with very little decrease since 1990, while Figure 3.2 shows considerable
fluctuations for the UK, remaining higher than the EU until the recent sharp decrease as coal
has been driven out of the system by increases in carbon prices.

The electricity sector is therefore of central importance when studying the impact of
differential carbon prices. It has the added advantage that electricity is not widely traded

1Northern Ireland, which is part of the Single Electricity Market of the island of Ireland, is exempt to
preserve an equal carbon price on the island.

http://www.legislation.gov.uk/ukpga/2008/27/contents
http://www.legislation.gov.uk/ukpga/2008/27/contents
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Fig. 3.1 The European and GB carbon prices in power sectors, £/tCO2

Source: investing.com

Fig. 3.2 UK CO2 emissions from electricity sectors as a share of total emissions, 1990-2018

Source: Department for Business, Energy and Industrial Strategy (BEIS): Provisional UK greenhouse gas
emissions national statistics.

outside the boundary of the EU, but within the EU, Great Britain (GB) faces potentially a
13% import share (and an actual share of 6.4% in 2018). A study of differential carbon prices

https://www.investing.com/commodities/carbon-emissions
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within EU’s Integrated Electricity Market2 therefore isolates the impact, and allows us to
ignore the rest of the world, except for the impact on global emissions.3

This chapter develops a methodology for quantifying the impact of an asymmetric carbon
tax on electricity trade within a closed region such as the EU or North America. While it is
relatively simple to characterise the qualitative impact – an increase in domestic and foreign
wholesale electricity prices, an increase in imports, etc., any serious policy analysis also
needs to quantify these impacts, to judge whether they are sufficiently large to justify policy
action, and that is the purpose of this chapter.

The EU’s Third Electricity Directive 2009/72/EC came into force in 2014, requiring
market coupling of interconnectors. Before market coupling, traders had to buy interconnector
volume and direction before knowing the market clearing price at each end, often resulting in
inefficient trades. Market coupling ensured that interconnector capacity would be cleared
at the same time as electricity markets, securing efficient trade. If market prices can be
equilibrated without violating interconnector capacity constraints, prices at each end will be
the same. Otherwise, trade will be set at full capacity and prices will diverge.

GB, The Netherlands and France have all been coupled since early 2014, while the inter-
connector between GB and the Single Electricity Market of the island of Ireland (comprising
Northern Ireland, part of the UK, and the Republic of Ireland) was only coupled in October
2018. The interconnector linking GB to Belgium was not commissioned until 2019. We
therefore restrict our study to GB’s trade with France and The Netherlands from early 2014
to late 2018, before these other linkages became coupled.

This chapter quantifies the costs and benefits of cross-border electricity trading between
interconnected countries in the presence of asymmetric distortionary carbon taxes. It takes
GB as a case study and quantifies the impact of the CPS on electricity prices, interconnector
flows, congestion income (from buying low and selling high), and social value from trade. It
also estimates the deadweight loss and carbon leakage in the electricity sector created by the
asymmetric carbon taxes. This has implications for the design and ideally harmonisation of
the EU carbon tax to improve the efficiency of electricity trade.

We estimate that over 2015-2018 when the CPS stabilised at £18 (e20) /tCO2, the
CPS raised the GB day-ahead price by an average of e11.43/MWh (about 28% of the GB
wholesale price) after allowing for replacement by cheaper imports. The CPS increased GB
imports by 12.4 TWh/yr (about 4% of the GB annual electricity demand), thereby reducing
carbon tax revenue by e101 m/yr (about 10% of the 2017 CPS tax receipts). The commercial

2The EU’s Integrated Electricity Market opens national wholesale and retail electricity markets to trade and
competition across the EU.

3Electricity prices will feed through to other exporting industries and will give rise to some additional
leakage, but this will be ignored in the present chapter.
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value of interconnectors (measured by congestion income) increased by e153 m/yr (by 80%
relative to the zero CPS case), half of which was transferred to foreign interconnector owners.
The sum of the congestion income and the importer and exporter surplus is the social value
of interconnector at e250 m/yr, but the asymmetric carbon taxes created deadweight losses
of e80 m/yr, about 4% of the global emissions reduction benefit of the CPS of e2 bn/yr.
Increased French exports raised French wholesale prices by 3.5% and Dutch wholesale prices
by 2.8%. Finally, about 1.3% of the CO2 emission reduction is undone by France (-0.4% by
the Netherlands), and the monetary loss of this carbon leakage is about e27 m/yr (e-9 m/yr
for The Netherlands), in total e18 m/yr.

3.1.1 Literature review

The Coase theorem (Coase [43]) states that with well-defined property rights and sufficiently
low transaction costs, bargaining will give Pareto efficient outcome regardless of the initial
allocation of the property rights. However, the Coase theorem does not apply in international
environmental policy, because the assumptions of “sufficiently low transaction costs” and
“well-defined property rights” are mostly violated in pollution and GHG emissions markets
(Pethig [122]). Furthermore, the existence of non-participants in the bargaining process (e.g.
the uncommitted countries in the Kyoto and Paris Protocols) potentially leads to free-riding
(Barrett [13]), resulting in carbon leakages. In the long run, this may also relocate capital
and international firms (e.g. Markusen [96], Hoel [81], Rauscher et al. [127], Elliott et al.
[55]). A second-best solution is to set tariffs or boarder taxes. Böhringer et al. [16] show that
the use of carbon tariffs is a credible and effective threat in terms of inducing uncommitted
countries to adopt emission controls.

In early 2000s, literature had mostly focused on the impact of unilateral carbon taxes on
the macro-level bilateral trade and carbon leakage under the 1997 Kyoto Protocol. Elliott
et al. [55] use a computable general equilibrium model to predict that countries uncommitted
to the protocol will undo 20% of the reduction made by the committed countries, and adding
full border tax adjustments would eliminate the leakage. Babiker [10] uses a similar model
to predict that the leakage rate can be as high as 130%, resulting in higher global emissions.
Aichele and Felbermayr [4] conduct an empirical ex-post evaluation of the protocol and
find that the committed countries have increased 8% of its carbon imports, and the emission
intensity of their imports has increased by 3%. Harstad [75] argues that the solution to the
market distortion is to allow countries to trade their emission allowance, while Shapiro [138]
suggests proposing regional carbon taxes from shipping to increase global welfare.

Fowlie et al. [67] look at the domestic distortions arising from the oligopolistic nature of
the cement market, where at high carbon taxes domestic market power is increased. Leakage
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makes matters worse, and both effects can be counteracted by suitable policies, including a
Border Tax Adjustments (BTA). Metcalf [98], in designing a politically acceptable carbon
tax for the US, proposes a BTA to offset trade distortions, and an earned income tax credit
designed to be distributionally neutral. Bovenberg and Goulder [20] look at environmental
tax distortions in a closed economy, finding that a full corrective environmental tax (that fully
internalises the externality) would create additional distortions if there are other distorting
revenue-raising taxes, arguing for a lower than Pigouvian tax on such externalities. As the
GB carbon tax does not carry any BTA it can be expected to have distortionary impacts on
trade, while its interactions with the rest of the tax system will be ignored here (as the total
demand for electricity is assumed inelastic in the short run).

Studies of carbon taxes and electricity markets have so far focused on their price impacts
(e.g. Fabra and Reguant [56], Sijm et al. [140], Fell [61], Kirat and Ahamada [91], Jouvet and
Solier [86], Wild et al. [155]), on the fuel mix and greenhouse gas emissions (e.g. Di Cosmo
and Hyland [51], Cullen and Mansur [46], Staffell [142]), and on investment decisions
within the power sector (e.g. Green [72], Fan et al. [57], Richstein et al. [129]). Fowlie
[66] is perhaps the most useful for this chapter in that the author uses a numerical model to
simulate CO2 emissions from California’s electricity industry. Fowlie [66] suggests that it is
much more expensive to reduce CO2 emission under a carbon tax that excepts out-of-state
producers than a carbon tax levies on all producers.

To the best of our knowledge, there is no ex-post econometric estimation of the effect
of a carbon tax on cross-border electricity trade, nor of the deadweight loss involved when
applying carbon taxes asymmetrically across two electricity markets.

3.2 The British Carbon Price Floor and Carbon Price Sup-
port

The British-only Carbon Price Floor (CPF) distorted cross-border electricity trade, while
market coupling ensures that the high-price country always imports and the interconnector
capacity is efficiently used, simplifying the analysis. All EU Member States, together with
GB until the end of 2020,4 are members of the EU ETS designed to deliver a common
carbon price. The CPF was implemented by the Carbon Price Support (CPS) (a carbon tax
on generation fuels) which, with the EUA price was intended to increase the price up to the
projected CPF. The CPS grew from £4.94/tCO2 in 2013 to £9.55/tCO2 in 2014, and has been
stabilised since 2015 at £18/tCO2.

4See GOV.UK.

https://www.gov.uk/guidance/energy-and-climate-after-brexit
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Fig. 3.3 28-day lagged moving average day-ahead prices, 2013-2017

Source: Epex Spot and Nord Pool.

The CPS raises the cost of fossil-fuelled electricity generation. Figure 3.3 plots the
28-day moving average of the day-ahead prices for GB, France, and The Netherlands, as well
as the price differences between the two connected markets. It also shows the variable cost
(i.e. the short-run marginal cost) for Combined Cycle Gas Turbines (CCGTs) with 54.5%5

thermal efficiency with EUA prices included (CPS excluded) as a measure of Continental
gas generation costs.

GB prices were typically higher than Dutch prices but the CPS further widened the price
difference between the two markets. French prices are much more volatile than the others
mainly because nearly 80%6 of its gross electricity generation comes from nuclear power
stations (in 2015), making its electricity system less flexible and resulting in more volatile
prices. Another reason for the high volatility is that French prices are very weather-sensitive
given their high domestic electrical heating load. During Q3-Q4 2016 and Q4 2017, France
experienced major nuclear outages, which explains the much higher French prices during
those periods. The variable cost for CCGTs partially explains the patterns of prices for the
three markets, and best fits the dynamics of the Dutch price, where gas is the marginal fuel
most of the time.

5Measured at Lower Heating Value (LHV).
6See Eurostat.

https://ec.europa.eu/energy/en/news/get-latest-energy-data-all-eu-countries
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3.3 A model of the cost of trade distortion

Consider two EU countries H (Home country, GB) and F (Foreign country) connected via
an interconnector with capacity K. Without the CPS (but with the EUA price), wholesale
electricity prices in each country are initially pi

0, i = {H,F} (subscript j = 0 indicates
without the CPS, and 1 with the CPS). The net import to H over the interconnector is m j

(−K ≤ m j ≤ K). Applying the CPS (τ > 0) in H raises its wholesale price by ∆pH . The
higher price in H induces more net imports (∆m ≥ 0), which further changes generation
in each country, with impacts on marginal costs in H and F and in turn wholesale prices.
Our first aim is to estimate ∆pH , ∆m and pi

0, i = {H,F},7 with the estimate of ∆pH further
informing us about the CPS pass-through rate to H’s wholesale prices.

Demand is assumed inelastic in the short-run. Because changes in prices and imports
have no obvious impact in that hour’s intermittent renewable8 and nuclear power generation,
residual demand (total demand minus renewable and nuclear generation) does not change
with the carbon price. Therefore, increased net imports imply the same reduction (increase)
in fossil generation in H (F).9 These supply changes, given the asymmetry in carbon taxes,
will have first order welfare effects. Our second aim to measure this welfare loss.

The changes in trading patterns potentially influence emissions in H and F , with implica-
tions for global emissions and welfare. The third aim is to estimate the carbon leakage of
the CPS via interconnectors, as well as the total CO2 emission reduction and its associated
monetary value (in a world where individual country changes lead to global changes).10

3.3.1 The CPS cost pass-through

The CPS raises short-run marginal costs of electricity generation, but generators in H may
absorb some of the tax by marking up their offers by a smaller or larger amount if the market
is imperfectly competitive, depending on the shape of the residual demand curve. In this
case and in the absence of any cross-border trade, the cost pass-through of the CPS would

7 pi
1, i = {H,F} are observed. Note pH

0 +∆pH ≥ pH
1 , because ∆pH measures the effect of the CPS on H’s

wholesale price with the net import fixed at m0, while pH
1 is H’s wholesale price after considering the change in

net import ∆m.
8Increased exports might allow an increase in constrained-off surplus wind, but these are only likely when

the country is already exporting and limited by interconnector capacity.
9In the very short run, it may induce changes in the pattern of storage, but assuming that storage is efficiently

used over the course of the day its total will not change and so will not affect the argument.
10The Market Stability Reserve removes the surplus EUAs, making reduction by one country effectively a

reduction of global CO2 emissions. Given this, the EU ETS operates as a carbon tax, for which this assumption
would be valid.
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then differ from 100%. Under proportional mark-up pricing (Newbery [103]), any cost shock
would also be marked up, and the cost pass-through would be more than 100%.

Our post-econometric analysis allows us to estimate ∆pH , the increase in the GB whole-
sale price when no trading takes place. This enables us to measure the domestic cost
pass-through as a percentage of the system marginal cost increase. A pass-through rate sig-
nificantly different from 100% would cast doubt on the competitive assumption and possibly
change domestic deadweight losses as output responds to the CPS. We put this to one side
for the moment.

Algebraically, in a closed competitive market, assume that coal and gas are the only
marginal fuels. At the margin, the short-run marginal costs (SRMC) of generating electricity
from coal and gas (the EUA cost included) are cC and cG respectively, assumed unchanged
by the CPS. Without the CPS, if the marginal share of coal is α0, the electricity price in H is
the system SRMC:

pH
0 = α0cC +(1−α0)cG. (3.1)

The CPS (τ , e/tCO2) raises the system SRMC. If τ switches the merit order and hence
the marginal share of fossil fuels, H’s system SRMC with τ is

pH
1 = α1(cC + eC · τ)+(1−α1)(cG + eG · τ), (3.2)

where α1 is the marginal share of coal with the CPS, and eC and eG are emissions per
megawatt hour of electricity (MWhe) generated by marginal coal and gas. In this closed
competitive market, the CPS has raised the electricity price by

pH
1 − pH

0 = τ · [α1 · eC +(1−α1) · eG]+ (cC − cG) · (α1 −α0)

= τ ·µ
H
1 +(cC − cG) ·∆α,

(3.3)

where µH
1 = [α1 · eC +(1−α1) · eG] denotes the Marginal Emission Factor (MEF) of H with

the CPS applying, and ∆α = α1 −α0 is the change in the marginal share of coal.
Equation (3.3) suggests that if the CPS does not change the marginal share of coal and

∆α = 0, or if the SRMCs of coal and gas are close without the CPS and cC − cG ≈ 0, the
impact of the CPS on the domestic electricity price would be µH

1 · τ . Otherwise, given that
normally coal is the cheaper fuel without the CPS (cC − cG < 0), and that from Chapter 2
the marginal share of coal has decreased with the CPS (∆α < 0), the impact of the CPS on
the electricity price should be higher than µH

1 · τ . Using the data and results from 2, we can
estimate both (cC − cG) and ∆α , which enables us to further examine whether the CPS has
been fully passed through to the GB’s wholesale electricity price.
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3.3.2 Impact on electricity trade

Interconnectors complicate this simple single market story. Without capacity limits, the
increase in H’s electricity price will change flows until the prices in both markets equate.
With capacity limit and if flows do not change due to an existing capacity constraint, there will
be no additional distortion. However, if flows do change, there will be additional deadweight
losses. If demand is inelastic, the deadweight loss will be the difference in the total cost of
generation with and without the CPS.

We use geometric expositions11 to clarify the problem, and distinguish five possible
Cases of trade:

(a) trade is constrained without the CPS but is unconstrained with the CPS (H exports
without the CPS): pH

0 < pF
0 and pH

1 = pF
1 ;

(b) trade is constrained with and without the CPS, but the direction of trade changes:
pH

0 < pF
0 and pH

1 > pF
1 ;

(c) trade is unconstrained with and without the CPS: pH
j = pF

j ;

(d) trade is unconstrained without the CPS but constrained with the CPS: pH
0 = pF

0 and
pH

1 > pF
1 ;

(e) trade and its direction are unaffected by the CPS, as it is constrained by interconnector
capacity: pH

j > pF
j , or pH

j < p jF .

Figure 3.4 gives a geometric exposition of Case (a). Without the CPS, H’s net supply
curve12 is represented by sH

0 and F’s supply curve is represented by sF
0 . H exports to F

at the full interconnector capacity m0 = −K, with H’s prices (pH
0 ) lower than F’s prices

(pF
0 ) and congestion income equalling to R0 = (pH

0 − pF
0 ) ·m0, or the rectangle AGHF.13

Under the assumption of zero consumer demand elasticity (i.e. vertical demand curves),
the interconnector creates an initial surplus (gains from trade) which is entirely due to a
reduction in F’s generation costs (the area under F’s net supply curve from D to F), offset
by an increase in H’s cost (the area under H’s net supply curve from C to A), or the area of
the trapezium ACDF, made up of importer’s and exporter’s surplus (triangles DFH and ACG,
respectively) and the congestion income without the CPS (rectangle AGHF). Given the slopes

11Similar analysis can be found in, for example, Newbery [102] and Fowlie [66].
12The supply from fossil fuels.
13The congestion income is the arbitrage gain from buying low and selling high, defined as the product of

the interconnector flow and price difference between H and F .
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Fig. 3.4 Impact of CPS on imports and deadweight losses, Case (a)

of the net supply curves are, over the relevant range, θ H and θ F respectively for H and F ,
the social value of trade (when there is nothing to distort trade) is thus

S =
1
2
· (θ H +θ

F) ·m2
0 +m0 · (pH

0 − pF
0 ). (3.4)

With the CPS, H’s supply curve shifts upward to sH
1 . Although H is still exporting, the

interconnector is now uncongested and the net import increases by ∆m. The deadweight loss
is defined as the difference between F’s increased generation cost (the area under F’s net
supply curve from F to E) and H’s reduced generation cost (the area under H’s net supply
curve from A to B). Given θ H and θ F , the deadweight loss L is the trapezium ABEF, made
up of triangles EFJ and ABI and rectangle AIJF. Algebraically,

L =
1
2
· (θ H +θ

F) ·∆m2 +∆m · (pF
0 − pH

0 ). (3.5)

In this case, there is no congestion income with the CPS applying, so the change in
congestion income is

∆R = (pF
1 − pH

1 ) ·m1 − (pF
0 − pH

0 ) ·m0, (3.6)

where in this case, pF
1 − pH

1 = 0.
In Case (b)-(e) similar arguments apply. The social value of the interconnector is due to a

reduction in the importer’s generation costs offset by an increase in the exporter’s cost where
there is no trade distortion, and the deadweight loss is the difference between F’s increased
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generation cost and H’s reduced generation cost following the unilateral carbon tax. Finally,
the congestion income is the product between price differences and flows. Appendix B.3
gives detailed expositions for each case.

To sum up, in all cases the social value can be expressed as equation (3.4), the deadweight
loss from the trade distortion can be expressed as equation (3.5), and the change in congestion
income can be expressed as equation (3.6). Given this, both the social value and deadweight
losses are (linearly) positively correlated with the price difference where the CPS is not
applied, and (quadratically) positively correlated with the interconnector capacity (which
determines the magnitudes of m0 and ∆m). The change in congestion income would depend
on flows and price differences with and without the CPS.

3.3.3 Global impact

The CPS has substantially reduced domestic CO2 emissions from electricity. However,
changes in trade between H and F could potentially undo some part of H’s CO2 emission
reduction. For simplicity, we assume that the fuel mix and the marginal fuel shares abroad do
not change with net exports (i.e. they are unaffected by the CPS). This would be plausible if
there were no internal transmission constraints on the Continent, as changes in their exports
would be a very small fraction of total generation. Given this, the foreign country’s Marginal
Emissions Factor14 (MEF, µF ) remains unchanged and the slope of its net supply curve is
also unchanged. Also assume that the CPS has little short-run impact on non-EU countries
other than through changing global emissions.

∆W is the change in global welfare that increases from a fall in total emissions. If the
Social Cost of Carbon (SCC)15 is C, and deadweight loss is L defined in (3.5), then,

∆W = (∆E + ε) ·C−L, (3.7)

where ∆E denotes the emission reduction due to changes in H’s fuel mix (holding imports
fixed), and ε denotes the emission reductions due to H’s increased import from F . In Chapter
2, we use a unit commitment dispatch model to give estimates of GB’s emission reduction
from CPS in 2015 when holding imports fixed, while in this chapter we focus on the second
part of emissions reduction, ε . With the CPS, the MEFs for H and F are µH

1 and µF , so the

14The CO2 released from the last unit of electricity generated in MWh/tonne CO2.
15The SCC is defined as the present discounted social cost of the damage caused by emitting one tonne of

carbon (more usually measured per tonne of CO2).



3.4 Econometric Models 57

emission reduction from trading is

ε = (µH
1 −µ

F) ·∆m. (3.8)

The next challenge is to identify the effective SCC. The US estimate ranges from
$201814/tCO2 (5th percentile, uprated by the Commodity Price Index) to $2018130/tCO2

(95th percentile) with an average at 3% discount rate of $201845(e38)/tCO2 (USEPA [150]).
At the lower discount rate preferred by Stern [143] and many others, the SCC would be
higher. The UK Government’s figure for sectors not covered by the ETS (i.e. the full SCC)
in 2020 was £201870 (e79)/tCO2.16

The 2019 average GB carbon price for fossil generation was e45/tCO2, greater than
both the average United States (US) SCC and the EU ETS level of e20/tCO2. Even if the
2019 GB price is considered a defensible SCC, from 2013 the annual average GB price has
steadily risen from e8.23/tCO2 at which level it would be considerably below the US SCC.
In our analysis, to calculate the global surplus from the CPS, we take the 2019 British carbon
price as the SCC, i.e. C =e45/tCO2. Clearly it is simple to adjust ∆W for other values of the
SCC, C.

3.3.4 Other distributional impacts

There are other distributional impacts from the CPS. As prices increase in both countries,
some producers gain and consumers lose.17 In the home country, the government receives
additional tax revenue from the CPS, and both countries receive EUA revenues that change
with output (as we are assuming the the Market Stability Reserve cancels excess allowances).
Estimating these distributional impacts requires knowledge about market structures of both
markets, and perhaps simulation techniques are preferable to econometric methods. We leave
their estimation for future research.

3.4 Econometric Models

This section presents the econometric specifications to study the impact of the British CPS
and interconnector flows on the domestic and foreign day-ahead electricity prices. Data
availability18 makes IFA, the interconnector between GB and France, the main focus, though

16See Forest Research
17H’s marginal fossil suppliers may not gain from the higher domestic wholesale price but H’s other suppliers

such as wind and nuclear generators will gain.
18We are unable to obtain the Dutch day-ahead or actual wind and load data for the period before 2015.

https://www.forestresearch.gov.uk/research/review-of-approaches-to-carbon-valuation-discounting-and-risk-management/current-uk-government-guidance-for-social-value-of-carbon/
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we provide some less reliable estimates for BritNed, the electricity link between GB and
the Nertherlands. The analysis runs from 4 February 2014, when the North-Western Europe
market coupling went live, to 30 September 2018, when GB first became coupled with the
island of Ireland. During this period, no new interconnectors were commissioned, and the
capacity of fossil plants, especially coal, was stable in GB, France, and The Netherlands.
Over the period, the British CPS rose from £4.94/tCO2 to £9.55/tCO2 and then stabilised at
£18/tCO2, providing a sufficient number of observations for different levels of the CPS. In this
section, we present the simplest specification with neither peak and off-peak heterogeneity
nor interaction terms. Section 3.6 gives the results and also examines heterogeneity between
peak and off-peak and includes interaction terms.

One of our major challenges in estimating the impact of flows on electricity prices is that
the day-ahead market is an implicit auction, which means the domestic and foreign prices
and the interconnector flows are determined simultaneously, raising the issue of simultaneity.
Finding proper instrumental variables for the day-ahead flows is difficult because under
market coupling, the day-ahead flows are only determined by the day-ahead price differences,
i.e. the dependent variables. To address this we use the marginal effects of wind on prices
as proxies for the marginal effects of flows which should have similar impacts on fossil
generation.

To deal with the very substantial electricity price volatility, we implement the Multivariate
Generalised Auto-Regressive Conditional Heteroskedasticity (M-GARCH) model (Silven-
noinen and Teräsvirta [141]), which accounts for variations in both the mean and volatility
of electricity prices. M-GARCH has been widely used to model day-ahead electricity prices
(e.g. Kirat and Ahamada [91], Annan-Phan and Roques [9]).

As hourly electricity prices in most European countries for the next day are all set
simultaneously in the pan-European day-ahead auction, it would be problematic to treat them
as univariate hourly time series. As all day-ahead hourly bids and offers are submitted at the
same time, within that day the price for any hour carries little in any information about the
next hour (Sensfuß et al. [137], Würzburg et al. [161], Keppler et al. [88]). Therefore, for
each country we aggregate to give daily averaged day-ahead prices. The mean equation of
the M-GARCH model is then

yyyt = µµµ +ΓΓΓXXX t +εεε t , yyyt =
(

PGB
t ,PFR

t

)′
, (3.9)

where yyyt is a 2×1 vector of day-ahead GB and French prices, and t represents days. XXX t is a
k×1 vector of exogenous covariates, including the day-ahead forecast19 of wind and nuclear

19Whenever the forecast data is unavailable, we use the actual data as a proxy.
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generation for both countries, day-ahead forecast of electricity load (i.e. demand) for both
countries, coal and gas costs, the EUA price, the day-ahead scheduled interconnector capacity
and most importantly, the British CPS. We also include dummy variables representing the
days of the week and the quarters of the year.20

We do not include auto-regressive terms of the dependent variables in the regression
because first, the electricity wholesale markets in GB and France are workably competitive
(CMA [42], Pham [123]). This means that bidding behaviour is primarily driven by the
short-run marginal cost, instead of the market outcome from days before. Second, including
day-of-week dummy variables allow us to effectively capture the difference in price patterns
between weekdays and weekends. Lagged fuel costs and carbon prices are also excluded
from the model as the experienced market participants can observe the daily prices of each
before making their bids.

All covariates can be treated as exogenous. Wind generation depends on weather, and
electricity load is inelastic to prices in the short-run (Clò et al. [40]). Nuclear generation
is also exogenous as it runs unless an outage occurs.21 Although some studies have found
that dynamic interactions among fuel, carbon, and electricity prices may play an important
role in price formation (Knittel and Roberts [92]), we argue that fuel and carbon costs (EUA
prices in this case) are more likely to be affected by the EU-wide demand by the much larger
covered sector for EUAs, a claim supported statistically in Chapter 4. They also find the
exchange rate between Euro and Sterling is exogenous with respect to electricity prices.
Finally, the scheduled interconnector capacity is only influenced by outages, maintenance or
network limitations and so can also be treated as exogenous.

We expect wind and nuclear generation to reduce electricity prices and load to raise
prices. As GB has consistently been a net importer of electricity from the Continent, we
expect interconnector capacity to lower the GB price and raise foreign prices. We also expect
the fuel costs and EUA prices to raise electricity prices, and the magnitude of the impacts
depends on the (marginal) fuel mix in the market. From Chapter 2, during 2013-2017 fossil
fuel provided more than 80% of GB’s marginal generation, while the marginal generation
in France has heavily relied on hydro and imports. Therefore, one might expect fuel costs
and EUA prices to have a stronger impact on the GB price than the French price. However,
marginal imports of France come from in other fossil-fuel intensive Continental markets (e.g.

20The yearly dummy variables are not included mainly because it can substantially save computational
time, especially for the more complicated specifications such as Regression (iii) in Table 3.2. Also, almost all
covariates carry information of (yearly) trends and drifts (if any), which weakens the importance of the yearly
dummies. Lastly, including yearly dummies in the regressions have negligible effects on the estimation results.

21Although the French nuclear power may reduce output off-peak, aggregating the hourly observations to
daily can effectively deal with the potential endogeneity.
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Germany, Belgium, Spain and Italy), which could also influence the French price, potentially
boosting the effect of fuel costs and EUA prices on the French price.

Our estimates of the impact of the CPS on the prices are conditional on interconnector
capacity but unconditional on interconnector flows, meaning that the coefficients for the CPS
can only be interpreted as the estimates of the diluted (by trade) impact of the CPS on both
GB and French prices. As other EU countries have not yet introduced a carbon tax similar
to the CPS, the higher GB carbon tax result in foreign countries exporting more electricity
to GB, which in turn lowers the GB price and raises the foreign price. We therefore expect
the CPS to have positive impacts on both GB and French prices, though its effect on the GB
price should to be much higher.

To control for dynamic heteroskedasticity, we assume εεε t to be conditionally heteroskedas-
tic. We use the Constant Conditional Correlation (CCC)22 GARCH(1,1) model proposed by
Bollerslev [18], where the conditional correlation matrix, HHHt , can be expressed as:

HHHt =DDD1/2
t RRRDDD1/2

t , (3.10)

where RRR = [ρi j] is a 2× 2 time-invariant covariance matrix of the standardised residuals
DDD−1/2

t εεε t . RRR is positive definite with diagonal terms ρii = 1. DDDt = [di j,t ] is a diagonal matrix
consisting of conditional variances with dii,t = σ2

ii,t , and di j,t = 0 for i ̸= j.
The model assumes the conditional variances for electricity prices follow a univariate

GARCH(1,1) process and the covariance between prices is given by a constant-correlation
coefficient multiplying the conditional standard deviation of the price differentials:

σ
2
ii,t = si +αiε

2
i,t−1 +βiσ

2
ii,t−1, (3.11)

σ
2
i j,t = ρi j

√
σ2

ii,tσ
2
j j,t , (3.12)

where si is a constant term, α1 is the ARCH parameter capturing short-run persistence and
β1 is the GARCH parameters capturing long-run persistence.

One advantage for the M-GARCH model is that it allows for the existence of missing data,
where the missing dynamic components are substituted by the unconditional expectations.
The model is estimated by Maximum Likelihood Estimation.

22The Wald test suggests to use the CCC model instead of a more complicated Dynamic Conditional
Correlation (DCC) model, and both models provide very similar estimation results.
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3.5 Data

Table 3.1 gives summary statistics for all variables. The day-ahead price for France is
collected from Epex Spot, and the day-ahead price for GB comes from the Nord Pool Market
Data Platform. The French System Operator (RTE) provides forecasts of hourly French
electricity load and wind generation, as well as the actual hourly French nuclear generation.
While we are unable to find the day-ahead forecast of GB load and wind generation over
the whole period, we use the actual half-hourly data from National Grid as proxies. The
half-hourly GB nuclear generation is collected from the Elexon portal. ENTSO-E provides
the day-ahead forecasted transfer capacity of interconnectors. All (half-)hourly data are
aggregated to daily averages.

Table 3.1 Summary Statistics

Variable Unit Abbr. Mean S. D. Min. Max.
GB day-ahead price e/MWh PGB 53.80 9.72 33.33 199.98
French day-ahead price e/MWh PFR 39.86 14.82 2.98 125.92
IFA day-ahead capacity GW ICIFA 1.77 0.38 0.43 2.00
GB load GW DGB 31.31 4.44 20.82 42.91
French load GW DFR 53.36 10.62 34.82 87.97
GB wind GW W GB 2.97 1.92 0.14 10.16
French wind GW W FR 2.28 1.49 0.33 10.54
GB nuclear GW W GB 7.32 0.76 4.25 8.99
French nuclear GW W FR 44.93 6.37 29.94 60.61
CPS e/tCO2 CPS 19.36 4.99 5.88 26.06
Coal plant var. cost e/MWhe VCCOAL 28.19 4.48 17.44 37.79
Gas plant var. cost e/MWhe VCCCGT 34.50 6.75 20.29 54.47
EUA price e/tCO2 EUA 7.61 3.58 3.99 25.19

The daily UK National Balancing Point (NBP) price23 and the EUA price are collected
from the InterContinental Exchange, and the daily coal price is collected from the CME
group, representing coal prices at global level. In order to count in the transportation cost of
coal into power stations, quarterly averages of the daily prices are subtracted from the BEIS
quarterly

23An alternative is to use the Dutch natural gas price at the Title Transfer Facility (TTF) Virtual Trading
Point. However, as the European natural gas markets are rather liquid, the two natural gas prices are extremely
close.
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3.6 Results

In our regressions, outliers for day-ahead electricity prices are defined as values exceeding
four standard deviations of the sample mean and are removed and treated as missing data.
Wald tests examine whether the more complicated Dynamic Conditional Correlation (DCC)
models instead of the proposed Constant Conditional Correlation (CCC) models are necessary
(Tse and Tsui [148]), and the test statistics suggest using CCC models. Table 3.2 presents
the estimation results of the mean equations.24

Regression (i) ignores the heterogeneity between peak and off-peak behaviour. We find
the estimated impact of the CPS on the French price is unexpectedly high: a e1/tCO2

increase in the CPS is associated with a e0.32/MWh increase in the French price, more
than a half of its impact on the GB price. Further analysis reveals that even though we have
controlled for nuclear generation, the major French nuclear outages (in Q3-Q4 2016 and
Q4 2017) have much higher effects on the French prices than during normal outages, and
ignoring this effect would result in omitted variable bias.

As a result, in Regressions (ii) and (iii) we add a dummy variable representing periods
of major French nuclear outages. Regressions (ii) and (iii) also separates the day into
peak and off-peak, hence the vector of dependent variable yyyt now becomes a 4×1 vector
(PGB,P

t ,PFR,P
t ,PGB,O

t ,PFR,O
t )′, namely the daily averaged peak and off-peak electricity prices

for GB and France. Peak and off-peak have different demands and fuel mix, so the marginal
fuel could differ, resulting in different marginal effects on electricity prices. Regression (iii)
further adds interaction terms between some of the existing covariates and a dummy variable
equalling to one when the British CPS was stabilised at £18/tCO2 (after April 2015). This
is because the high CPS has switched the merit order between coal and gas within the GB
electricity dispatch (see Chapter 2), hence after April 2015, wind might displace different
fuel types and have different effects on the GB price. For the same reason, the marginal
effects of fuel costs and EUA prices on the GB price could be different before and after April
2015.

From Regressions (ii) and (iii), we find evidence on both domestic and foreign wind
lowering French prices, in agreement with Annan-Phan and Roques [9]. The intuition is
that higher foreign wind reduces foreign electricity prices, resulting in higher domestic net
import, which further reduces domestic prices. Although Regression (ii) suggests French
wind has a positive effect on the GB price during peak periods, the magnitudes are small and
the effect disappears in Regression (iii).

24The full results are listed in Table B.1.
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Table 3.2 M-GARCH results

Unit (i) (ii) (iii)
GB DAM prices Off Peak Off Peak
GB wind GW −0.881∗∗∗ −0.410∗∗∗ −0.965∗∗∗ −1.162∗∗∗ −0.826∗∗∗

(0.039) (0.055) (0.036) (0.113) (0.078)
GB wind GW 0.873∗∗∗ −0.221∗

×CPS Dummy (0.114) (0.086)
French wind GW −0.054 −0.219∗∗∗ 0.153∗∗∗ −0.210∗∗∗ 0.056

(0.049) (0.063) (0.038) (0.057) (0.043)
IFA capacity GW −0.836∗∗∗ −0.071 −2.553∗∗∗ 0.134 −1.896∗∗∗

(0.241) (0.203) (0.145) (0.183) (0.207)
Coal price e/MWhe 0.345∗∗∗ 0.426∗∗∗ 0.336∗∗∗ 0.429∗∗∗ 0.053

(0.021) (0.024) (0.016) (0.069) (0.056)
Coal price e/MWhe −0.145∗ 0.335∗∗∗

×CPS Dummy (0.063) (0.056)
Gas price e/MWhe 0.825∗∗∗ 0.702∗∗∗ 0.945∗∗∗ 0.609∗∗∗ 0.930∗∗∗

(0.015) (0.019) (0.015) (0.034) (0.034)
Gas price e/MWhe 0.201∗∗∗ −0.114∗∗

×CPS Dummy (0.041) (0.043)
EUA e/tCO2 0.507∗∗∗ 0.554∗∗∗ 0.409∗∗∗ 0.994∗∗∗ 1.039∗∗∗

(0.024) (0.029) (0.024) (0.214) (0.175)
EUA e/tCO2 −0.479∗ −0.565∗∗

×CPS Dummy (0.219) (0.178)
CPS e/tCO2 0.595∗∗∗ 0.545∗∗∗ 0.633∗∗∗ 0.366∗∗∗ 0.584∗∗∗

(0.013) (0.018) (0.015) (0.055) (0.046)
French DAM prices
GB wind GW −0.135 −0.226∗∗ −0.131 −0.238∗∗ −0.146∗

(0.076) (0.081) (0.070) (0.081) (0.070)
French wind GW −1.817∗∗∗ −1.896∗∗∗ −1.467∗∗∗ −1.898∗∗∗ −1.485∗∗∗

(0.089) (0.092) (0.083) (0.092) (0.083)
IFA capacity GW −0.674 −1.505∗∗∗ −1.047∗∗ −1.465∗∗∗ −0.942∗∗

(0.379) (0.314) (0.357) (0.312) (0.359)
Coal price e/MWhe 0.607∗∗∗ 0.531∗∗∗ 0.494∗∗∗ 0.516∗∗∗ 0.482∗∗∗

(0.035) (0.043) (0.043) (0.043) (0.043)
Gas price e/MWhe 0.690∗∗∗ 0.317∗∗∗ 0.550∗∗∗ 0.323∗∗∗ 0.538∗∗∗

(0.037) (0.036) (0.037) (0.036) (0.038)
EUA e/tCO2 0.611∗∗∗ 0.979∗∗∗ 0.913∗∗∗ 1.005∗∗∗ 0.949∗∗∗

(0.060) (0.064) (0.069) (0.063) (0.068)
CPS e/tCO2 0.320∗∗∗ 0.046 0.098∗ 0.050 0.103∗∗

(0.039) (0.037) (0.039) (0.037) (0.039)
Nuclear outage 5.932∗∗∗ 7.535∗∗∗ 6.247∗∗∗ 7.886∗∗∗

(0.581) (0.682) (0.580) (0.695)
No. Obs. 1687 1684 1684
Standard errors in parentheses. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

“Coal price” and “Gas price”: the short-run marginal cost excluding carbon prices.
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We find interconnector capacity of IFA reduces electricity prices in GB, as GB is consis-
tently a net importer from France. The effects are significantly different between peak and
off-peak, probably because GB has a convex and monotonically increasing marginal cost
curve. During off-peak periods, the demand is low and the electricity system is running at
base load with a relatively flat marginal cost curve, so a change in the interconnector capacity
(hence import) has little effect on the GB price.

Counterintuitively, we find interconnector capacity has a negative effect on French prices
as well, for rather complicated reasons. On the one hand, 80% of the French electricity comes
from nuclear power stations with close-to-zero marginal costs, and the French electricity
market is designed to be an exporter of electricity. Therefore, when the French nuclear
stations are dispatching with full capacity, its electricity supply curve is mostly flat. On the
other hand, when France is importing, it is likely because of high demand relative to nuclear
output (cold weather, nuclear outages). In those cases, due to its limited capacity of fossil
fuels, the French marginal cost curve can be steep where it meets demand, and importing (or
increasing interconnector capacity) can substantially reduce the French electricity price. As
a result, one may observe interconnector capacity substantially reducing the French prices,
even though France exports to GB most of the time. This is not the case between BirtNed’s
capacity and the electricity price of The Netherlands, who has a much smaller share of
nuclear capacity in its electricity system, as illustrated in Appendix B.4.4.

Electricity prices are positively correlated with both coal and gas costs. However, gas
costs are found to have a much stronger impact in GB than France because the GB electricity
system relies more heavily on gas. This is especially the case after April 2015, when the CPS
has made the GB electricity supply less coal-dependent and more gas-dependent, while in
France coal remains relatively cheaper. For both countries, the marginal effects of gas costs
are significantly higher in peak than off-peak periods, consistent with the results in Chapter
2, where we argue that because peak demand is more variable, the more flexible gas plants
are preferred to respond to wind and demand changes.

As GB’s electricity generation is less carbon intensive thanks to the CPS, the EUA price
has positive but smaller effects on the GB price than the French price (well-connected to a
fossil hinterland). The CPS has a positive impact on the French price, consistent with GB
importing more electricity from France due to the CPS.

From regression (iii), the marginal effects of wind, fuel costs, and EUA prices are
substantially different before and after the 2015 rise in the CPS. Before then, wind had a
very substantial effect on GB’s off-peak prices, while the high CPS made it less influential,
suggesting a much flatter marginal cost off-peak schedule after April 2015. Because the
high CPS has switched coal from base to the mid-merit load, coal costs are expected to have
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a stronger impact on the peak than off-peak GB prices, and vise versa for gas costs. Our
regression results are in agreement with the theory and find that since April 2015, GB prices
rely more heavily on coal costs during peak periods and more heavily on gas costs during
off-peak periods.

Both regression (ii) and (iii) suggest that during nuclear outages, the French price is about
e6/MWh higher than usual in off-peak periods. The number is slightly high in peak periods
at about e7.7/MWh.

In the rest of this section, Subsections 3.6.1-3.6.3 utilises results from Regression (iii)
to estimate the counterfactual (i.e. with the CPS not applying) prices and flows of GB and
France, the CPS pass-through to the GB electricity price, and the trade distortion between
GB and France. Subsection 3.6.4 discusses the global impact of the CPS, and Subsection
3.6.5 gives a summary of BritNed, the interconnector between GB and The Netherlands.

3.6.1 Estimating the counterfactual IFA flows

Table 3.2 gives the estimated impacts of wind and the CPS on the GB and French electricity
prices for both peak and off-peak periods. Appendix B.4.1 shows how the estimates from
Regression (iii) give the counterfactual prices and flows.

Table 3.3 summarises the average annual (electricity year from 1 April to 31 March)
day-ahead electricity prices of GB and France, GB’s net import, and congestion income. The
differences between the actual and the counterfactual cases are also listed (in the columns
denoted with ∆). The counterfactual for the electricity year 2014-2015 removes the CPS of
£9.55/tCO2, while the counterfactual for the electricity years 2015-2018 removes the CPS of
£18/tCO2. The final rows give the averages over 2015-2018.

The CPS increases the GB price and hence net imports, which mitigates the GB price rise
somewhat and (slightly) increases the French price. Over 2015-2018, the £18/tCO2 of CPS
has on average raised the GB price by e11.43/MWh (or by 28%) and the French price by
e1.37/MWh (or 3.5%) 25 Perhaps unexpectedly, without the CPS, GB’s net imports for IFA
during 2016-2018 would be close to zero, as the electricity prices between the two countries
would be close, caused by French nuclear outages in both winters of 2016 and 2017 and
the associated high French prices. During 2015-2018, GB in total imported 23 TWh more
electricity from France as a result of the CPS, or about 65% of its actual net import from
France. Finally, because the CPS widened the price difference between the two countries,
congestion income has risen by e95 m/yr over 2015-2018. This congestion income mostly

25This means, on average, a e1/tCO2 increase in the CPS is associated with a e0.06/MWh increase in the
French price, consistent with our estimates in Table 3.2. Therefore, it is perfectly reasonable to assume that the
CPS has no direct impact on the French price other than through trading via IFA in Step 2 of Appendix B.4.1.
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Table 3.3 IFA: the counterfactual prices, flows, and congestion income

Electricity GB Prices (e/MWh) French Prices (e/MWh)
years w. CPS w/o CPS ∆ w. CPS w/o CPS ∆

14-15 e52.22 e46.20 e6.02 e36.39 e35.69 e0.70
(0.44) (0.44) (0.06) (0.06)

15-16 e53.24 e40.40 e12.85 e34.49 e33.24 e1.25
(0.88) (0.88) (0.14) (0.14)

16-17 e51.76 e40.70 e11.06 e43.22 e41.93 e1.29
(0.77) (0.77) (0.12) (0.12)

17-18 e52.70 e42.31 e10.39 e42.21 e40.63 e1.58
(0.71) (0.71) (0.14) (0.14)

Ave.(15-18) e52.57 e41.14 e11.43 e39.97 e38.60 e1.37
(0.78) (0.78) (0.13) (0.13)

GB Net Import (TWh) Congestion Income (me)
w. CPS w/o CPS ∆ w. CPS w/o CPS ∆

14-15 15.21 TWh 11.29 TWh 3.92 TWh e243 e164 e79
(0.33) (0.33) (5.04) (5.04)

15-16 15.52 TWh 8.55 TWh 6.97 TWh e303 e143 e160
(0.75) (0.75) (7.82) (7.82)

16-17 8.17 TWh 1.05 TWh 7.12 TWh e185 e130 e55
(0.61) (0.61) (1.44) (1.44)

17-18 11.32 TWh 2.57 TWh 8.75 TWh e194 e123 e70
(0.75) (0.75) (2.75) (2.75)

Ave.(15-18) 11.67 TWh 4.60 TWh 7.61 TWh e227 e132 e95
(0.70) (0.70) (3.76) (3.76)

Standard errors in parentheses.

comes from British consumers, and half of it is transferred to France, because the electricity
system operator of French owns half of IFA.

3.6.2 The CPS pass-through to the GB day-ahead price

The CPS increases the cost of electricity generation and raises GB’s day-ahead prices. In a
closed competitive economy, the ratio between the increase in the GB price and the increase
in the system marginal cost (due to the CPS, holding interconnector flows constant) is the
CPS pass-through to the GB day-ahead price.

Appendix B.1 gives details on how we estimate the CPS pass-through rate. Our estimation
suggests that the CPS pass-through rate to GB’s peak prices was 173% with a 95% confidence
interval of 147-200%, and to GB’s off-peak prices was 72% with a 95% confidence interval
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of 47-96%. The weighted average was 133% with a 95% confidence interval of 108-159%.
The higher cost pass-through in peak periods compared to off-peak is consistent with most
empirical literature (e.g. Sijm et al. [140], Jouvet and Solier [86], Fabra and Reguant [56]).
In Chapter 4, we explain this as electricity utilities strategically bid a lower rate than the
short-run marginal cost during off-peak periods to stay dispatching to avoid the much higher
shut-down and re-start costs. On the other hand, to compensate the off-peak losses, utilities
need to bid a higher rate than the short-run marginal cost during peak periods, as high demand
and reduced residual capacity allow them to exercise some market power.

Although we reject the null hypothesis that the average cost pass-through of the CPS
is 100% at 5% significant level, if we have under-estimated the individual fuel emissions
factors, our cost-pass through rates would be over-estimated. Fabra and Reguant [56] are
unable to reject full pass-through except for off-peak hours, using more detailed micro-data
than this study.

3.6.3 Market distortion from IFA

We can use the counterfactual prices and flows estimated in Section 3.6.1 to further estimate
IFA’s social value from trading and deadweight losses from asymmetric carbon taxes, as
discussed in Section 3.3.2. In addition, we also estimate the UK Government’s losses in
carbon-tax revenue from the GB generation displaced by increased imports over IFA. (Details
are presented in Appendix B.4.2.)

Table 3.4 IFA: surplus, distortion and losses

Electricity Social Deadweight GB CPS Rev.
years Value (me) Loss (me) Loss (me)
14-15 e209 e13.4 e20.2

(5.27) (2.10) (1.74)
15-16 e187 e39.8 e69.7

(8.03) (7.23) (7.52)
16-17 e164 e41.5 e55.7

(1.51) (6.32) (4.99)
17-18 e167 e46.0 e61.2

(2.95) (7.58) (5.37)
Ave. 15-18 e173 e42.4 e62.2

(3.80) (7.04) (5.93)
Standard errors in parentheses.

Table 3.4 lists the social value, deadweight loss, and carbon-tax revenue loss. During
2015-2018, the average deadweight loss from the trade distortion was e42.4 m/yr, about
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24% the average social value (e173 m/yr). The average loss in the CPS tax revenue was
e62.2 m/yr in the case of IFA, or about 6% of the 2017 CPS tax receipts.

3.6.4 Carbon leakage and the impact on global welfare via IFA

From Section 3.3.3, IFA’s carbon emission reduction from the high import (ε) is determined
by the difference of the MEF between GB and France (µH

1 −µF ) and the change in GB’s
imports from France (∆m). Appendix B.4 estimates the MEF for France is µ̂F = 0.46, and
Chapter 2 provides the MEF for GB is µ̂H

1 = 0.38. Then, the carbon leakage to France is about
3.5 (=0.46×7.61) mtCO2/yr. In total, IFA has emitted roughly 0.6=[(0.46−0.38)×7.61]
million tonnes more CO2 per year due to the higher GB import. If we take the British carbon
price in 2019 as the social cost of carbon (C=e45/tCO2), the social cost of these increased
emissions is about e27 million.

In Chapter 2, we run a unit commitment dispatch model of the 2015 GB power system to
estimate that the £18/tCO2 CPS reduces emission by 44.5 mtCO2/year. Thus about 1.3% of
the CO2 emission reduction from the CPS is undone by France. Then, from equation (3.7),
the estimated total increase in global welfare from the CPS is about e2 bn/yr, hence the
distortion from IFA trade (i.e. the deadweight loss caused by the CPS) is only about 2% of
this welfare change.

3.6.5 BritNed: the interconnector between GB and The Netherlands

Appendix B.4.4 gives estimates of the impact of the CPS and wind on the GB and Dutch
electricity prices, and the estimated counterfactuals for BritNed. During electricity years
2015-2018, the CPS on average raised the Dutch wholesale price by e1.02/MWh, or 2.8%.
About 63% (4.77 TWh) of GB’s actual net import from The Netherlands was due to the CPS,
and congestion income almost doubled (from e59 m/yr to e117 m/yr). The social value of
BritNed was about e77 m/yr, and the deadweight loss from unilateral carbon taxes was e39
m/yr, about half of the social value and about the same size of the IFA loss (which is twice
the capacity). The UK Government lost about e39.2 million in carbon tax revenue, about
4% of its total CPF receipts in 2017.

Carbon leakage to The Netherlands is about 1.6 mtCO2/yr. Since gas is the marginal
fossil fuel in The Netherlands, BritNed’s total emission has actually reduced by 0.2 mtCO2/yr
compared with the zero CPS scenario. This reduction of CO2 emission is worth about e9
m/yr, partly offsetting the increase in IFA’s total emission.
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3.7 Conclusions and Policy Implications

Unilateral carbon taxes distort trade if they alter interconnector flows, resulting in deadweight
losses. In all cases, asymmetric carbon taxes transfer revenue abroad at a cost to the domestic
economy.

This chapter investigated the impact of such carbon taxes on cross-border trade of
electricity, theoretically, geometrically and empirically, and discussed their global impact.
Empirically, taking the British Carbon Price Support (CPS, an additional carbon tax) as a
case study, we estimate the counterfactual (without the CPS) electricity prices and flows
of the connected countries, and further examine the impact of the CPS on GB’s net import
and congestion income. In addition, we also estimate the social value from cross-border
electricity trading, the deadweight loss from asymmetric carbon taxes, the carbon leakage
due to untaxed imports, and the global emissions impact of the CPS.

Our estimates show that during electricity years 2015-2018, the CPS increased the GB
day-ahead price by e11.43/MWh (about 28% of the GB wholesale price) after allowing for
displacement by cheaper imports. The CPS increased imports by 7.6 TWh/yr from France
and by 4.8 TWh/yr from The Netherlands (in total, about 4% of the GB annual electricity
demand), thereby reducing carbon tax revenue by e62 m/yr from IFA and by e39 m/yr from
BritNed (in total, about 10% of the 2017 CPS tax receipts). Congestion income for IFA
was increased by e95 m/yr and for BritNed’s by e58 m/yr (in total, by 80% relative to the
zero CPS case). The social value of interconnector was around e173 m/yr for IFA and e77
m/yr for BritNed, but the deadweight loss due to the CPS was e42 m/yr for IFA and e39
m/yr for BritNed. In total, the deadweight loss from the CPS accounted for 4% of the global
welfare gain from the CPS (mainly from reduced coal burn in GB) at e2 billion/yr. The CPS
also raised the French wholesale price by 3.5% and the Dutch wholesale price by 2.8%. As
foreign electricity did not bear a CPS (and still does not), imports from France undid 1.3% of
the CO2 emission reduction partly compensated by -0.4% from The Netherlands (adding to
net 0.9%), and the net social cost of this leakage was about e18 m/yr.

The increase in congestion income (mostly) comes from GB electricity consumers but is
equally allocated to both Transmission System Operators as owners of the interconnectors.
This increased congestion income could over-incentivise further investment in additional
interconnectors, at least to carbon-intensive markets lacking such carbon taxes. The increase
in French and Dutch day-ahead prices raised their producer surplus but increased consumer
electricity costs. The objective of the British CPS was to reduce British CO2 emissions and
incentivise low-carbon investment, but this was partly subverted by increased imports of
more carbon-intensive electricity from the Continent. Finally, asymmetric carbon taxes incur
modest, but non-negligible deadweight losses, resulting in less efficient cross-border trading.
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Although the UK formally departed from the EU, at the time of writing there are three
interconnectors (between the UK and the Continent) under construction and two more in early
development. More interconnectors would, of course, further distort the market. Although
the social value of interconnectors would also increase, the deadweight loss tends to increase
as the square of the distorted flow, hence the benefit from extra interconnectors tends to fall.

Despite the CPS distorting cross-border electricity trading, it has significantly reduced
GB’s greenhouse gas emissions from electricity generation, with its coal share fall from
35% in 2015 to less than 3% in 2019. On 21 April 2017, GB power generation achieved
the first-ever coal-free day. When the UK introduced the CPF, the hope was that other EU
countries would follow suit to correct the failures of the Emissions Trading System. As the
electricity sector in most countries is the cheapest source of reducing CO2 emissions and as
carbon taxes are the an attractive way to reduce the distorting cost of raising tax revenue, the
case for an EU-wide carbon price floor are clear. This case is further strengthened by the
desirability of correcting trade distortions.



Chapter 4

Cost Pass-through in the British
Wholesale Electricity Market

4.1 Introduction

Similar to most European wholesale electricity markets,1 Great Britain (GB) has a small
number of firms providing most of the country’s electricity generation (EC [54]). In 2018,
the six largest British electricity generation companies provided nearly 70% of all electricity
generated nationally,2 leading to concerns of market power, or a lack of market competition
at the wholesale level. Retailers buy electricity from the wholesale market and then resell
it to consumers. Wholesale costs, which are costs incurred to generate and sell wholesale
electricity, are the greatest component of electricity bills in GB, consisting of about a third of
a typical electricity bill (Ofgem [117]). Competition in the wholesale market promotes lower
electricity bills for consumers, while market power tends to make electricity more expensive
(Green and Newbery [73]).

Policymakers often rely on cost Pass-Through Rates (PTRs) to measure market competi-
tion since these can measure the degree to which a change in costs determines a change in
prices (Ofgem [115], CMA [42]).3 An increase in the input cost raises the marginal cost of
electricity generation, but generators may absorb some of the increase by marking up their
offer by a smaller or larger amount if the market is imperfectly competitive, depending on the
shape of the residual demand (i.e. total demand minus renewables) curve. The PTR would

1The wholesale market for electricity is one where generators sell their electricity to retail companies. The
latter then sell the electricity to homeowners and businesses in the retail market.

2See Ofgem.
3An alternative could be to estimate the pass-through elasticity, which informs about the percentage increase

in prices arising from a 1% increase in cost.

https://www.ofgem.gov.uk/data-portal/wholesale-electricity-generation-market-shares-company-2018-gb
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then differ from 100%. However, given that consumers are inelastic to wholesale electricity
prices in the short-run (Clò et al. [40]), a PTR significantly different from 100% would cast
doubt on the assumption of competitiveness (CMA [42]).

Political events and reforms in the United Kingdom (UK) and the European Union
(EU) could strongly influence the cost of energy to producers and hence to consumers.
First, the UK voted to leave the EU in 2016, leading to widespread political and economic
uncertainty and a substantially weaker Sterling. With half of the domestically-consumed
natural gas imported from the Continent, and gas setting the British electricity price most of
the time (Ofgem [115]), the cost of energy to British consumers is exposed to exchange rate
fluctuations. Second, as EU carbon emissions Allowance prices (EUA prices, or the price
of CO2 set in the Emissions Trading System, ETS) have been too low to deliver the desired
levels of emission reductions, the European Commission reformed the ETS by creating a
Market Stability Reserve (MSR). The MSR came into effect in January 2019 and intends to
cancel surplus allowances, tighten the carbon market and increase the EUA price (EC [54]).
Higher carbon prices encourage cleaner electricity generation across Europe. From Figure
4.1, since late 2017 the anticipation of the reform’s start has already driven an EUA price rally.
Therefore, the Brexit referendum and introduction of the MSR resulted in substantial changes
in Sterling exchange rates and carbon prices (respectively), providing an ideal test-bed for
studying PTRs.

Unlike most empirical papers, which focus on carbon cost pass-through, our paper
investigates a wide range of costs pass-through. In particular, we focus on fuel prices,
carbon prices, and exchange rates PTRs, and whether they are consistent with the notion
of a competitive British wholesale electricity market. Our investigation is conducted both
theoretically and empirically.

We employ a sector-level4 dataset and use econometrics to estimate long-run relationships
between the input cost of electricity generation and the GB wholesale electricity price during
2015-2018. In the theoretical part, we show that the long-run relationship cannot be directly
used as PTR. Instead, certain transformations are needed to deliver the estimates of PTRs.
For example, we show that the carbon price PTR is equal to the ratio between the impact of
carbon prices on electricity prices and the Marginal Emissions Factor (MEF) of the electricity
system. Another example is that the fuel price PTR is equal to the ratio between the impact
of fuel prices on electricity prices and the marginal share of the fuel.

We do not reject the null that gas prices, carbon prices, and exchange rates have been
entirely passed through to the British wholesale electricity prices. We find heterogeneous

4Most related empirical literature uses thermal unit-level data to directly estimate the PTR (Fabra and
Reguant [56], Sijm et al. [140]), while we show how to use a much cruder sector-level dataset to estimate the
cost pass-through in a wholesale electricity market.
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PTRs for different times of the day and days of the week, in agreement with the argument that
this occurs due to electricity generators exercising different bidding strategies over different
periods of the day (e.g. Jouvet and Solier [86], Fabra and Reguant [56]). We extend this
argument by discussing generators’ actual bidding strategy: the off-peak bids are mainly
based on fuel costs, while the peak bids depend on both fuel and carbon costs. One reason is
that fuel costs (especially gas prices) account for about 70% of the total cost of electricity
generated from thermal plants. Another reason is that electricity generators purchase coal
and gas via long-term forward contracts hence spot prices are not representative for the actual
cost of fuels. Finally, assuming that the wholesale cost has been fully passed through to the
domestic electricity bill,5 we estimate that the depreciation of GBP caused by the Brexit
referendum and MSR have raised British electricity bills for an average household by 6.7%
in total.

The rest of the paper is structured as follows. Section 4.1.1 briefly describes how the
wholesale electricity market works, Sections 4.1.3 and 4.1.2 provide background information
regarding the Brexit referendum and ETS reform. Section 4.2 provides a review of related
literature. Section 4.3 builds up the theoretical foundation for cost pass-through in the
wholesale electricity market. Section 4.4 details the empirical methodology, Section 4.5
reports our results, and Section 4.6 discusses policy implications. Conclusions are drawn in
Section 4.7.

4.1.1 The GB wholesale electricity markets

In Great Britain, wholesale electricity trading can take place bilaterally or via exchanges.
However, by far the majority of electricity is traded through contracts covering timescales
(markets) ranging from several years ahead to close to real-time. Among those markets, the
day-ahead market has proven its efficiency, delivering a trusted market which sets bidding
zone prices for the next 24 hours.

In the day-ahead market, at the supply side generators submit their hourly bids for a
specified quantity of electricity that they are willing to supply. For each hour, bids from
electricity generators are then arranged into a merit order from the cheapest to the most
expensive, constructing the electricity supply curve. On the demand side, electricity retailers
submit hourly prices they are willing to pay for specific demand one day in advance, and
their offers are arranged from the highest price to the lowest, formulating the demand curve.
For each hour, the intersection of the supply and demand curves determines the day-ahead

5This is a standard simplifying assumption to assess the PTR of wholesale costs into electricity prices.
Another reason for this assumption is that most suppliers in GB are also generators, which makes it likely for
the PTR to be at or close to 100%.
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price. As demand increases, more expensive generation units are dispatched, resulting in
higher electricity prices.

Generators’ bidding functions are usually determined by the marginal cost of electricity
generation, which are mainly given by the underlying fuel prices (coal or natural gas) and
the carbon emissions cost. The GB carbon-intensive generators are subject to an additional
carbon price relative to other European countries – in addition to the EU-wide carbon price
(EU ETS), they also pay a GB-only carbon tax known as the Carbon Price Support (CPS).
On the other hand, the exchange rate (particularly between Sterling and Euro) plays a crucial
role in setting electricity prices, because GB is importing about a half of the natural gas
consumption from the Continent and the trading currency with its continental neighbours is
Euro.

Under the merit order theory of electricity supply, the electricity price is set by the
dispatched power plants with the highest marginal cost. However, during 2015-2017 in
GB, despite that the marginal cost for coal plants is higher than that for Combined Cycle
Gas Turbines (CCGTs), CCGTs are directly6 responding to about 60% of marginal demand
changes, and about 70% of wind changes (see Chapter 2). In other words, CCGTs are the
marginal fuel for GB during the period, thanks to their much higher flexibility of operation
(than coal plants). Similar results are reported in Castagneto Gissey et al. [31], who found
natural gas was the marginal fuel 65% of the hours in 2017. Given this, natural gas is
potentially the fuel type that sets the day-ahead electricity price most of the time.

4.1.2 The ETS reform

The EU Emissions Trading System (ETS) was launched in 2005 as the EU’s main instrument
to reduce its greenhouse gas (GHG) emissions from energy-intensive sectors. The EU ETS
works on the “cap and trade” principle: a cap is set by the EU to limit the total amount of GHG
that to be emitted, and companies can trade individual emission allowances (EU Allowances
or EUAs, the tradable emission units under the ETS) with one another. Participants in the EU
ETS can also buy international credits from global emission-saving projects external to the
ETS. The cap is reduced over time so that the total emission falls. Companies must surrender
a sufficient number of allowances to cover all of their emissions, or they face hefty fines.

If the carbon price is sufficiently high, it should discourage carbon-intensive generation
and promote clean energy investment. As shown in Figure 4.1, the price peaked at almost
£24/tCO2 in 2008, while the freely allocated permits led to a large surplus of low-priced
permits and a gradually crashing EUA price. The 2008 economic crisis and the inflow

6Indirectly, the numbers should be higher as imports and pumped storage may also come from CCGT plants.
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of carbon credits from outside the EU further decreased the ETS price, which was then
remained low during 2011-2017, providing wrong signals on carbon savings and low-carbon
investments. In order to meet the EU’s target of 40% GHG emission reduction by 2030
(relative to the 1990 level), reforming the ETS becomes a necessity.

Fig. 4.1 EU ETS carbon price, 2012-2018

Source: Weekly averaged EUA prices from Sandbag at sandbag.org.uk/carbon-price-viewer/.

Major reforms took effect since 2013 when the EU ETS entered Phase III. The most
significant changes were the introduction of an EU-wide cap (instead of some country-wide
caps)7 on emissions and a progressive shift towards auctioning of allowances instead of
the initial free allocation scheme. Phase III resulted in some gradual inclines in the EUA
prices until 2016 when the market again experienced a drastic decline, followed by the Brexit
referendum.8 However, it is worth mentioning that the downward arrow around 2016 does
not entirely attribute to Brexit – other factors such as changes in the relative fuel price may
also interact with the carbon price.9

7The old country-wide cap is considered to be time-consuming, complex and not sufficiently transparent or
harmonised.

8Facing the risks of a no-deal Brexit, the UK operators and traders with EUAs in their account may
eventually lose the registry access. As a result, UK operators were motivated to sell/transfer their allowances,
resulting in a surplus in the EUA supply and a reduction in the EUA price.

9Since 2016, coal has become the more expensive fuel than gas in electricity generation. The gas supplying
the base load for major EU countries would potentially lower the demand of EUAs.

sandbag.org.uk/carbon-price-viewer/
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In 2014, the EC proposed a Market Stability Reserve (MSR) for the EU ETS, which was
then implemented in January 2019. The aim was to correct the large surplus of allowances
and make the electricity system more resilient to imbalances between the EUA supply and
demand. It also aims to increase the carbon price and provide a working signal on the
externality cost of CO2 emissions. In February 2018, the EU Council approved the reform
of the EU ETS for the period after 2020, which includes increasing the pace of emissions
cuts,10 doubling the number of allowances to be placed in the MSR between 2019-2023,11

and building a new mechanism to limit the validity of allowances in reserve from 2023
onwards. As Figure 4.1 shows, the public anticipation of the start of the MSR has made
carbon-intensive sectors stock more EUAs, tripling the EUA price from £8/tCO2 in January
2018 to £25/tCO2 in December 2018.

The consistently low EUA price since 2011 did not generate the required low carbon
investments, leading the UK government to introduce the Carbon Price Support (CPS) in
2013. CPS is a GB-only12 carbon tax that tops up the ETS price, levied on domestic power
generators which is not replicated by other European countries. The CPS has been fixed at
£18.08/tCO2 since April 2015 until the fiscal year 2020-2021. 13

4.1.3 The Brexit referendum

In a referendum held in June 2016, the UK has voted to withdraw from the EU and has
formally abandoned the bloc on 31 January 2020. It entered a new phase called the Imple-
mentation Period that is expected to end on 31 December 2020. During the Implementation
Period, the UK and all relevant parties in the energy sector are still bound by the EU law,
meaning that the GB electricity generators would keep paying the EU carbon tax until 2021.

An instantaneous effect of voting to leave the EU was the drastic decline in the GBP/EUR
exchange rate, shown in Figure 4.2. The steep depreciation resulted from expectations of
capital outflows, a depressed investment outlook, and severe political instability.

The drastic decline in the value of Sterling could strongly affect the UK economy. The
Bank of England (2018) estimated that a 5% depreciation adds almost 1% to the price of
consumer goods. Forbes et al. [65] studied the implications of the Brexit vote, finding that

10The overall number of emission allowances will decline at an annual rate of 2.2% from 2021 onwards,
compared with 1.74% currently.

11Between the first five years of its operation (2019-2023), the MSR will hold back 24% of the allowances in
circulation, doubled from its regular feeding rate of 12%, which will be restored as of 2024.

12Northern Ireland belongs to the Irish Single Electricity Market with the Republic of Ireland. The Irish
government declined to replicate the CPS, making it a GB-only carbon tax.

13The UK government is considering long term options for carbon pricing following Brexit. The most
widely-discussed option is to introduce a Carbon Emissions Tax (CET) to replace the ETS share of total £/tCO2
carbon prices. The CET could either be a fixed rate or completely follow the EUA price.
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Fig. 4.2 GBP/EUA historical exchange rate, 2015-2018. The vertical dotted line indicates
the EU withdrawal referendum date.

Source: Investing.com

the exchange rate PTR is relatively large in response to domestic monetary policy shocks but
relatively small in response to domestic demand shocks. Their work helps explain why PTRs
vary over time, such as why Sterling’s post-crisis depreciation led to a sharper increase in
prices than expected, and why Sterling’s recent appreciations have had some more muted
effects. Voting to leave also resulted in high inflations after 2017, which has cost an extra of
£404 a year on an average British household (Breinlich et al. [24]). The UK stock market
index (FTSE100) fell by about 4%, with companies most exposed to the UK and EU markets
suffering the most significant share price falls (Davies and Studnicka [48]). As for the energy
sector, the falling exchange rate is expected to have profound consequences throughout
the energy value chain, with impacts on upstream oil and gas production and downstream
generation and distribution (PwC [126]).

In the near future, leaving the EU could trigger regulatory changes that could significantly
affect how the British energy system works. Those impact, both positive and negative,
including but not limited to: leaving the EU ETS and replacing the EUA with a domestic
Carbon Emissions Tax (CET), uncoupling interconnectors from the day-ahead cross-border

investing.com
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electricity trading,14 and changing the role of interconnectors in capacity auctions.15 As a
result, the UK’s energy cost may be substantially affected. To estimate those impact, ex-ante
simulation techniques such as a dispatch model instead of econometrics are preferable, and
we leave them to future research.

4.2 Literature Review

Most studies calculating PTRs focused on the EUA cost pass-through to electricity prices in
the context of the EU ETS. An early work done by Sijm et al. [140] find that the CO2 cost
PTR varies between 60% and 100% for German and Dutch wholesale electricity markets,
though at the time, most of the emission allowances are freely allocated. As an extension of
Sijm et al. [140], Zachmann and von Hirschhausen [163] find that the PTR is higher when
the CO2 price is rising than falling. Castagneto Gissey [29] uses the year-ahead data for
four European countries during 2008-2012, to show that the PTRs ranged between 88% and
137%, with GB among the most cost-reflective in a sample of European markets. In contrary,
Jouvet and Solier [86], in using different data and methodology, find that the estimated PTRs
are insignificantly different from zero for most of the EU countries studied, especially during
the second phase of the EU ETS.

The structure of electricity systems can be different for different countries, resulting in
heterogeneous EUA cost pass-through. Honkatukia et al. [83] find a PTR of 75-95% in
Finland during Phase I. Hintermann [77] finds it to be 81-111% in Germany during Phases
I and II. Bariss et al. [12], in studying the Phase I and II, find that a e1/MWh increase in
the ETS price was associated with an increase in the Nordic and Baltic electricity prices
by e0.55/MWh and e0.67/MWh, respectively. Finally, Bunn and Fezzi [26] study the UK
during Phase I, finding that a 1% shock in carbon prices translates on average into a 0.42%
shock in UK electricity prices.

Many studies also found higher cost pass-through is associated with high demand and
the utilisation rate of generation capacity (Sijm et al. [140], Honkatukia et al. [83], Jouvet
and Solier [86], Fabra and Reguant [56]). This is because it is costly for fossil generators to

14From 4 February 2014, GB is coupled with France and the Netherlands. Market coupling ensures that the
lower-price market would always import from the higher-price market day-ahead. Due to the different time
zones, uncoupling means that traders have to anticipate the GB price when bidding for the cross-border trading
for the next day, resulting in uneconomical trading.

15Capacity Markets usually take the form of forward contracts that last between one and three years, and
are determined through an auction mechanism. Under the current scheme, generators are offered financial
incentives to ensure that power plants are ready to provide emergency back-up when needed. The first British
Capacity Auction (T-4) for delivery in 2018 was concluded on 18 December 2014 at a clearing price of
£19.40/kW/year. However, On 15 November 2018, the EU’s General Court issued a judgement annulment,
depriving the capacity payment that the GB capacity market participants expected to receive.
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shut down and then start up again, hence generators are more likely to bid a lower price (than
the marginal costs) during off-peak hours in order to maximise overall profit. On the other
hand, the utilisation rate of generation capacity is high during peak periods, indicating that
fossil-fuelled generators are able to exercise market power, in which case they will bid higher
than its marginal costs when supplying at peak. We will extent this argument by revelling
generators exact bidding strategies during peak and off-peak periods.

The cost pass-through for other forms of carbon taxes can also be found in the liter-
ature. Examples include studies investigating the Australian Emissions Trading Scheme
(Nazifi [101], Maryniak et al. [97]), the British Carbon Price Support (see Chapter 3), and
California’s CO2 cap-and-trade programme (Woo et al. [158]).

Several studies consider markets for other pollutants. For example, Kolstad and Wolak
[93] consider how firms used NOx prices to exercise market power in the electricity market
of California, finding evidence that firms respond differently to environmental cost shocks
relative to shocks in other marginal costs. Fowlie et al. [67] study firms’ responses in the
NOx Budget Program, finding that the degree of emission cost internalisation depends on the
degree to which the production was subsidised.

Fuel price PTRs are usually the by-products from studies on carbon price pass-through,
especially in literature during the past decade. Hintermann [77] finds that fuel prices are
passed through to electricity prices more evenly than carbon prices in Germany. A similar
result is also reported by Fabra and Reguant [56], who argue that Spanish firms do not pass
on fuel prices to the same degree as allowance costs. They consider that a reason for this is
the presence of transaction costs and long-term contracts for fuels and conclude that spot
prices do not perfectly represent firms’ opportunity costs related to fuel use.

Castagneto Gissey [29] finds that the British coal- and gas-price PTRs in 2007-2012 were
90% and 112%, respectively, with PTRs the largest for the fuel type that was more often
used for generation. Ahamada and Kirat [3] study France and Germany during ETS Phase II,
finding that coal-fired units are more often the price-setting marginal units, a factor which
they find explains the higher PTR of coal prices. The CMA [42] studies pass-through of fuel
prices to retail electricity prices. The study has substantial competition policy implications
for the UK retail electricity sector which was shown to exhibit market power.

Finally, literature regarding the impact of exchange rates on wholesale electricity prices
is surprisingly limited. The Ontario Energy OEB [111] emphasises that the exchange rate
influences Canadian electricity prices by affecting the fuel price and the electricity price from
the neighbouring US market. Castagneto Gissey and Green [30] study a sample of European
electricity markets during the 2008 financial crisis and find that the exchange rate affected
electricity prices in their volatility but did not have a significant effect in their levels. A more
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recent study finds that in the long-run, electricity prices would increase by 0.56% following
a 1% increase in the real exchange rate in Ghana (Adom et al. [1]).

4.3 Competition and Market Power

The fundamental measure of market power is the price-cost margin, which is the degree to
which prices exceed marginal costs (Borenstein et al. [19]). However, measuring price-cost
margins is difficult for the electricity industry because costs are usually private information
for the producers.

The most common measures of market power are market shares and market concentration.
Market shares inform us about the size of a company relative the rest of the market, while
market concentration indicates the extent to which a market is dominated by only a few firms.
However, it is not always the case that market shares and market concentration can fully
explain market power, as many other factors can affect the degree of competition within an
industry, such as the incentive of producers and the price elasticity of demand (Borenstein
et al. [19]).

Pivotality analysis is also widely adopted (Ofgem [113]). It examines whether at least
1 megawatt (MW) of the company’s generation is required by the system to meet demand.
The lack of competition for that additional MW of supply would allow the firm to exercise
its market power by increasing electricity prices more than it otherwise would. However,
models falling in this category consider the impact of individual firms, hence require data
with much higher resolution, most of which are not publicly available.

Our work focuses on a wide range of cost PTRs, which inform the welfare implications
of various types of price discriminations and imperfect competition (Fabra and Reguant
[56], Pless and van Benthem [125]). In this Section, we first build a simple game theory
model to derive the relationship between PTR and market competition, under the assumption
of Cournot competition. Then, we separately look at fuel prices, carbon prices, and exchange
rate PTRs.

4.3.1 Cost Pass-through: an economic theory

The wholesale electricity market is typically seen as consistent with Cournot competition (see
e.g. Lundin and Tangerås [94], Gal et al. [69], Dressler [53], Willems [156], Willems et al.
[157], Andersson and Bergman [7]), a subtype of oligopolistic competition where generators
compete on the amount of output they will produce, as opposed to the price they will set.
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Suppose the GB electricity supply side of a set of N = {1,2, ...,n} firms. As the wholesale
price is set by marginal fuels, N should only consist of power plants that can activity set
the wholesale price, including coal and CCGT plants, imports, pumped storage, and hydro
plants.16 We assume that for each fuel type, the number of firm is determined by its marginal
share,17 therefore each firm’s capacity to respond to the marginal demand change is the
same. For example, in Appendix C.1 we find the marginal share for CCGTs is 60%, then the
number of CCGTs in the market is 0.6N. Suppose all firms face a common inverse demand
curve p(Q), where Q denotes the total output. p(Q) is assumed to be negatively related to Q,
hence p′(Q)< 0. Firm i ∈ N chooses how much output qi to sell to the market to maximise
its profit φ(qi):

max
qi

φ(qi) = qi · p(qi +Q−i)− ci(qi)− ti ·qi, (4.1)

where the first term, qi · p(qi +Q−i), denotes the revenue for firm i from selling quantity
qi. Q−i denotes the amount of output from all other firms and is taken as given, therefore
Q−i = Q−qi. ci(qi) is the cost function for firm i. Finally, ti is a cost shifter for firm i. For
example, ti could be the EUA price on each unit of electricity generated from the firm.

Taking the first order condition of (4.1), firm i sets qi = q∗i to satisfy

q∗i · p′(q∗i +Q−i)+ p(q∗i +Q−i)− c′i(q
∗
i )− ti = 0. (4.2)

Aggregating across all firms gives

∑
i∈N

q∗i · p′(q∗i +Q∗
−i)+ ∑

i∈N
p(q∗i +Q∗

−i)− ∑
i∈N

c′i(q
∗
i )− ∑

i∈N
ti = 0, (4.3)

where Q∗
−i denotes the optimal output from all other firms. Under market equilibrium,

q∗i +Q∗
−i = Q∗, where Q∗ denotes the equilibrium total output. Then a simplified version of

(4.3) can be expressed as

Q∗ · p′(Q∗)+n · p(Q∗)− ∑
i∈N

c′i(q
∗
i )− ∑

i∈N
ti = 0, (4.4)

where p(Q∗) = p∗ denotes the equilibrium price.

16As nuclear and renewable power plants enjoy a close-to-zero marginal cost, they are regarded as base
load — (almost) always producing at their maximum available output. Therefore, it is commonly agreed that
nuclear and renewable power plants are not capable of setting wholesale prices through actively changing their
productivity. Other fuels such as oil and Open Cycle Gas Turbines (OCGTs) barely operate, hence negligible.

17The proportion of the fuel type that respond to demand changes that margin. In Appendix C.1, we show
how marginal shares are empirically determined.
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Applying the implicit function theorem on (4.4) and differentiating with respect to
t̄ = 1/n∑i∈N ti, the average cost shifter across the whole industry, and assuming the cost
function ci(qi) to be linear with qi, such that c′′(q∗i ) = 0, we have

(n+1) · p′(Q∗) · dQ∗

dt̄
+Q∗ · p′′(Q∗) · dQ∗

dt̄
−n = 0. (4.5)

Rearranging, we obtain dQ∗/dt̄, the change in the equilibrium total output following a change
in the average cost shifter, as

dQ∗

dt̄
=

n
(n+1) · p′(Q∗)+Q∗ · p′′(Q∗)

(4.6)

Knowing that the equilibrium price p∗ = p(Q∗) is a function of the equilibrium total
output Q∗ hence d p∗/dQ∗ = p′(Q∗), we can derive the rate of cost pass-through for the
industry under Cournot competition as

d p∗

dt̄
=p′(Q∗) · dQ∗

dt̄

=
n · p′(Q∗)

(n+1) · p′+Q∗ · p′′(Q∗)

=
n

(n+1)+Q∗ · p′′(Q∗)/p′(Q∗)
.

Letting ξ =−Q∗ · p′′(Q∗)/p′(Q∗) and rearranging we have

ξ =− Q∗

p′(Q∗)
· ∂ p′(Q∗)

∂Q∗ ,

meaning that ξ is the elasticity of slope of inverse demand, then the PTR is

d p∗

dt̄
=

n
(n+1)−ξ

. (4.7)

When n = 1, the PTR under Cournot competition becomes the case of monopoly. When
n is large, the Cournot case converges to the perfect competition result. As the slope
of electricity demand curve is usually considered to be inelastic to the total output, and
sometimes even to be locally inelastic (i.e. a locally linear demand curve), ξ is small and the
PTR would mainly depend on the number of firms in the industry, which converges to 100%
as n becomes large.
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Other forms of expressions of PTR can be found in Bulow and Pfleiderer [25], Seade
[136] and more recently Weyl and Fabinger [153] and Reguant [128], though their models
might be based on different market structures.

4.3.2 Cost pass-through in wholesale electricity markets

As the paper examines the cost pass-through of coal and gas price, the carbon price, and the
exchange rate to the GB wholesale electricity price. Depending on which exact PTR we are
investigating, the interpretation on the average cost shifter t̄ in 4.7 can be different.

The EUA pass-through

Suppose ti in (4.1) represents the carbon price from EUA for firm i. Then, the EUA cost
for coal plants would be tCOAL = EFCOAL · pEUA, and for CCGT plants would be tCCGT =

EFCCGT · pEUA, where EF denotes emission factors for different fuel types and pEUA denotes
the EUA price in £/tCO2. Because hydro plants emit zero CO2, then tHYD = EFHYD · pEUA = 0.
The emission factor for pumped storages depends on which fuel types is supplying at margin
when pumping/charging. For GB, it is mostly likely to be CCGTs and/or coal-fired power
plants. We denote the emission factor for pumped storage as EFPS, then tPS = EFPS · pEUA.

In addition to domestic fossil plants and pumped storages, any changes in electricity de-
mand can also be met by imports, through trading in cross-border electricity interconnectors.
The EUA cost for the imported electricity would be tK =MEFK · pEUA, where K ∈ {FR,NL,IR}
representing imports from France, the Netherlands, and the island of Ireland,
footnoteGB is also connected with Belgium since 31 January 2019, which is not within the
period of studying. where MEFK denotes the Marginal Emission Factor (MEF) for country
K.18 Then,

t̄EUA =
1

n1 +n2

(
∑

i1∈N1

EFi1 · pEUA + ∑
i2∈N2

MEFi2 · pEUA

)
,

where N1 = {1, ...,n1} consists of coal, gas, hydro, and pumped storage firms, N2 = {n1 +

1, ...,n1 +n2} consists of firms biding for cross-border electricity trading. The values of EFi1

has to be within the set of {EFCOAL,EFCCGT,EFHYD,EFPS}, and the values of MEFi2 has to
be within the set of {MEFFR,MEFNL,MEFIR}.

18Despite that electricity imported from the European Continent and the Island of Ireland may come from
some particular power plants, the British System Operator imports at the foreign wholesale prices, which is set
by the foreign marginal plants.
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By definition, N = N1 ∪N2, /0 = N1 ∩N2, and n = n1 +n2. A full PTR of the EUA cost
requires the marginal effect of the EUA price on the wholesale price to be close to t̄EUA,
which is also known as the MEF for GB.

Fuel prices pass-through

Now suppose the gas price for a particular short period is pCCGT = p̄CCGT + pCCGT
ε , where

p̄CCGT denotes the average gas price during the whole period of studying and pCCGT
ε denotes

the price that deviates from its average. Any changes in the gas price is due to changes in
pCCGT

ε .
For simplicity, we assume that all other input costs, except pCCGT, are held constant,

and that the cost function for a CCGT firm is cCCGT(qCCGT) = p̄CCGT · qCCGT +C, where C
represents a fixed cost such as the wear and tear on the machine. In this case, ti in (4.1) can
be interpreted as the gas-price shifter pCCGT

ε .
Note that any changes in pCCGT

ε will have influence not only on CCGTs, but also on
imports and pumped storages, which may also get supplied by (foreign or domestic) CCGTs.
Then

t̄CCGT = sCCGT · pCCGT
ε ,

where sCCGT is the marginal share of CCGTs plus the marginal share of imports and pumped
storages that comes from CCGTs. A full PTR of the gas price requires the marginal effect of
gas price on the wholesale price to be close to sCCGT.

Applying the same logic to the case of coal, t̄EUA can be expressed as

t̄COAL = sCOAL · pCOAL
ε ,

where sCOAL is a mirror image of sCCGT, and a full PTR of the coal price requires the marginal
effect of coal price on the wholesale price to be close to sCOAL.

The exchange rate pass-through

The impact of the exchange rate on the wholesale electricity price may not be reflected in the
Cournot competition model. Although the exchange rate would affect both fuel and carbon
prices, the empirical analysis in Section 4.5 estimates the effect of exchange rate on the
wholesale price accounting in its impacts on the fuel and carbon prices, whose values are
taken in Sterling. Under the scenario of a full PTR, a 1% depreciation in Sterling relative to
Euro would result in a 1% increase in the GB wholesale price.



4.4 Econometric Methods 85

4.4 Econometric Methods

We use econometrics to study how would the GB day-ahead wholesale electricity price
react when there are changes in the input costs of electricity generation during the period of
2015-2018. We begin by introducing the data used in this study and proceed by covering the
underlying model and related technical considerations.

4.4.1 Data

All data ranges from 1st April 201519 to 31st December 2018,20 and hourly data is averaged
to daily means. The hourly GB day-ahead electricity price (i.e. the spot market price, in
Sterling) is collected from the Entso-e Transparency Platform. The daily National Balancing
Point gas price (in Sterling) comes from the InterContinental Exchange and is converted from
£p/therm to £/MWhe (i.e. Pounds per Megawatt hour of electricity, used interchangeably with
MWh in this chapter) assuming a Lower Heating Value efficiency for CCGTs of 54.5%.21

The daily coal price, from CME Globex in $ /short ton, is converted to £/MWhe, using the
daily GBP/USD exchange rate, assuming an average thermal efficiency for the GB coal-fired
power plants of 35.6%.22 Note that coal prices in the US can be different from that consumed
by GB generators, mainly because of transportation costs. Therefore, we adjust the US daily
coal price data based on the UK quarterly coal price data from the Department for Business,

19The British Carbon Price Support (CPS) was raised from £9.55/tCO2 to £18.08/tCO2 on 1st April 2015
and has been stabilised since then. This may influence GB electricity prices. In the empirical part, we start our
analysis from 1st April 2015, such that the CPS is fixed during the period of study, and is excluded from our
regression analysis.

20Our analysis does not cover 2019 because during the entire year, the GB electricity generators are uncertain
about the carbon prices they will pay for electricity generation. During the first half of 2019, expectations of
the date the UK would leave the EU changed from March to November (and then further delayed), with or
without a deal. If the UK leaves the EU with a suitable deal, the expectation was that GB electricity generators
paying both EUA and the £18 CPS before November 2019, and pays the £16 Carbon Emission Tax (CET) plus
the £18 CPS from November 2019. Under the no-deal scenario, for the period January 2019 to October 2019,
electricity generation will incur only the £18 CPS, with no EUA or CET; For the period November 2019 to
December 2019, electricity generation will incur £16 CET plus £18 CPS; From January 2020, electricity will
incur CET at the 2020 rate (which may still be £16 or may be set at another level in the next Budget) plus £18
CPS. As UK formally left the EU on 31st January 2020, the actual carbon tax that GB electricity generators
would pay EUA plus CPS until the end of 2020.

211 (UK) therm is equivalent to 29.31 kWhth. Under the Lower Heating Value efficiency of 54.5%, 1 (UK)
therm is equivalent to 15.97(=29.31×54.5%) kWhe.

22Thermal efficiencies for coal and CCGT plants are taken from Chapter 2.
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Energy & Industrial Strategy (BEIS)23 The daily EUA price is the EU ETS closing spot price
and is converted from Euro to Sterling using the daily exchange rate.24

The day-ahead forecasts of GB renewable (wind and solar) generation and domestic
demand come from the Entso-e Transparency Platform.25 Besides, when nuclear generators
are under maintenance or suffering from outages, fossil fuel needs to backup the deficit,
which affects the wholesale price. Due to data unavailability, we use the actual daily nuclear
generation as a proxy for the day-ahead forecast of nuclear generation.26 Table 4.1 provides
summary statistics for all variables involved in the preliminary regression analysis (Section
4.5.1).

Table 4.1 Summary Statistics, Day-ahead Markets

Variable Abbr. Unit Obs. Mean S. D. Min. Max.
GB day-ahead Prices PGB

t £/MWh 1371 46.24 10.98 28.12 170.15
Coal Prices PCOAL

t £/MWhe 1371 24.16 5.80 13.34 33.69
Gas Prices PGAS

t £/MWhe 1371 34.06 7.50 20.29 54.46
EUA Prices PEUA

t £/ tCO2 1371 7.52 4.58 3.34 22.83
GBP/EUR XR et £/e 1371 1.21 0.10 1.08 1.44
GB Renew. Gen. RGB

t GW 1371 6.10 2.76 1.03 14.94
GB Demand DGB

t GW 1371 33.95 4.15 24.73 45.26
GB Nuclear Gen. NGB

t GW 1371 7.34 0.67 4.69 8.83

Figure 4.3 shows the 28-day moving averages of the electricity, coal, gas, and EUA prices
during the period of studying, with strong comovements between gas and electricity prices.
The gap between gas and electricity prices are becoming wider mainly because the recent
drastic increase in the EUA price.

4.4.2 Vector Error Correction Model

We implement the Vector Error Correction Model (VECM) to study the impact of fuel prices,
carbon prices, and exchange rates on the British wholesale electricity price. The same model
has been widely used in studying the cost pass-through in the energy market (see, e.g.,
Alexeeva-Talebi [5], Delft and Oeko-Institut [50], Freitas and Da Silva [68], Bunn and Fezzi

23See BEIS. We aggregate the daily data into quarterly, subtract from the BEIS data, and adjust the daily
data by adding this quarterly averaged margin to each day.

24Note that the coal price, gas price, EUA price, and the exchange rate are only available for weekdays;
hence, we use the most adjacent values as proxies for any missing data.

25The “generation forecast for wind and solar” and the “day-ahead forecast on total load”.
26Nuclear power plants are highly inflexible and serve baseload power in GB, meaning that the actual nuclear

generation can potentially be very close to its day-ahead forecast.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/437428/qep321_1_.xls
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Fig. 4.3 Electricity, coal, and gas prices, April 2015 - December 2018

[26], Mohammadi [99], Fell et al. [62]), as it effectively captures both short-run and long-run
relationships among variables of interest.

In addition, when estimating the impact of input costs on the wholesale electricity price,
endogeneity can become an issue when interactions between fuel prices and wholesale
prices play a critical role in the wholesale price formation (Knittel and Roberts [92]). This
also applies to the relationship between wholesale prices and carbon prices, and between
wholesale prices and exchange rates, suggesting that all variables representing the input cost
for generating electricity have the potential to be endogenous. The VECM allows us to treat
both wholesale electricity prices and input costs as endogenous.

The specification for the VECM can be expressed as:

∆yyyt =α(βα(βα(β ′yyyt−1)+
p−1

∑
i=1

ΓΓΓi∆yyyt−i +BBBzzzt +CCCdddt +uuut , (4.8)

where t represents days, ∆ is the first-different operator, and yyyt is an m×1 vector of dependent
variables. In the preliminary regression reported in Section 4.5.1, yyyt includes the daily
averaged GB day-ahead price (PGB

t ), coal and gas prices (PCOAL
t and PGAS

t ), EUA price
(PEUA

t ), and GBP/EUR exchange rate (et).27 All variables in yyyt are I(1) time series processes
(i.e., time series with unit roots, tested in Appendix Table C.4) and are cointegrated (tested in
Appendix Table C.6).

27An alternative would be using the GBP/USD exchange rate, but the result suggests that the GBP/USD
exchange rate has insignificant impact on the GB electricity price.
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ααα and βββ are m× r matrices of full column ranks, and βββ ′yyyt−1 ∼ I(0). βββ ′yyyt−1 is the r×1
vector of cointegration relations, known as the long-run (LR) relationships. ααα is known as
the vector of error correction (EC) coefficients, which represent the speed to convergence
when the system deviates from its long-run equilibrium. ααα and βββ can be identified by setting
one of the parameters in βββ to 1. In our case, the coefficient for PGB

t−1 is set to 1. ΓΓΓi consists of
coefficients capturing the short-run (SR) relationships.

zzzt is a vector of stationary, or I(0) exogenous stochastic variables, including the day-ahead
forecast of electricity demand (DGB

t ) and wind generation (W GB
t ), as well as nuclear generation

(NGB
t ). dddt is a vector of deterministic variables containing a time-invariant constant term, a

deterministic trend, and day-of-week and quarterly time dummies. BBB and CCC are coefficient
matrices. Finally, uuut is an m× 1 vector of unobserved error terms, and is assumed to be
stochastically independent, or uuut ∼ (000,ΣΣΣu).

We implement the Akaike Information Criterion to determine the lag lengths (p) for
dependent variables, and the optimal lag length is p = 4 (see Appendix Table C.5).

In equation (4.8), the input costs are treated as endogenous. However, one may argue that
fuel and carbon prices are mainly determined by the European and world markets, while a
single country like GB can have little influence on the fuel price. If this is the case, treating
fuel prices as exogenous can improve estimation efficiency. This ambiguity on whether input
costs should be treated as endogenous suggests to implement tests for (weak) exogeneity and
to use the test results to formulate specifications for the VECM.

Exogeneity can be tested in a VECM specification as (4.8), with the null hypothesis being
that the EC parameters (i.e., the second to fifth parameters of α) are jointly significantly
different from zero. If we fail to reject the null, then the corresponding variables should
be treated as weakly exogenous. The test shows that coal and gas prices, EUA prices, as
well as exchange rates are weakly exogenous,28 suggesting employing the structural VECM
model (Pesaran [121]), with yyyt = (yyy⋆t

′,xxxt
′)′, where yyy⋆t with dimension my × 1 consists of

endogenous variables and xxxt with dimension mx ×1 consists of weakly exogenous variables,
and my +mx = m.

4.5 Results

In this section, unless specified, “wholesale price” refers to the GB day-ahead wholesale
electricity price. Section 4.5.1 analyses preliminary results estimating the impact of input
costs of electricity generation on the wholesale price, as well as the corresponding PTRs. In
Section 4.5.2, we vary the regression specification to conduct robustness checks, and split

28χ2
(3) = 1.52 with p-value 0.82.
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the data by peak and off-peak (weekdays and weekends). We give intuition on why PTRs are
heterogeneous with time.

4.5.1 Preliminary Results

Recall that the test for weak exogeneity suggests that we should treat coal and gas prices, EUA
prices, and GBP/EUR exchange rates as weakly exogenous. By restricting the corresponding
error correction (EC) parameters to zero, Table 4.2 reports the regression result for the
structural VECM.

Table 4.2 VEC Model Results

Long-run Dynamics
Const. PGB

t−1 Trend PCOAL
t−1 PGAS

t−1 PEUA
t−1 et−1

-82.044 1.000 0.007 -0.075 -0.831∗∗∗ -0.461∗∗ 53.314∗∗∗

(0.150) (0.090) (0.165) (9.232)

Short-run Dynamics
Weakly Exogenous Variables

∆PGB
t ∆PCOAL

t ∆PGAS
t ∆PEUA

t ∆et
ECt−1 -0.553∗∗∗ — — — —

(0.036) — — — —

Const. -14.261∗∗∗ 0.210 -0.282 -0.180 -0.003
(3.391) (0.180) (0.439) (0.147) (0.004)

Trend 0.003∗∗∗ 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

DGB
t 0.522∗∗∗ -0.004 0.004 0.004 0.000

(0.077) (0.004) (0.010) (0.003) (0.000)

RGB
t -0.597∗∗∗ -0.004 -0.003 0.005 0.000

(0.058) (0.003) (0.008) (0.003) (0.000)

NGB
t -0.449∗ -0.007 0.014 0.000 0.000

(0.227) (0.012) (0.029) (0.010) (0.000)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

In Table 4.2, the estimated coefficients in the “Long-run Dynamics” panel are estimates
for βββ in equation 4.8, which estimate the long-run relationships between electricity prices and
input costs. In the long-run, a fall in the GBP/EUR exchange rate (et) by 1,000 basis point
(i.e. a 0.1 reduction) is associated with an increase in the wholesale price by £5.33/MWh.
Given the 2015-2018 average wholesale price is £46.23/MWh (in Table 4.1), under the
null hypothesis of 100% exchange rate PTR, a 0.1 change in the GBP/EUR exchange rate
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is supposed to be associated with a £4.62/MWh(= 46.23× 0.1) opposite change in the
wholesale price. Since the estimated £5.33/MWh(s.e.=0.92) is not statistically significantly
different from £4.62/MWh, we do not reject the null.

Our results also show that in the long-run, a £1/MWhe increase in the gas price (PGAS
t )

is associated with a £0.83/MWhe increase in the wholesale price. Based on our analysis
in Section 4.3.2, a full pass-through of gas price would require the long-run relation to
be statistically close to the marginal share of CCGTs, when the proportion of imports and
pumped storage that comes from CCGTs are also taken into account. In Appendix C.1, we
replicate Chapter 2 to estimate the marginal fuel of GB during the period of studying, and
found that CCGTs respond to at least 60% of demand changes under the assumption that
none of the supply from imports and pumped storage are from CCGTs. This number raises
to 78% if we assume that the supply from imports and pumped storages are entirely from
CCGTs. Given this, the 99% confidence interval for the gas price PTR to the wholesale price
is [100%,177%] in the former case, and [77%,136%] the the latter case.29 In other words,
in any scenario, we fail to reject the null that the gas price PTR is statistically significantly
different from 100% at 1% significant level. In fact, if at least 31% of the supply from
imports and pumped storages comes from CCGTs (which is very likely), we would not reject
the null at 5% significant level.30

The long-run relationship between coal (PCOAL
t ) and wholesale prices is not significantly

different from zero. Furthermore, the estimate suffers from a large standard error, probably
because of low variation in coal prices during the past few years. As a result, the estimation
is not informative, and we are unable to make a credible discussion about the PTR of coal.31

A £1/tCO2 increase in the EUA price (PEUA
t ) corresponds to a £0.46/MWh increase in the

wholesale electricity price. As discussed in Section 4.3.2, a 100% EUA price PTR requires
that the estimated long-run relationship between the EUA price and the wholesale electricity
price to be close to the Marginal Emission Factor (MEF) of the GB electricity supply.32

From our replicated results in Appendix C.1, during the period of studying, the MEF for the

29For the former case, the confidence interval is calculated from (0.83±2.58×0.09)/0.60, where 0.09 is
the corresponding standard error and 2.58 is the critical value at 1% significant level. For the latter case, it is
calculated from (0.83±2.58×0.09)/0.78.

30From the regression results in Appendix C.1, about 18% of the marginal demand is answered by imports
and pumped storages. 31% of the 18% means that there is an additional 5.5% of marginal demand is answered
by CCGTs, making gas plants answering a total of 65.5% of marginal demand. In this case, 0.655 is the lower
bound of the 95% confidence interval of the estimate 0.831(s.e.=0.090) in Table 4.2.

31However, the estimation result itself, as least, do not reject the null hypothesis that the coal price pass-
through is 100%.

32Chapter 2 estimate both short-run and long-run MEFs. In this chapter, MEF always refers to the short-run
MEF that measures the impact of (half-)hourly change in demand on CO2 emissions.
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GB electricity supply is between 0.429 and 0.525 tCO2/MWh.33 Either way, we fail to reject
the null that the EUA price has a 100% PTR.

In the “Short-run Dynamics” panel, the coefficients of error correction (EC), ECt−1,
estimates ααα in equation 4.8. The coefficients for the EC term estimate the speed of conver-
gence to long-run equilibrium. Precisely, if the wholesale price diverges from the long-run
equilibrium on the day t due to unexpected market shocks, then on the day t +1, about 55%
of that disequilibrium is dissipated before the next time period, and 45% remains. If there is
no further shock on the day t +1, then on the day t +2, about 55% of the remaining (45%
of) disequilibrium would be adjusted and dissipated; and so forth.

Finally, the estimation result also suggests that the wholesale price is positively affected
by electricity demand (DGB

t ) and negatively affected by renewable (RGB
t ) and nuclear (NGB

t )
supply.

4.5.2 Robustness Checks and Extensions

In section 4.5.2, we report robustness checks by varying regression specifications of the
preliminary regression reported in Section 4.5.1. In Section 4.5.2-4.5.2, we extend the
regression analysis by considering heterogeneous effects within days (peak and off-peak)
and across days (weekdays and weekend). Finally, in Section 4.5.2 we explain the reason
that the PTRs can be different for different time of the day and different days of the week.

Table 4.3 shows the regression results discussed in this subsection, with only the long-run
dynamics and the EC terms reported.

Robustness checks

Regression (i) removes the weak exogeneity assumption in Section 4.5.1. The regression
results are similar to those the preliminary case, reassuring the validity of treating input costs
are weakly exogenous.

Regression (ii) takes the log of wholesale prices, coal and gas prices, and EUA prices,
hence estimates the elasticities of the wholesale price relative to the input costs. The result
shows that in the long-run, a 1% increase in the gas price is associated with a 0.6% increase
in the wholesale price. Note that from Table 4.1, the average gas price is £34.06/MWhe,
and the average wholesale price is £46.24/MWh. Then, the regression result suggests that if
the average gas price is increased by £0.34/MWhe (1% of the average), the wholesale price
will raise by £0.28/MWh (0.6% of the average). Alternatively, the wholesale price would be

33This is calculated under two extreme cases where we assume that the supply from imports and pumped
storages is either entirely from CCGTs, or entirely from coal-fired power plants.
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Table 4.3 Robustness Check

(i) (ii) (iii) (iv)
ENDOG. LOG OFF-PEAK PEAK W.DAY W.END

Long-run Dynamics
PGB

t−1 1.000 1.000

PGB,OFF
t−1 1.000

PGB,PEAK
t−1 1.000

PGB,W.DAY
t−1 1.000

PGB,W.END
t−1 1.000

PCOAL
t−1 -0.106 -0.040 0.202∗∗ -0.214 -0.128 0.035

(0.149) (0.045) (0.081) (0.224) (0.211) (0.108)

PGAS
t−1 -0.812∗∗∗ -0.599∗∗∗ -0.897∗∗∗ -0.796∗∗∗ -0.822∗∗∗ -0.900∗∗∗

(0.089) (0.042) (0.049) (0.134) (0.129) (0.066)

PEUA
t−1 -0.451∗∗∗ -0.090∗∗∗ 0.041 -0.711∗∗∗ -0.655∗∗∗ -0.309∗∗

(0.164) (0.023) (0.089) (0.246) (0.241) (0.123)

et−1 49.945∗∗∗ 1.145∗∗∗ 15.224∗∗∗ 71.884∗∗∗ 69.610∗∗∗ 34.317∗∗∗

(9.201) (0.141) (5.001) (13.783) (13.422) (6.847)

Trend 0.006 0.091 -0.005 0.000 -0.008 0.014

Const. -77.520 -104.760 -47.124 -2.901 -25.767 -105.003

Short-run Dynamics
∆PGB

t ∆ logPGB
t ∆PGB,OFF

t ∆PGB,PEAK
t ∆PGB,W.DAY

t ∆PGB,W.END
t

ECt−1 -0.552∗∗∗ -0.573∗∗∗

(0.037) (0.033)

ECOFF
t−1 -0.559∗∗∗

(0.033)

ECPEAK
t−1 -0.542∗∗∗

(0.038)

ECW.DAY
t−1 -0.748∗∗∗

(0.059)

ECW.END
t−1 -0.930∗∗∗

(0.069)

Test for Weakly Exogeneity
p-values — p = 0.63 p = 0.82 p = 0.27
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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raised by £0.82/MWh following a £1/MWhe increase in the gas price, close to the result in
Table 4.2.

Regression (ii) also shows that a 1% increase in the EUA price is associated with a 0.09%
increase in the wholesale price. From Table 4.1, the average EUA price was £7.52/tCO2.
Hence a £0.75/tCO2 (10% of the average) increase in the EUA price is associated with a
£0.42/MWh (0.9% of the average) increase in the wholesale price. The impact is slightly
higher than the estimates from Table 4.2,34 but we still could not reject the null that the EUA
price has been fully passed through to the wholesale price in the long-run.

A final insight from regression (ii) is that if the GBP/EUR exchange rate falls by a
thousand basis points (or by 0.1), one would expect the wholesale price to rise by 11.45%,
or equivalently, by £5.29/MWh on average. Again, this is close to the estimator from the
preliminary case in Table 4.2, and we do not reject the null that the exchange rate variation
has been fully passed-through to the wholesale price.

Peak v.s. off-peak

In order to investigate whether the PTR depends on the underlying period of the day, Re-
gression (iii) distinguishes peak (07:00-23:00, WET/WEST) and off-peak (23:00-07:00,
WET/WEST) periods.35 We calculate the daily average peak and off-peak wholesale prices to
replace PGB

t in yyyt (in equation (4.8)), hence we have yyyt =(PGB,OFF
t ,PGB,PEAK

t ,PCOAL
t ,PGAS

t ,PEUA
t ,et)

′,
where PGB,PEAK

t and PGB,PEAK
t represent the average peak and off-peak wholesale prices for

day t. In other words, we use one structural VECM to estimate peak and off-peak effects
simultaneously. The Johansen cointegration tests suggest two cointegrating equations in
Regression (iii),36 which is intuitive because one would expect one cointegratng equation for
peak periods, and another for off-peak periods.

The result from regression (iii) suggests that the time of the day has little impact on the
long-run relationship between fuel prices and the wholesale price. However, during off-peak
periods, the effect of the EUA price on the wholesale price is not significantly different
from zero, while during peak periods, the effect is 54% greater than the estimate from the
preliminary case (Table 4.2). (Recall that in the preliminary case, we estimate the average
pass-through rate over peak and off-peak.) Consequently, this gives a close-to 0% EUA price
PTR for off-peak periods, while a greater-than 100% EUA price PTR for peak periods.37

340.42/0.75=0.56 against 0.46.
35The results are not sensitive to the definition of peak and off-peak hours.
36See Appendix C.3 for test statistics.
37The peak EUA price PTR is 164% if all marginal supply from imports and pumped storages comes from

CCGTs, and 136% if all comes from coal plants.
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The difference between the peak and off-peak exchange rate PTRs are also statistically sig-
nificant. Given that the average wholesale prices during the period of study are £38.59/MWh
and £50.06/MWh for off-peak and peak periods, the exchange rate PTR is 40%(s.e.=23%)
for off-peak periods and 135%(s.e.=28%) for peak periods.

Finally, we fail to reject the null that the rates of adjustment (for the wholesale price
towards long-run equilibrium) are identical between peak and off-peak. Specifically, off-peak
prices converge to their long-run equilibrium (ECOFF

t−1) at a rate of 55.9%, while peak prices
converge to their long-run equilibrium (ECPEAK

t−1 ) at a rate of 54.2%.

Weekdays v.s. weekends

Regression (iv) investigates heterogeneous PTRs between weekdays and weekends. To
do this, we further aggregate the daily data into weekly data based on weekdays and
weekends. Then, we obtain two time-series sequences with weekly frequency — one
representing weekdays and the other representing weekends. We also aggregate the daily
data of fuel and carbon prices, exchange rates, as well as other exogenous variables to
weekly data,38 and then construct the VECM, with a vector of dependent variables yyyt =

(PGB,W.DAY
t ,PGB,W.END

t ,PCOAL
t ,PGAS

t ,PEUA
t ,et)

′, where PGB,W.DAY
t and PGB,W.END

t represent the
average weekday and weekend wholesale prices for week t. Similar to Regression (iii), the
Johansen cointegration test suggests two cointegrating equations in Regression (iv),39 one
for weekdays and the other for weekends. The lag length p, suggested by AIC, is set to 1.
This is not surprising because in this case, t represents weeks instead of days.

The result shows that weekdays and weekends have little impact on the long-run re-
lationship between fuel and wholesale prices. However, a £1/tCO2 increase in the EUA
price would on average raise the wholesale price by £0.66/MWh during weekdays, but by
£0.31/MWh during weekends. Provided the estimates of the MEFs for the GB electricity
supply for weekdays and weekends in Appendix C.1, the point estimate of the EUA price
PTR during weekdays is 150% if the entire supply from imports and pumped storage comes
from CCGTs, or 121% otherwise. The point estimate of the EUA price PTR during weekends
is 73% if the entire supply from imports and pumped storage comes from CCGTs, or 58% if
it entirely comes from coal. The difference is substantial, though none of the estimates is
statistically significantly different from 100%.

The exchange rate PTRs are also different between weekdays and weekends. Given
that the average wholesale price is £47.00/MWh during weekdays and £44.29/MWh during

38The fuel prices, carbon prices, exchange rates are only available for weekdays, as the trading platforms are
closed during weekends. Therefore, the aggregation for those variables are the weekday averages.

39See Appendix C.3 for details of the test result.
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weekends, the exchange rate PTR is 148%(s.e.=28%) for weekdays and 78%(s.e.=15%)
for weekends. Similar to the EUA case, although none of the estimates suggests that the
exchange rate PTR is significantly different from 100%, the result does suggest the PTRs are
significantly different between weekdays and weekends.

Finally, because one lag in the weekly data is equivalent to seven lags in the daily data,
the speed of convergence to the long-run equilibrium is substantially higher using the weekly
data relative to the daily data.

Heterogeneity in the cost pass-through: A discussion

In Sections 4.5.2 and 4.5.2, we show heterogeneity in the carbon price and exchange rate
PTRs for different time of the day, and different days of the week. The intuition for the
heterogeneous PTRs between peak and off-peak is that it is costly for fossil plants to shut
down during off-peak and restart during peak. Instead, fossil plants are usually running at
minimum load during off-peak and ramp-up to deliver when demand and price rise, achieved
by deploying different bidding strategies between peak and off-peak.

During off-peak periods, the utilisation rate of generation capacity is low, meaning that if
a CCGT plant bids according to its marginal cost, the system would dispatch other cheaper
power plants to meet the off-peak demand. If that is the case, the CCGT plant will have
to shut down during the off-peak, resulting in much higher total cost. Given this, a better
strategy for the CCGT plant is probably to have the off-peak bids lower than its marginal
cost, ensuring supplying at the minimum load during the off-peak.

During peak periods, the utilisation rate of generation capacity is high, meaning that the
CCGTs can exercise market power to bid at some rates higher than the marginal costs. The
CCGTs would have a strong incentive to do so because otherwise, their overall profit would
most likely to be negative due to the off-peak loss.

Our estimation results in Regression (iii) suggests that the bidding strategy for fossil
plants, especially CCGT plants,40 is that when bidding for the off-peak supply, they com-
pletely ignore the EUA price markups, and ignore some (60% given the off-peak PTR is
40%) of the exchange rate markups. It also suggests that the CCGTs would take gas price
markup into full consideration when bidding for both peak and off-peak periods. This is not
surprising as gas price constitutes about 70% of the marginal cost of electricity generation
from a CCGT plant.41 During peak periods, however, the CCGTs would over-count the input

40Recall that CCGTs set the day-ahead electricity price over 80% of the time.
41This is roughly estimated from Table 4.1, by dividing the average gas price by the average GB day-ahead

price.
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costs from EUA prices (by 36%-64%) and exchange rates (by 35%), to compensate losses
from the off-peak operation.

The same logic applies to the heterogeneous PTRs between weekdays and weekends.
Electricity demand is lower during weekends than weekdays.42 To avoid shutting down
during weekends, fossil plants, especially CCGTs, would lower their bids during weekends,
and compensate their losses through bidding at higher rates during weekdays. Similar to the
within-day heterogeneity (peak v.s. off-peak), our result from Regression (iv) suggests that
when bidding for the weekend supply, the CCGTs would fully count in gas price markups
and ignore some of the carbon price and the exchange rate markups. During weekdays, the
CCGTs would bid at prices higher than the marginal cost, to compensate the losses from
weekends.

4.6 Policy Implications

Recall the preliminary estimation result in Table 4.2 shows that a £1/tCO2 increase in the
EUA price is associated with a £0.46/MWh increase in the GB wholesale electricity price. It
also shows that a 0.1 increase in the GBP/EUR exchange rate is associated with a £5.33/MWh
increase in the wholesale electricity price.

As shown in Figure 4.2, the GBP/EUR exchange rate fell after the Brexit referendum from
an average of 1.29 (1 Jan 2016 - 23 Jun 2016) to an average of 1.17 (24 Jun 2016 - 31 Dec
2016). Our estimation shows that, conditional on fuel and carbon prices, the exchange rate
depreciation has raised average electricity prices by £6.40/MWh. Assuming that electricity
retailers entirely pass through their wholesale costs to retail prices (and domestic tariffs),
and given that the total GB electricity load in 2017 was about 300 TWh,43 we conclude that
the depreciation of GBP (caused by the referendum) led to an increase in GB electricity
bills by £1.9 billion in 2017. Given that domestic users (GB households) consumed 35% of
the country’s total electricity consumption,44 and that in 2017 there were 26.4 million GB
households,45 the electricity bill for an average household in GB has been increased by an
additional £25.2 in 2017, or a 4.1% increase in the average bill.46

Note that the referendum results may influence the power price through other channels.
In the medium-term, most studies expect a decline in the UK’s economic growth (e,g. Schoof

42During the period of studying, the electricity load during peak periods is 35.14 GW, and that during
off-peak periods is 30.98 GW.

43Aggregated from the half-hourly actual electricity load from ENTSO-E Transparency Platform.
44See Statista.
45See Office for National Statistics.
46See Statista.

https://www.statista.com/statistics/550592/uk-electricity-consumption-by-final-users/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/adhocs/005374totalnumberofhouseholdsbyregionandcountryoftheuk1996to2015
https://www.statista.com/statistics/421318/uk-average-annual-domestic-standard-electricity-bills/
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et al. [133], Tetlow and Stojanovic [146]), which would potentially lower energy demand,
resulting in a decline in power price. In the long-term, the impact of Brexit on the labour
mobility emerges, potentially resulting in a lack of skilled workers. This may have impact on
oil and gas industries, further influencing electricity prices.

On the other hand, anticipating the ETS reform resulted in a drastic increase in average
EUA prices, which climbed from £5.16/tCO2 in 2017 to £14.14/tCO2 in 2018. The £9/tCO2

increase in the EUA price is associated with a £4.13/MWh rise in the GB day-ahead electricity
price. Assuming the wholesale cost has been fully passed through to retail prices, the
anticipation of the MSR has raised the GB electricity bill by about £1.2 billion in 2018.
About £420 million of this has been transferred to domestic users, corresponding to a £15.9
per year average increase in the typical household’s annual electricity bill. This is equivalent
to 2.6% of the average bill in 2018.

The higher electricity bill cased by the ETS reform transfers wealth from the GB con-
sumers to electricity producers, and part of it further transfers to the UK government (who
earns the ETS revenue).47 The impact is expected to be more substantial in the forthcoming
decade as the UK’s trajectory on the 2030 carbon prices to is £70/tCO2 relative to the current
£40/tCO2. As consumers (especially households) are less elastic to electricity prices in the
short-run, it is challenging to palliate their losses in the short term. However, government
regulator may be able to use the carbon tax revenue to make low-carbon investments, trans-
ferring wealth back to the consumers. In the long-run, one possible way to alleviate the high
electricity bill is to install smart meters and smart household appliances that help achieve
greater energy efficiency and conduct demand response, resulting in lower consumer bills
(See Chapter 5).

4.7 Conclusion

This chapter assessed how major generation costs have been passed through to electricity
prices. We use econometrics to estimate the PTR in the British wholesale electricity market
during 2015-2018. We failed to reject the null that the gas price, carbon price, and the
GBP/EUR exchange rate have been fully passed through to the electricity price, indicating a
functioning competitive GB electricity wholesale market.

We also examine heterogeneity of the PTR between peak and off-peak periods, as well
as between weekdays and weekends. The EUA cost and exchange rate PTRs are found to

47The welfare transfer caused by the lower GBP/EUR exchange rate is more complicated and some general
equilibrium models might be preferable. A direct intuition is that the welfare transfer goes to the EUR users as
EUR appreciated relative to the GBP.
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be higher when electricity demand and generation capacity utilisation rates are high, which
most notably occurs during peak as opposed to off-peak periods. This is because it is costly
for fossil generators to shut down and then start up again, hence generators are more likely
to bid a lower price (than the marginal costs) during off-peak hours in order to maximise
overall profit. On the other hand, the utilisation rate of generation capacity is high during
peak periods, indicating that fossil-fuelled generators are able to exercise market power, in
which case they will bid higher than its marginal costs when supplying at peak hours. We
use our econometric results to extend this argument, showing that during off-peak periods,
fossil plants’ bids are mainly based on fuel costs, while during peak periods, they vary with
both fuel, carbon costs, and exchange rates.

The study also considered how the depreciation of sterling since the 2016 Brexit referen-
dum and the introduction of the recent ETS reform have affected electricity prices in GB. We
estimated that the referendum resulted in an average increase in GB electricity wholesale
prices of £6.40/MWh. In other words, the vote has led to an increase in electricity costs for
the average British household by £25.2 in 2017, corresponding to a 4.1% rise. On the other
hand, the ETS reform has resulted in a £4.13/MWh increase in the GB electricity price in
2018. This means that an average GB household would need to pay £15.9 (or 2.6%) on top
of its current electricity bill due to the associated increase in the EU carbon price.



Chapter 5

Dynamic Tariffs, Demand Responses,
and Regulations in Retail Electricity
Markets: an agent-based model

5.1 Introduction

The United Kingdom’s (UK’s) carbon targets anticipate that high levels of renewable energy
(wind and solar) production will displace fossil generation. The generation of renewable
energy, however, is variable and difficult to predict. Increases in the penetration of renewables
will result in high variability in the residual demand (i.e. total demand minus production from
renewables), which can further influence wholesale prices. One possible solution is demand
response (DR), which seeks to balance supply and demand by providing financial incentives
to shift or reduce peak load to off-peak periods. Despite controversy among researchers
about DR’s costs and benefits, Bradley et al. [22] found DR to produce net positive economic
welfare in the UK electricity market. As DR targets electricity consumers, the direct impact
of DR is more evident in the retail market than in the spot market (e.g. Balijepalli et al.
[11], Woo et al. [159], Yan et al. [162]).

Electricity retailers buy electricity from the wholesale market and resell it to consumers.
While they can hedge wholesale prices, retailers are unable to use flat tariffs to hedge against
risk and uncertainty of demand; for this reason, they cannot hedge their exposure to spot
and balancing prices. As a result, dynamic tariffs such as time-of-use (TOU),1 critical peak

1Under the TOU tariff, a day is separated into several periods, and each period has different price rates. The
TOU may refer to either fixed or dynamic TOU, the difference is whether the prices differ for the same period
across days.
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pricing (CPP),2 and real-time pricing (RTP)3 are advocated as means of aligning retail prices
with spot market prices (SMPs), thereby transferring some retailer-centred risk to customers.

The rollout of smart meters can significantly facilitate the implementation of dynamic
tariffs in two respects. First, retailers can learn how consumption responds to varying
prices, and in addition data on demand response can be used to inform the design of more
efficient and targeted dynamic tariffs. Second, smart meters (and in-house displays) can
provide consumers with information about energy prices ahead of time, and thus, significantly
improve the transparency of dynamic tariffs.

The first aim of this chapter is to examine the impact of dynamic tariffs on the retail
electricity market, in terms of retail profit, consumer demand and bill, and market gain. It
does so by leveraging an agent-based model to derive time-varying retail electricity prices
that maximize retail profit and the corresponding demand. We assume that an electricity
retailer supplies electricity to households who initially face a flat tariff. The retailer then
offers households a dynamic tariff with prices varying on a daily basis, while ensuring
that households will prefer the dynamic tariff over the flat tariff (on account of paying
smaller electricity bills). Each day, the retailer sets the dynamic tariff to maximize its profit,
conditional on households’ decisions regarding how much electricity to consume.

The second aim is to determine how the impact of dynamic tariffs varies with market
regulation, consumer elasticities, and demand-side management (DSM) stimuli. For example,
market regulations that look to establish a more competitive retail market will manifest as a
curtailment of the retailer’s maximum revenue, and DSM stimuli (such as changing from
bi-monthly to monthly bills) will manifest as reduced consumer demand.

This chapter is structured as follows. Section 5.2 summarizes the literature on the impact
of dynamic tariffs, and Section 5.3 formulates our agent-based model. Section 5.4 discusses
the data used herein. Section 5.5 sets up the default input parameter values that are used as
a baseline, and Section 5.6 presents solutions derived by the agent-based model, as well as
model extensions. Section 5.7 studies the value-added of demand forecast accuracy. Section
5.8 discusses challenges when facing heterogeneous consumers. Finally, Section 5.9 offers
concluding remarks.

2Under the CPP tariff, only peak prices are varying across days, and in most days, peak prices is higher than
other periods.

3Under the RTP tariff, prices are varying hourly or even half-hourly.
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5.2 Literature Review on Dynamic Tariffs

Dynamic tariffs were initially implemented in industrial sectors to address large and con-
trollable loads, while incurring relatively low costs per control point (Roos [131]). Starting
in 2003, a number of pilot studies examined the impact of household-level dynamic tariffs.
Faruqui and Sergici [59], for example, surveyed 15 pilot studies, two of which considered
the RTP tariff as a treatment group. Both of these RTP pilot studies demonstrated that RTP
tariffs outperform flat tariffs in terms of peak demand reduction and lower household-level
electricity bills.

However, studies on European households found that households are sceptical about
smart meters and dynamic tariffs and worried about an increase in their electricity demand
and bills (Shirani et al. [139], Chamaret et al. [35]). Shirani et al. [139], therefore, argued
that smart metering programmes should target on voluntary consumers to avoid conflict
of interests. Batalla-Bejerano et al. [14], in reviewing several empirical papers, concluded
that consumers exhibit heterogeneous engagement in DR programmes. The degree of
engagement depends on “the level of household income, the energy characteristics of the
home, the number and composition of the family unit, and the degree of environmental
concern and attachment”(p.11).

In terms of the effect of dynamic tariffs on costs and benefits, Borenstein et al. [19]
analysed the risks that industrial consumers face on account of fluctuating electricity bills.
They found that for these customers, forward-purchase contracts can reduce bill volatility
by more than 80%. Nezamoddini and Wang [105] also studied industrial consumers, and
they found that although savings realized by switching to dynamic tariffs are programme-
dependent, in the majority of cases, consumers see real savings. Roldán Fernández et al.
[130] studied the financial benefits of RTP tariffs among Spanish domestic customers and
found that dynamic tariffs reduce average electricity prices on account of reduced demand
and shifted loads. In a Swedish DR field trial that covered 136 households, Nilsson et al.
[107] found that DR varies widely across household types. They also argue that financial
incentives, such as dynamic tariffs, constitute the most effective strategy by which to increase
demand flexibility. A study on Finnish households, delivered by Ruokamo et al. [132], found
that households requires considerable compensation to choose dynamic over flat tariffs.

A number of studies speak to the benefits of dynamic tariffs in terms of retail profit.
Nojavan et al. [108] studied the impact of different price schemes on retail profit and suggest
that RTP results in higher profit. Zugno et al. [164] found that even though RTP tariffs reduce
retail costs relative to TOU tariffs, the latter is more efficient in redistributing consumer
demand. Doostizadeh and Ghasemi [52] suggested that in comparison with directly posting
the day-ahead wholesale prices to consumers, the proposed day-ahead RTP would be more



102
Dynamic Tariffs, Demand Responses, and Regulations in Retail Electricity Markets: an

agent-based model

beneficial for energy retailers and consumers alike. Not all studies suggest that dynamic
tariffs will boost retail profit. Dagoumas and Polemis [47], for example, combined a unit-
commitment dispatch model and an econometric model and argue that DR will result in
changes in the wholesale price, which will in turn impose risk upon retailers. Consequently,
DR can lead to retailer losses in some periods, and thus strongly affect retailer viability.

Dynamic tariffs and DR are also thought to have considerable environmental potential.
On one hand, the increasing market penetration of variable renewable energy increases
imbalance volumes and related costs. DR may be one of the most efficient solutions to this
problem (Pina et al. [124], Balijepalli et al. [11]). On the other hand, if the marginal fuels used
during peak periods are those that have higher carbon intensity, peak load shifting will help
reduce greenhouse gas emissions. Holland and Mansur [82] found that the implementation
of the RTP tariff reduces greenhouse gas emissions in some US regions where peak demand
is met mainly by oil-fired capacity.

5.3 Model

We start from the premise that the retailer’s primary objective is to set dynamic tariffs so
as to maximize its expected profit. In Section 5.3.2 we introduce the consumer surplus-
maximization problem for a representative household which allows us to derive consumer
demand as a function of retail prices. The demand function is then used as a constraint in the
retailer’s objective function. Section 5.3.3 introduces a number of additional constraints.

In the remainder of this chapter, unless otherwise specified, the term ‘dynamic tariffs’
refers to day-ahead RTP tariffs, where consumers are informed on electricity prices one day
in advance. The proposed RTP tariff can vary on an hourly or even half-hourly basis, and can
vary across days.4

5.3.1 The Retailer’s Problem

Retailers buy electricity from the spot market and resell it to consumers. We assume that,
initially, all retailers in the market offer a uniform flat tariff. We then assume a single retailer
A decides to introduces a dynamic tariff, while other retailers continue to offer the original
flat tariff. The objective for retailer A is to maximize the expected profit with day-ahead
RTP tariffs under certain market regulation rules (which will be discussed later in Section
5.3.3).

4In contrary, TOU tariffs offer the same prices across days.
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In this subsection, we first introduce the retailer’s profit function, φ(x), for a given day
and household is5

φ(x) =
T

∑
t=1

{πtdt −π
s
t Es

t −π
↑
t ∆E↑

t +π
↓
t ∆E↓

t }, (5.1)

where t = 1, ...,T represents periods of the day,6 and x = {πt ,dt ,Es
t ,∆E↑

t ,∆E↓
t }.

φ(x) comprises three parts. The first part, πtdt , denotes the revenue from the retail market,
with πt denoting the retail price and dt the consumer demand. The second part, πs

t Es
t , denotes

the cost of purchasing electricity from the day-ahead spot market, with πs
t denoting SMPs

and Es
t denoting energy contracted on the day-ahead market. The third part, π

↑
t ∆E↑

t −π
↓
t ∆E↓

t ,
evaluates losses from the real-time balancing market: π

↑
t and π

↓
t respectively denote the

balancing prices for the purchasing and selling of electricity; ∆E↑
t and ∆E↓

t denote the amount
of energy purchased and sold on the balancing market.7 We assume that Retailer A has no
market power to alter wholesale prices, and so πt , π

↑
t , π

↓
t are all exogenous.

The market-balancing condition

dt = Es
t +∆E↑

t −∆E↓
t , ∀t, (5.2)

guarantees that supply meets demand. We impose the constraint

π
↑
t > π

s
t > π

↓
t , ∀t,

which says that in any time period t, the purchase (sell) price in the real-time market must
be higher (lower) than the day-ahead market prices. Given this constraint, the retailer will
avoid trading on the real-time market, as doing so will always result in lost profit. As
such, the expected electricity trading at the real-time balancing market would be zero, or

E[∆E↑
t ] = E[∆E↓

t ] = 0.
Taking the expectation of φ(x) in (5.1), the expected day-ahead profit from the represen-

tative consumer takes the form

E[φ(x)] =
T

∑
t=1

{πt E[dt ]−π
s
t Es

t }, (5.3)

5Our modelling of the retailer’s profit maximization problem is based on the work of Zugno et al. [164].
6t could represent (half-)hours. It could also represent periods, such as peak and off-peak periods.
7Note that, in reality, wholesale contracts range from years ahead to real time, and there could be several

intraday markets between day-ahead and real-time markets. However, in the current study, we simplify the
wholesale market such that it consists only of a day-ahead spot market and a real-time balancing market.
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with the market-balancing constraint

E[dt ] = Es
t . (5.4)

In reality, the retailer does not know what the actual demand will be on the next day,
therefore it decides the amount to bid in the day-ahead market based on demand forecasts.8

In our empirical analysis, we assume the retailer can perfectly forecast the consumer demand
– except in Section 5.7, where we examine the impact of forecast accuracy on retail profit.

5.3.2 The Consumer’s Problem

This section sets out the consumer surplus-maximization problem for a representative con-
sumer, and derives consumer demand as a function of retailer prices. We start by assuming
there are neither cross-price effects nor DSM stimuli.

By definition, the consumer surplus St for a representative household is the difference
between the household benefit (from consuming electricity) and electricity bill

St = B(dt)−dtπt , (5.5)

where dt denotes the amount of electricity consumed in period t, πt denotes retail price in the
period t, and B(dt) denotes the consumer’s benefit.

Households aim to maximise the consumer surplus. Therefore, taking the first-order
condition of St with respect to dt and setting it to 0, we find

∂St

∂dt
=

∂B(dt)

∂dt
− ∂dtπt

∂dt
= 0 (5.6)

which implies
∂B(dt)

∂dt
= πt . (5.7)

From (5.7) we observe that at the optimum, the marginal benefit from consuming electricity
equals the retail price.

We assume the consumer benefit, B(dt), is a quadratic function of dt . Following Schweppe
et al. [134], B(dt) can be written as

B(dt) = B0,t +π0,t(dt −d0,t)

(
1+

dt −d0,t

2εt,t ·d0,t

)
, (5.8)

8Here, the retailer need only forecast the aggregate/average demand rather than individual-level demand;
doing so is much easier.
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where B0,t is the consumer benefit when facing the flat tariff. εt,t is consumers’ own-price
elasticity of demand, defined as

εt,t =
π0,t

d0,t

∂dt

∂πt
,

where π0,t is the flat tariff, and d0,t is the demand under the flat tariff.9

The function (5.8) takes the specific quadratic form because of its differentiability. When
the consumer faces the flat tariff, dt = d0,t and B(dt) = B0,t .

Taking the first-order condition of B(dt) in (5.8) and substituting it into (5.7), the con-
sumer demand is

dt = d0,t

(
1+ εt,t

πt −π0,t

π0,t

)
. (5.9)

If we now extend (5.9) to include cross-price effects, the demand function can be written as

dt = d0,t

(
1+ εt,t

πt −π0,t

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′

π0,t

)
(5.10)

where εt,t ′ is the cross-elasticity which denotes the percentage change in demand at period t
in response to the percentage change in price at period t ′.

Recall that the retailer buys electricity from the day-ahead wholesale market based on
their forecasts of the next day’s consumer demand, namely the expected day-ahead demand
(for the representative household), which can be written as

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′

π0,t

)
. ∀t. (5.11)

From (5.11), the expected demand comprises three components. The first component, E[d0,t ],
is the expected electricity day-ahead demand under the flat tariff; the second component
captures the own-price effect; and the third component captures cross-price effects.

We can further extend (5.11) to account for the impact of DSM stimuli. We consider two
types of stimuli: a financial stimulus and an incentive stimulus. A financial stimulus offers
financial rewards such as coupons to stimulate (peak) load shifting; an incentive stimulus
refers to sending the customer more frequent energy bills and installing more advanced
electricity monitors.

9In principle, we do not need the initial price to be a flat tariff, though when solving the empirical problem
we do set the flat tariff to be a flat tariff.
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In a world where both DSM stimulus are implemented, the expected demand becomes

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t + rt

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′ + r′t

π0,t

)
·κt ,∀t. (5.12)

where κt denotes the discount on demand when an incentive stimulus is implemented, which
should be less than 1 in most periods.10 rt represents the financial penalty for each unit of
electricity consumed.

On the one hand, we assume that an incentive stimulus would proportionally change
the consumer demand, hence κt acts as a multiplier in (5.12). On the other hand, we
assume the financial stimuli to be additive to households’ surplus function. Subtracting the
financial penalty from (5.5) gives the households’ surplus function with financial incentives,
or St = B(dt)−dtπt −dtrt . Then, by repeating process (5.5)-(5.11), we obtain (5.12).

5.3.3 Modelling the Retail Market

In the previous sections, we introduced the retailer’s profit maximization problem subject to
the market-balancing constraint (5.4) and the demand function for a representative consumer
(5.12).

In addition, we place a restriction on the expected daily demand, as shown in equation
(5.13).

DMin ≤
T

∑
t=1

E[dt ]≤ DMax. (5.13)

The upper bound insures the system from power outages, and the lower bound ensures that
the basic needs of the representative household are met.

Many European countries have regulated retail tariffs. AF-Mercados et al. [2] summarises
that the EU retail tariff regulation has the following properties. First, retail tariffs should be
transparent such that each charged component should be clearly stated in the consumer bill.
Second, there should be no discrimination, meaning that all users under the same category
and demanding the same network service should be charged the same. Third, retail tariffs
should reflect concerns about equity, such that consumers in a low-income area are paying
less that the cost of service received. Fourth, the tariff should be easy to understand. Fifth,
the tariff should be easy to predict, stable, and consistent.

In our model, households’ electricity bill only comes from the dynamic tariff, which
manifesst the first property. We assume that all households face the same dynamic rate for

10Theoretically, for some periods κt can be greater than 1, but we would expect an effective incentive stimulus
to lower the total demand.
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a certain period of time, hence the second property can be satisfied. To address the third
property, we will need information on households’ location, which will be missing in the
data we use in the empirical part, hence will be ignored in this chapter.

To incorporate the fourth and fifth properties, we impose constraints on retail prices, in
the form

π
Min
t ≤ πt ≤ π

Max
t ,∀t. (5.14)

This informs the consumer that the retail prices are bounded hence avoids extreme pricing.
We also introduce a constraint which restricts the expected daily bill under the dynamic

tariff to be no greater than a proportion (δ ) of the expected daily bill under the flat tariff, for
the representative household. We write this as

T

∑
t=1

E[dt ]πt ≤ δ ·
T

∑
t=1

E[d0,t ]π0,t (5.15)

(5.15) has three different economic interpretations. First, δ may represent consumers’ risk
aversion towards fluctuations in electricity prices, providing an incentive to switch from
the flat to the dynamic tariff. A small value of δ then reflects a high level of risk aversion.
Second, δ can be interpreted as the level of competition in the electricity retail market: a
small value of δ indicates less retail revenue and profit, and hence a more competitive market.
Third, δ may represent the extent of regulation in the retail electricity market is, with a
small δ indicating that the market is being strictly regulated and retailers are restricted from
obtaining high revenues.11

11An alternative constraint is ∑
T
t=1E[dt ]πt ≤ δ ·∑T

t=1E[dt ]π0,t – which, if δ = 1, ensures consumer’s expected
bill under the dynamic tariff is no more than the expected bill if they consume the same demand under the
dynamic tariff but pay the flat rate. The difference is that equation (5.15) is an ex-ante constraint while the
alternative is an ex-post constraint. The reason we choose the ex-ante constraint (5.15) is that it gives δ three
different interpretations, while if we use the ex-post constraint, the interpretation of market competitiveness
fails, because the right-hand-side formula no longer represent consumer’s outside option – switching back to
the original flat tariff.
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In summary, the retailer’s objective function (5.3) subject to market constraints (5.4),
(5.14), and (5.15), along with demand constraints (5.12) and (5.13) can be written as

max
x

E[φ(x)] =
T

∑
t=1

{πt E[dt ]−π
s
t Es

t },

subject to E[dt ] = Es
t , ∀t

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t + rt

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′ + r′t

π0,t

)
·κt , ∀t

DMin ≤
T

∑
t=1

E[dt ]≤ DMax

π
Min
t ≤ πt ≤ π

Max
t , ∀t

T

∑
t=1

E[dt ]πt ≤ δ ·
T

∑
t=1

E[d0,t ]π0,t .

(5.16)

Recall that x = {πt ,dt ,Es
t ,∆E↑

t ,∆E↓
t }. We solve the profit maximization problem using

the barrier method, which formulates the inequality constrained problem as an equality
constrained problem, such that Newton’s method can be applied (see Appendix D.1 for
details). To solve the profit maximization problem. We use consumer demand under a
flat tariff (d0,t), elasticities (εt,t and εt,t ′), and day-ahead SMPs (πs

t ) as input data. We then
examine how the proposed dynamic prices that maximize retail profit impact consumer
demand and bills, as well as market gain.

5.4 Data

This section describes the datasets used as inputs into the agent-based model, most of which
come from the Ireland Electricity Smart Metering Trials (IESMT) programme. Smart meters
were installed to record households’ half-hourly electricity demand between 14 July 2009
and 31 December 2010, with 3,639 households participating in and completing the trial.
Before 2010, all households were offered the standard Electric Ireland flat tariff of 14.1 euro
cents/kWh, and in the entire year of 2010, households have been randomly allocated into
treatment and control groups. Households in the treatment group face different TOU tariffs,
while households in the control group pay the original flat tariff.

Table 5.1 summarizes the tariff groups, tariff structure, and numbers of participants (i.e.
households) with complete records. The trial consisted of six different types of tariff schemes
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Table 5.1 TOU Tariff Schemes

Prices by Tariff Scheme (Euro Cents/kWh)
A B C D W Control

Weekday Off-peak
12.00 11.00 10.00 9.00 10.00 14.10

23.00–08.00

Weekday Shoulder
14.00 13.50 13.00 12.50 14.00 14.10

08.00–17.00 & 19.00–23.00

Weekday/Holiday Peak
20.00 26.00 32.00 38.00 38.00 14.10

17.00–19.00

Weekend/Holiday Off-peak
12.00 11.00 10.00 9.00 10.00 14.10

23.00–08.00

Weekend Shoulder
14.00 13.50 13.00 12.50 10.00 14.10

08.00–23.00

No. of Households 1010 382 1018 373 74 782

– namely, four TOU tariff schemes (A-D), a weekend tariff scheme (W), and one flat tariff
scheme (control). Given the design of the trial, among the four TOU tariff schemes, a high
peak price always comes with low shoulder and off-peak prices.

Households who face TOU tariffs (Plans A-D) are also randomly allocated in terms of
the following four incentive DSM stimuli (CER [33]).

• A bi-monthly electricity bill with a detailed energy statement;
• A monthly electricity bill with a detailed energy statement;
• A bi-monthly electricity bill with a detailed energy statement and an electricity monitor;

or
• A bi-monthly electricity bill with a detailed energy statement and an overall load

reduction incentive.
Among the four DSM stimuli, households with bi-monthly bills are facing the weakest DSM
stimulus among all households.

The impact of the Irish trial (in particular the TOU tariffs and DSM stimuli) on households’
electricity demand are well documented by others (e.g. Cosmo et al. [44], Kiguchi et al.
[90], O’Neill and Weeks [118]). Instead of estimating the treatment effects attributed to the
introduction of TOU tariffs, we use the IESMT dataset as inputs of our agent-based model
that solves the retailer’s profit maximisation problem. The solution of the agent-based model
allows us to further investigate the effect of dynamic tariffs on the retail electricity market.

In addition to the IESMT dataset, we also collect the half-hourly day-ahead SMP data
from the Single Electricity Market Operator (SEMO). We then aggregate the half-hourly
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Table 5.2 A Summary of Irish SMPs (Euro Cents/kWh), 2010

Off-peak Shoulder Peak

Mean 3.84 5.70 8.47

Minimum 2.39 3.61 3.18

Maximum 6.53 13.11 30.00
Source: http://www.sem-o.com/

data to daily by periods, hence for each day, there are three prices representing the off-peak,
shoulder, and peak SMPs. SMP summary statistics are listed in Table 5.2. Not surprisingly,
the average peak SMP is much higher than the average shoulder and off-peak SMP. We also
observe some extremely high peak SMP for some winter days. During 2010, the highest
peak SMP is 30 euro cents/kWh, about 254% higher than the average peak SMP.

5.5 Baseline Settings

In this section we specify the default values for parameters used as a baseline. The value of
some of the parameters will change in later empirical analysis, and we will discuss those
changes at that point.

As with the IESMT programme, a day is divided into three periods – namely, the off-peak,
shoulder, and peak periods – and a retailer sets dynamic tariffs in each period for each day.
Therefore, the subscript t ∈ {O,S,P} represents Off-peak, Shoulder, and Peak, respectively.

Table 5.3 details the default values of input parameters. We first assume the DSM stimuli
have no impact on consumer demand; hence, κt = 1, ∀t. We also assume δ = 1, meaning
that as long as the representative household’s electricity bill under the dynamic tariff is less
than or equal to the flat tariff, they would prefer the dynamic tariff. We obtain the day-ahead
SMPs (πs

t ) from the SEMO introduced in Section 5.4, and the flat tariff (π0,t) follows the flat
tariff in the IESMT programme.

The demand for the representative consumer under the flat tariff (d0,t) is represented by
the average demand among households under the flat tariff (i.e. the ‘Control’ group in Table
5.1). We assume that for the representative household under the dynamic tariff, the minimum
and maximum household demand (i.e. DMin and DMax) is 5% lower/higher than d0,t . This sets
the lower and upper bounds for the total electricity demand of the representative household
within a day. The number, 5%, has little effect on the model result, because under dynamic
tariffs demand is mostly shifted instead of reduced within a day.

http://www.sem-o.com/
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Table 5.3 Baseline Setting: Values of Input Parameters

κt : =1

δ : =1

πs
t : day-ahead SMPs collected from SEMO

π0,t : =14.1 euro cents/kWh, the flat tariff from the IESMT programme

d0,t : the representative household electricity demand under flat tariff
in 2010 from the IESMT programme

DMin: 0.95×∑
T
t=1E[d0,t ] (euro cents/kWh)

DMax: 1.05×∑
T
t=1E[d0,t ] (euro cents/kWh)

πMin
t : πMin

O = 9, πMin
S = 12.5, πMin

P = 20

πMax
t : πMax

O = 12, πMax
S = 14, πMax

P = 38

εt,t , εt,t ′: Table 5.4

The market regulator sets the upper and lower bounds of retail prices (denoted as πMin
t

and πMax
t , respectively). However, at the time of writing, the Irish market regulator has

not yet published such guidelines. Therefore, in the baseline scenario, the upper and lower
bounds are taken from the TOU tariffs from the IESMT programme. For example, the range
for off-peak TOU prices is within the interval of [9,12] (see Table 5.1).

Table 5.4 Elasticities of Demand

t ′

O S P
εO,t ′ -0.039 0.025 0.014
εS,t ′ 0.031 -0.067 0.036
εP,t ′ 0.044 0.090 -0.134

In terms of consumers’ price elasticities of demand, we assume that elasticities for all
households are identical, and will discuss the challenges inherent in modelling scenarios when
they are not. We follow Mountain and Lawson [100] who estimated consumer elasticities for
different periods of the day in Ontario, Canada.12 The elasticities for the baseline scenario

12This is the only reliable research we can find who estimates own- and cross-price elasticities for households
under dynamic tariffs. We are unable to provide reliable estimates of elasticities from the IESMT programme,
given the design of the trial: the shoulder and off-peak prices suffer from high collinearity (see the first two
rows of Table 5.1). Given this, regression methods will not provide reliable estimates of consumer elasticities.
One solution might be to exclude either shoulder or off-peak prices from the regression, but doing so would
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are listed in Table 5.4,13 where εt,t ′ represents the impact prices in period t on the electricity
demand in period t ′. In section 5.6.3 we vary elasticities and investigate the impact on the
retail electricity market.

5.6 Results

This section examines the dynamic tariffs that maximize retail profit, and the associated
impact on consumer demand, consumer bill, retail profit, and market gain. As the electricity
retailer sets the next day’s retail prices based upon the wholesale price,14 we assume that
the solutions of the day-ahead retail prices are independent across days. After obtaining the
results for each day, we then aggregate the daily results to the annual results and analyse.

We first analyse the baseline results in section 5.6.1, moving on to a focus on the ceteris
paribus effects of changing the values of some key parameters on the model results. Section
5.6.2 studies the impact of relaxing the retail price constraints, and section 5.6.3 analyses the
influence of price elasticities on the retail market. Section 5.6.4 investigates the impact of
market regulation, and section 5.6.5 evaluates the effects of DSM stimuli.

By comparing the results of these changes with the baseline, we can inform both retailers
and policymakers of the potential impact of dynamic tariffs and demand response policies on
the retail electricity market.

In the remainder of this chapter, unless otherwise specified, peak prices, shoulder prices,
and off-peak prices respectively refer to peak retail prices, shoulder retail prices, and off-peak
retail prices, all under dynamic tariffs.

5.6.1 Baseline Result

Using the baseline parameters as inputs to the agent-based model (5.16), we obtain dynamic
retail prices that maximises the retailer’s profit. We then examine the distribution of these
prices over the study period and specifically the relationship between the dynamic retail prices
and the associated SMPs. We then compare the retail profit, consumer demand, consumer
bill, and market gain that arise from the dynamic tariffs to those from the original flat tariff.

result in omitted-variable bias. Attempts have also been made to find appropriate regression methods by which
to identify elasticities (e.g. the restricted LASSO), but there has been limited success in this area.

13The values are taken from Mountain and Lawson [100], page 196, Table 5 (“Rate Cell 16 Winter”), which
separates the day into peak, shoulder, and off-peak periods; there, the definitions for the various periods are
similar to those in the IESMT dataset.

14Also, the constraints of the agent-based model are all daily constraints.
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The distribution of dynamic retail prices

Recall that the retailer maximizes its profit subject to the consumers’ incentive constraint
(5.15), which sets an upper bound to the retail revenue for a given day.15 As a result, if
the retailer wishes to set a high price for one period, the prices for other periods need
to be adjusted. After solving the retailer’s profit maximization problem, we examine the
distribution of retail prices. Table 5.5 presents a categorization of these prices in terms of a
number of cases.

Cases a.1-a.4 are ranked in descending order based upon peak SMP. Case a.1 includes
days with high peak SMPs (average 11.94 euro cents/kWh) and correspondingly high peak
retail price. Given the incentive constraint (5.15), the shoulder and off-peak prices are equal
to their lower bounds (represented by the superscript L) of 9 euro cents/kWh and 12.5 euro
cents/kWh, respectively.

The average peak SMPs for Case a.2 are lower than those in Case a.1. The attendant
lower peak retail price implies that to maximize profit under the incentive constraint (5.15),
the retailer can set shoulder prices to the upper bound (represented by the superscript U) of
14 euro cents/kWh. The off-peak prices are equal to the lower bound of 9 euro cents/kWh.

The average peak SMPs for Case a.3 are the second-lowest among all cases, resulting in
relatively low peak retail prices. Again, following the incentive constraint (5.15), lower peak
retail prices has the effect that shoulder prices are set equal to the upper bound of 14 euro
cents/kWh, and the off-peak prices are above the lower bound of 9 euro cents/kWh.

Among all cases Case a.4 has the lowest average peak SMP among all cases, such that
we observe the peak retail price set equal to the lower bound of 20 euro cents/kWh. As with
Case a.3, to maximize profit the retailer sets the shoulder price equal the upper bound of 14
euro cents/kWh, and the off-peak retail prices exceed the lower bound of 9 euro cents/kWh
in order that the incentive constraint (5.15) binds.

Table 5.5 demonstrates the relationship between peak SMP and the distribution of the
retail prices that maximizes the retailer’s profit. When the peak SMP is relatively high, setting
a high peak retail price becomes the retailer’s priority; while when the peak SMP is relatively
low, setting a high shoulder retail price becomes the retailer’s priority. In Cases a.2-a.4 (when
the peak SMP is relatively low), equalising the shoulder retail price to its upper bound is

15Recall that the incentive constraint (5.15):

T

∑
t=1

E[dt ]πt ≤ δ ·
T

∑
t=1

E[d0,t ]π0,t (16)

requires that the consumer bill under the dynamic tariff be no more than that under the flat tariff. Since the
expected demand under the flat tariff E[d0,t ] and the flat price π0,t are both given, the upper bound for the
consumer bill can be treated as a constant.
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Table 5.5 Distribution of the Dynamic Retail Prices (euro cents/kWh), Baseline

Dynamic Retail Prices∗ Average Spot Prices
Case Off-peak Shoulder Peak Off-peak Shoulder Peak No. of days

a.1 9L 12.5L >29 4.13 5.50 13.39 119

a.2 9L 14U (20,29) 3.68 5.96 7.07 127

a.3 (9,12) 14U (20,26) 3.59 5.55 5.41 25

a.4 (9,12) 14U 20L 3.74 5.63 4.93 94
* The superscript L and U represent the lower and upper bounds, respectively.

not sufficient to bind the incentive constraint (5.15),16 hence to maximise profit, the retailer
would increase retail prices in other periods (peak and off-peak) until the constraint binds.

Comparing dynamic and flat tariffs

By solving the agent-based model (5.16), we obtain the retail prices that maximize the
retailer’s profit. In this subsection we compare the associated retail profit, consumer demand,
consumer bill, and market gain under dynamic tariffs, with the same quantities under the flat
tariff.

Table 5.6 compares the impact of dynamic and flat tariffs in terms of the following
factors:

• Retail profit is the average annual profit for the retailer from the representative house-
hold;

• Consumer bill denotes the average annual electricity bill for the representative house-
hold;

• Consumer demand denotes the average annual electricity demand for the representative
household;

• Market gain measures the average annual monetary gains derived from the dynamic
tariff, relative to the flat tariff. This is defined as the additional profit earned by the
retailer plus the reduction in the representative household’s electricity bill. Market gain
for a single day can be expressed as

Market gain =
T

∑
t=1

{[dt(πt −π
s
t )−d0,t(π0,t −π

s
t )]+(d0,tπ0,t −dtπt)}, (5.17)

16Because under the baseline scenario, the upper bound of shoulder retail prices is lower than the flat tariff
(See Table 5.3).
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where the first term measures the change in the retail profit and the second term
represents the change in the consumer bill. Note that (πt −πs

t ) is the retailer’s profit
from each unit of electricity sold.

Table 5.6 Flat Tariff vs. Dynamic Tariff, Annual Comparison

Profit (e) Bill (e) Demand (kWh) Market Gain (e)

Flat Tariff 711.26 1199.34 8506 —

Dynamic Tariff 718.61 1199.34 8526 7.35

From Table 5.6 we observe that under the dynamic tariff the retailer earns an additional
e7.35 of annual profit from a representative household . The magnitude is small (1%) relative
to the annual profit.17 However, given that in 2017 the total number of UK households was
27.2 million and the market share for a big electricity supplier like British Gas was 20%,18

switching to the dynamic tariff could increase its annual profit by about e40 million.
As long as the incentive constraint (5.15) is binding, households pay the same bill under

the flat and dynamic tariffs. Given (5.17), we then observe that all market gain comes from
the increase in the retail profit. We will show in section 5.6.4 that, despite this, implementing
tighter market regulation rules (such as easing the licensing process to become an electricity
retailer) can redistribute the market gain. We also note that consumer demand increases by
20 kWh/year, meaning that households are consuming more electricity but paying the same
cost. Note that this does not necessary mean that households are better off under the dynamic
tariff, as this increase in electricity demand comes with peak load shifting, and they may
obtain different utilities in different periods.

Table 5.7 compares the annual consumer demand (for the representative household)
under the dynamic tariff to that under the flat tariff, for off-peak, shoulder, and peak periods.
Overall, the adoption of dynamic tariffs shifts 13.8% of the peak demand to other periods.
This finding is comparable to a number of other studies (e.g. Carroll et al. [28], Cosmo et al.
[44], Woo et al. [159]). Relative to the baseline scenario, the dynamic tariff reduces the
representative household’s peak demand by 156.2 kWh/year/household. 133.4 kWh (or 85%)
of this is reallocated to shoulder periods and 42.9 kWh (or 27%) is reallocated to off-peak
periods. Note that the reallocation sums to 112% given that the dynamic tariff increases
annual demand (see Table 5.6). It is also worth mentioning that the annual electricity demand
from the IESMT is much higher than the average electricity demand estimated by CER [34].

17Note that other costs such as network costs and operating costs are ignored in the retailer’s profit function.
Once those costs are taken into account, the number of be much higher than 1%.

18See Office for National Statistics and Ofgem.

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families
https://www.ofgem.gov.uk/data-portal/retail-market-indicators
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This is because in 2010 both Britain and Ireland experienced the coldest winter on record,
resulting in high demand of electric heating.

Table 5.7 Demand-shifting under the Baseline Settings (kWh/Year)

Demand Change
Flat Dynamic Level Change % Change

Off-peak 1852.3 1895.2 42.9 2.4%

Shoulder 5519.0 5652.4 133.4 2.4%

Peak 1134.6 978.4 -156.2 -13.8%

In summary, under the baseline settings we find that peak SMPs are a critical factor
in determining dynamic retail prices. Given the incentive constraint (5.15) that restricts
the retailer’s total revenue, a high peak retail price is associated with low shoulder and
off-peak prices, and vice versa. We also find that the dynamic tariff is beneficial both in
terms of substantially increasing retailer profit and shifting and reducing peak load. Although
the retailer gets all the market gain, Section 5.6.4 demonstrates that market regulation can
redistribute these gains, resulting in a smaller electricity bill for the representative household.

5.6.2 The Role of Price Constraints

Under the baseline scenario the retail-price constraints (in Table 5.3) are based upon values
used in the Irish trial. In this section, we widen the range between the lower and upper
bounds of the retail prices to allow the retailer more freedom in setting retail prices. Relative
to the baseline scenario, we reduce (increase) the lower (upper) bound by 2 euro cents, or

π
Min
O = 7 euro cents/kWh and π

Max
O = 14 euro cents/kWh; (5.18)

π
Min
S = 10.5 euro cents/kWh and π

Max
S = 16 euro cents/kWh;and (5.19)

π
Min
P = 18 euro cents/kWh and π

Max
P = 40 euro cents/kWh. (5.20)

Table 5.8 present the distribution of retail prices that maximizes the retail profit under the
price constraints (5.18)–(5.20). Similar to the baseline scenario, we classify the set of solved
retail into a number of cases based upon average peak SMPs.

Case b.1 consists of precisely the same days as those in Case a.1 (Table 5.5), indicating
the robustness of our model to peak SMPs. Given that the retail price constraints are less
restrictive, this allows the retailer to further increase the peak retail price until it equals the
upper bound (i.e. 40 euro cents/kWh). Given the nature of the incentive constraint, the retailer
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will again lower the off-peak retail price to its lower bound (i.e. 7 euro cents/kWh). The
retailer will then continue to increase the shoulder retail price until the incentive constraint
(5.15) binds.

Table 5.8 Distribution of Dynamic Retail Prices (euro cents/kWh)

Dynamic Retail Prices∗ Average Spot Prices
Case Off-peak Shoulder Peak Off-peak Shoulder Peak No. of Days

b.1 7L (10.5, 16) 40U 4.13 5.50 13.39 119

b.2 [7L, 7.4) 16U (18,21) 3.67 6.05 6.86 121

b.3 [7L, 8.2) (15.4, 16U ] 18L 3.73 5.54 5.33 125
* The superscript L and U represent the lower and upper bounds, respectively.

Case b.2 is comparable to Cases a.2-a.3 in Table 5.5, as the shoulder retail prices are
equal to their upper bounds while off-peak and peak prices are low. Average peak SMPs are
lower than Case b.1 but higher than Case b.3. In this case, shoulder retail prices equal the
upper bound at 16 euro cents/kWh, while the peak retail prices is either equal to or greater
than the lower bound (i.e. within (18,21) euro cents/kWh).

Finally, Case b.3 is comparable to Case a.4 in Table 5.5, with the average peak SMPs
the lowest of all cases, and the peak retail price set equal to the lower bound (i.e. 18 euro
cents/kWh). In this case, the shoulder retail price is either equal to or less than its upper
bound (i.e. within (15.4, 16] euro cents/kWh), and the off-peak price is either equal to or
greater than its lower bound (i.e. within [7, 8.2) euro cents/kWh).

In this case within a day, whenever the shoulder retail price is less than 16 euro cents/kWh,
we always observe off-peak retail prices equalling to 7 euro cents/kWh; whenever the off-peak
retail price is above 7 euro cents/kWh, we always observe shoulder retail prices equalling to
16 euro cents/kWh. This is not surprising given that the retailer maximises its profit under
the incentive constraint (5.15) – while the peak retail price is equal to the lower bound, the
retailer makes more profit from setting high shoulder retail prices. For some days, setting the
shoulder retail price less than 16 euro cents/kWh is sufficient to bind the constraint (5.15)
(because of the low demand or low SMPs), hence we observe shoulder retail prices lower
than 16 euro cents/kWh in those days. For some other days, setting the shoulder retail price
to 16 euro cents/kWh is not sufficient to bind the constraint (5.15) (because of the high
demand or high SMPs), such that the retailer would raise the off-peak retail prices above 7
euro cents/kWh for greater profit.

In comparing Table 5.5 to Table 5.8, we see that the new retail price constraints increase
the dispersion of the retail prices. Specifically, the difference in peak retail prices between
Cases b.1 and b.2 increases relative to Cases a.1 and a.2. The intuition is that the new
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constraints allow the retailer to further lower the off-peak retail prices. Because of the
incentive constraint (5.15), the retailer can now further increase either the peak or shoulder
retail prices – whichever will derive a higher profit. This, in turn, further increases the
difference in peak prices between Cases b.1 and b.2.

Table 5.9 shows the retail profit, consumer demand, consumer bill, and market gain from
the representative household under the new constraints. Because the new constraints are less
restrictive than the baseline scenario, the retail profit almost doubles, frome7.35/year/household
to e13.56/year/household. The substantial increase in the retail profit is not surprising be-
cause the range between the upper and lower bounds for off-peak (shoulder) periods has
more than doubled (tripled).19

Due to the incentive constraint (5.15), the consumer bill is still the same as under the flat
tariff, but the total demand is substantially reduced by 30 kWh/year (0.35%/year) relative
to the total demand under the flat tariff. The intuition is that in the baseline scenario, the
upper bounds for both off-peak and shoulder prices are lower than those under the flat
tariff.20 Given that most electricity is consumed during shoulder (and off-peak) periods,21

the dynamic tariff under the baseline scenario would result in higher demand relative to the
flat tariff. However, in the case of new constraints, shoulder retail prices can be higher than
the flat tariff, meaning that households would consume less if the shoulder retail price were
equal to the new upper bound. Finally, similar to the baseline scenario, all the market gain
goes to the retailer.

Table 5.9 Comparing Flat Tariff with Dynamic Tariffs

Profit (e) Bill (e) Demand (kWh) Market Gain (e)

Flat Tariff 711.26 1199.34 8506 —
Dynamic Tariffs
Baseline (Table 5.6) 718.61 1199.34 8526 7.35

Constraints (5.18)–(5.20) 724.82 1199.34 8476 13.56

From Table 5.9, consumer demand under the dynamic tariff can be either higher or lower
than the flat tariff, depending on the configuration of the dynamic retail price constraints
relative to the flat tariff. In our model, whether the demand is higher mostly depends on the

19From Table 5.3, under the baseline scenario, the range between the lower and upper bounds for off-
peak periods is 3 euro cents/kWh, and for shoulder periods is 1.5 euro cents/kWh. Under the new constraints
(5.18)–(5.20), the range for off-peak periods is 7 euro cents/kWh and for shoulder periods is 5.5 euro cents/kWh.

20Recall that for the baseline scenario, the upper bound for off-peak retail price is 9 euro cents/kWh and for
shoulder retail price is 12.5 euro cents/kWh; while the flat tariff is 14.1 euro cents/kWh.

21Peak periods have the highest hourly demand, but off-peak and shoulder periods have the highest overall
demand, as they are longer periods.
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configuration of the upper bound for shoulder retail prices relative to the flat tariff, because
electricity is consumed most during shoulder periods.

Table 5.10 compares electricity demand under the new constraints to that under the flat
tariff. For the representative household, the dynamic tariff reduced peak demand by 165.6
kWh in 2010, which is equivalent to 14.6% of peak demand; this is slightly higher than the
baseline scenario, at 13.8%. Overall, 46% and 36% of the reduction in peak demand shifts to
the shoulder and off-peak periods, respectively. The sum of demand-shifting is 82% given
that the dynamic tariff reduces the total demand under the new constraints (see Table 5.9).

Table 5.10 Demand-shifting under Constraints (5.18)–(5.20) (kWh/Year)

Demand Demand-Shifting
Flat Dynamic Level Change % Change

Off-peak 1852.3 1912.4 60.0 3.2%

Shoulder 5519.0 5595.0 76.0 1.4%

Peak 1134.6 969.0 -165.6 -14.6%

In summary, as the new retail-price constraints give the retailer more freedom in setting
the retail prices, the retailer makes more profit, thus amplifying the market gain. In addition,
we observe that the representative household reduces more peak load. Again, almost the
entire market gain goes to the retailer, but market regulation can redistribute the gain, as
Section 5.6.4 shows.

5.6.3 The Role of Elasticities

In sections 5.6.1 and 5.6.2 we examined the impact of dynamic tariffs on the retail market
under the baseline scenario, and the impact of less restrictive price constraints. In both cases
we used the price elasticities reported by Mountain and Lawson [100], as show in Table 5.4.
However, the installation of more advanced smart meters and smart household appliances and
the increased use of electric vehicles suggest that consumers, faced with monetary incentives
and smart technology, may become be more price sensitive. In this section, we examine the
impact of price elasticities on the retail electricity market.

We multiply consumers’ elasticities by a factor m that ranges between 1 and 2. Setting
m = 2, the representative household is twice as elastic as the current level. For different
values of m the retailer would set different dynamic tariffs to maximize its profit. This will
then generate different levels of consumer demand, consumer bill, and market gain. We
examine the impact of elasticities based on two scenarios: the baseline scenario and the
scenario with new retail price constraints.
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Figure 5.1 demonstrates the relationship between the parameter m and consumer demand,
consumer bill, retail profit, and market gain. The solid lines represent the relationships
under the baseline scenario, and the dashed lines represent those under the new retail price
constraints.

Fig. 5.1 Impact of m on Consumer Demand and Bill, Retail Profit, and Market Gain, Baseline
vs. New Constraint

Figure 5.1(i) plots the relationship between m and consumer bill. Recall that the incentive
constraint (5.15) restricts the maximum bill that the representative household would pay
under dynamic tariffs. To maximize profit, the retailer would bind the constraint (5.15);
therefore, in both scenarios, the consumer bill under a dynamic tariff will be equal to the bill
under the flat tariff, as represented by a horizontal line.

Figure 5.1(ii) shows that under the baseline scenario consumer demand increases with m
given that the upper bounds of the off-peak and shoulder retail prices are lower than those
under the flat tariff. As a result, the total demand is higher under the dynamic tariff than
under the flat tariff. With households being more elastic, they would be more sensitive to
off-peak and shoulder retail prices that are consistently lower than those under the flat tariff,
thus resulting in higher demand. In this scenario, consumers are paying the same bill as under
the flat tariff, but consume more electricity. Whether this makes the consumers better-off
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depends on whether the utility from enjoying more energy usage exceeds the dis-utility from
their peak load shifting.

Under the new retail price constraints (5.18)-(5.20), the upper bound of the shoulder
prices is higher than the flat tariff, such that demand under the dynamic tariff will be lower
than that under the flat tariff. As m raises and consumers become more elastic, we observe
demand negatively related to m. In this scenario, consumers are paying the same bill as under
the flat tariff, but consume less electricity, potentially resulting in a reduction in consumer’s
welfare. However, from policymakers’ perspective, less demand means less greenhouse gas
emission and greater social benefit. (Estimating the overall impact would require knowledge
of households’ utilities from consuming electricity, the marginal emission of electricity
generation, and the social cost of carbon; these matters are left to future research.)

Figure 5.1(iii) demonstrates the impact of m on retail profit. Note that the retailer makes a
profit from buying low and selling high; hence, from the retailer’s perspective, the function of
a dynamic tariff is to shift the consumer demand from low-profit to high-profit periods. This
suggests a positive relationship between m and retail profit. As Subsection 5.6.2 discusses, the
new and less-restrictive constraints will allow a retailer to make more profit from households.

Finally, Figure 5.1(iv) presents the relationship between m and the market gain. Recall
that the market gain defined in (5.17) is the sum of the increase in the retail profit and the
reduction in the consumer bill. Since the retail profit increases with m while the consumer
bill stays constant, the market gain fully traces out the retail profit in both scenarios.

In summary, this section shows that a higher retail profit (and market gain) can be obtained
from more elastic consumers. This counter-intuition holds because of the incentive constraint
(5.15), meaning that the retail profit mainly comes from shifting (elastic) consumers’ demand
from peak to shoulder and off-peak periods.

We also find that under different retail price constraints, the relationship between con-
sumer demand and consumer elasticities can be in opposite signs (as Figure 5.1(ii) shows).
As discussed in Section 5.6.2, the configuration of the retail-price constraints relative to the
flat tariff is the key to determine whether consumer demand is upward or downward sloping
with consumer elasticities.

5.6.4 The Role of Market Regulation

In this section we relax the assumption that the consumer bill under the dynamic tariff is
no more than that under the flat tariff. Instead, we allow δ in the incentive constraint (5.15)
to be less than 1.22 Recall that δ has multiple interpretations, including the level of market

22Theoretically, the value of δ can exceed 1, meaning that consumers would pay more under the dynamic
tariff than they would under the flat tariff. This would be true if one were to take consumer loyalty into
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competition, consumers’ risk aversion, and market regulation. The market regulator can
intervene via setting market regulation rules to lower the value of δ in accordance with the
desire for a more competitive market or more frequent monitoring activities.23 In this section,
we assume that the consumers’ risk aversion is held fixed, and a market regulator can lower
the value of δ (from the baseline value of δ = 1) through conducting frequent monitoring
activities, or through promoting market competition. Therefore, in this case, a smaller δ is
associated with a more regulated market or a more competitive market.

Table 5.11 presents the impact of market regulation, in terms of reducing the value of
δ , on retail profit, consumer demand, consumer bill, and market gain. We reduce the value
of δ until the retailer cannot make more profit from the dynamic tariff relative to the flat
tariff. The table shows that the retailer would prefer the flat tariff over the dynamic tariff
when δ < 0.994, meaning that if the market is overregulated (i.e. a small δ ), the retailer will
end up preferring the original flat tariff than dynamic tariffs. This discourage the retailer’s
incentives to implement dynamic tariffs.

The fact that the variability of market regulation is restricted within the small (in magni-
tude) interval of [0.994, 1] is not surprising. Recall that the incentive constraint (5.15) sets the
upper bound of the consumer bill under dynamic tariffs. For the representative household, this
is approximately e1200 (see Table 5.6). A 0.6% reduction in δ is equal to a e7.2 reduction
in the representative household’s annual bill, or about 98% of the profit that the retailer makes
from implementing the dynamic tariff in the baseline scenario (e7.35/year/household).

Table 5.11 Impact of Market Regulation on the Retail Market

Profit (e) Bill (e) Demand Market
Profit ∆∗ Bill ∆∗∗ (kWh) Gain (e)

δ = 1 718.61 7.35 1199.34 0.00 8526 7.35

δ = 0.998 716.16 4.90 1196.94 2.40 8524 7.30

δ = 0.996 713.72 2.46 1194.54 4.80 8523 7.26

δ = 0.994 711.27 0.01 1192.14 7.20 8521 7.21

Flat Tariff 711.26 — 1199.34 — 8506 —
∆∗ Difference between dynamic and flat tariff; ∆∗∗ difference between flat and dynamic tariff.

From Table 5.11 we see that market regulation has little effect on consumer demand.
Although market regulation does slightly sacrifice the total market gain, it transfers market

consideration. However, this violates the perspective that applying dynamic tariffs should make both consumers
and retailers better off.

23Although we give δ three different interpretations, those interpretations can overlap. For example, market
regulation rules can result in a more competitive market.
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gain from the retailer to households. The reason is that for a competitive market without
externally,24 the regulator’s intervention makes the retail market less efficient. Despite this,
at some certain levels of market regulation (δ ∈ [0.994,1) in our model), both the retailer
and households benefit from the dynamic tariff, resulting in a win-win condition.

5.6.5 The Role of DSM Stimuli

Allcott [6], Gans et al. [70] each found that DSM stimuli are associated with declines in
electricity consumption. In this section we examine the impact of two DSM – switching from
monthly to bi-monthly bills and installing in-house displays, both of which were implemented
as part of the IESMT programme.25 Note that from (5.12), the consumer’s demand function
becomes

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t

π0,t
+∑

t ′
εt,t ′

πt ′ −π0,t ′

π0,t

)
·κt ,∀t ∈ {O,S,P}.

Recall that κt denotes the discount on demand when an incentive stimulus is implemented.
Using the IESMT dataset, Cosmo et al. [44] found that relative to bi-monthly bills, monthly
bills under TOU schemes reduce peak demand by 1.3%, shoulder demand by 0.2%, and
off-peak demand by 1.6%; and installing in-house displays reduce peak demand by 1.0%,
shoulder demand by 0.0%, and off-peak demand by 1.2%.26 Assuming that households react
similarly to incentive stimuli under the dynamic tariff and the TOU schemes, we use Cosmo
et al. [44]’s results as estimates of κt (t ∈ {O,S,P}) when switching from bi-monthly to
monthly bills, or when installing an in-house display under bi-monthly bills.

Table 5.12 shows the impact of monthly billing and in-house displays on retail profit,
consumer demand, consumer bill, and market gain for the representative household. Al-
though both DSM stimuli lower consumer demand, given the incentive constraint (5.15),
the consumer bill remains unchanged. The household is then paying the same bill for lower
demand, and this results in higher retail profit. This issue can be resolved by regulating the
retail electricity market (see section 5.6.4) to transfer the increased market gain to households.
The last two rows of Table 5.12 show the results where the DSM stimuli interact with market
regulation (by setting δ = 0.995 according to Table 5.11): the household pays lower bills

24The retailer electricity market in the UK is considered to be competitive (CMA [42]) and the externalities
(mostly CO2 emissions) of electricity has been properly charged by carbon taxes (See a discussion in Chapter
3).

25We do not consider the overall load reduction incentive, because we are unable to determine the precise
prices faced by the households affected by that incentive.

26See page 130, Table 5, weighted by number of households in each tariff group, divided by the average
daily demand for off-peak, shoulder, and peak periods.
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Table 5.12 Baseline vs. Demand-side Management (DSM) Stimuli

Profit (e) Bill (e) Demand Market
Profit ∆∗ Bill ∆∗∗ (kWh) Gain (e)

Baseline 718.61 7.35 1199.34 0.00 8526 7.35

DSM Stimuli
Monthly Bill 721.73 10.47 1199.34 0.00 8475 10.47

In-house Display 720.48 9.22 1199.34 0.00 8495 9.22

DSM Stimuli & Regulation
Monthly Bill, δ = 0.995 715.62 4.36 1193.34 6.00 8472 10.36

In-house Display, δ = 0.995 714.37 3.11 1193.34 6.00 8492 9.11

Flat Tariff 711.26 — 1199.34 — 8506 —
∆∗ Difference between dynamic and flat tariff; ∆∗∗ difference between flat and dynamic tariff.

with the DSM stimuli, and the retailer also makes higher profit than under the flat tariff.
Clearly, this is a win-win condition.

5.7 Forecasting Errors

A retailer buys electricity from the day-ahead spot market and sell it to consumers at the
real-time market. As electricity cannot be stored at scale, differences between the volume of
retailer’s (day-ahead) supply and consumers’ (real-time) demand are exposed to the volatile
real-time balancing market. In this section, we use our model to measure the value-added of
forecasting accuracy (on electricity demand) from the retailer’s perspective.

Recall that the retailer profit is the profit from the spot market minus the loss from the
balancing market:

φ(x) =
T

∑
t=1

{πtdt −π
s
t Es

t −π
↑
t ∆E↑

t +π
↓
t ∆E↓

t }, (1)

with the market-balancing constraint

dt −Es
t = ∆E↑

t −∆E↓
t ,∀t. (2)

Recall also that by assuming the SMP is higher than the balancing-market-selling price and
lower than the balancing-market-purchasing price (π↓

t < πs
t < π

↑
t ), the retailer will avoid

bidding in the real-time balancing market, i.e. the expected amount of energy purchased
from the balancing market is zero (E[∆E↑

t ] = E[∆E↓
t ] = 0).
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The retailer’s expected profit may then be written

E[φ(x)] =
T

∑
t=1

{πt E[dt ]−π
s
t Es

t }.

If the forecast for the next day’s demand differs from the actual demand (E[dt ] ̸= dt), either
∆E↑

t or ∆E↓
t will be positive, resulting in monetary losses of the form

Loss = (π↑
t −π

s
t )∆E↑

t +(πs
t −π

↓
t )∆E↓

t . (5.21)

The first (second) component of (5.21) denotes the loss from buying (selling) on the balancing
market. The greater the volume of balancing market trading (∆E↑

t or ∆E↓
t ), the greater the

monetary losses from forecasting errors.
Forecasting error is usually measured in terms of the mean absolute percentage error

(MAPE), which is the average of absolute percentage errors by which the forecasts of a
model differ from actual values. Based on the actual difference between day-ahead market
and balancing market prices,27 we assume the balancing-market-selling (purchasing) price is
15% lower (higher) than the SMP, or π

↑
t = 1.15πs

t and π
↓
t = 0.85πs

t .
We start from simulating a forecast of consumer demand for a representative household

for the entire year of 2010, while assuming that the MAPE of the forecast is 10%. Specifically,
if the actual electricity demand for a given day, under the dynamic tariff during period t is dt ,
we generate a forecast error et randomly from a normal distribution:

et ∼ N
[
0,(η ·dt)

2
]
,

where η = MAPE ·
√

π/2, and here MAPE = 10%.28

The retailer buys electricity from the day-ahead wholesale electricity market based on
their forecast of the consumer’s electricity demand, or Es

t = E[dt ] = dt + et . Substituting Es
t

in (2) by dt + et , we have et = ∆E↑
t −∆E↓

t . Note that the retailer can either buy or sell on
the balancing market, such that if et is positive, the retailer sells the extra electricity at the

27In GB in 2013 the average SMP was £50.15/MWh, the average balancing-market-purchasing price was
£58.07/MWh, and the average balancing-market-selling price was £43.93/MWh. On average the balancing-
market-purchasing price is 15.8% higher than the SMP, and the balancing-market-selling price is 12.4% lower
than the SMP. Therefore, the assumption that the balancing price will be 15% lower or higher than the SMP
seems to be plausible.

28We need to find the value of η such that E[|et |] = MAPE ·dt . Given that the expected absolute value of
a normal random variable with mean 0 and standard deviation η is η ·

√
2/π , we solve for η that satisfies

MAPE = η ·
√

2/π , and obtain η = MAPE ·
√

π/2.
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balancing market (∆E↑
t = et and ∆E↓

t = 0). If et is negative, the retailer will purchase more
electricity from the balancing market, or ∆E↑

t = 0 and ∆E↓
t = et .

Given the actual SMP in Ireland in 2010, all variables in (5.21) are known and we can
estimate retailer’s annual monetary losses from an representative household. We take 500
simulations of the retailer’s annual monetary loss and take the average. Table 5.13 reports the
annual loss of profit that the retailer derives from the representative household on account of
errors in forecasting electricity demand.

Table 5.13 Forecasting Errors and Retailers’ Lost Profit

MAPEs on E[dt ]

10% 5% 2% 1%

Lost Profit (e/year) 7.22 3.61 1.44 0.72

We then compare the retail profit under different MAPE values; the results are also
reported in Table 5.13. On average a 1% reduction in the MAPE (i.e. an improvement in
the forecast accuracy) is accompanied by an average profit gain of e0.72/year from the
representative household, or about e3.9 million/year for a major electricity supplier like
British Gas.29

In our analysis, we assume that the costs of purchasing and selling electricity in the
balancing market are identical (i.e. πs

t −π
↓
t = π

↑
t −πs

t ). However, in a world where they are
not identical, the retailer will eventually adjust its forecasts towards the value that minimizes
profit loss. For instance, suppose πs

t −π
↓
t ≤ π

↑
t −πs

t ; it would then be more profitable for the
retailer to purchase a slightly larger amount of electricity than E[dt ] from the spot market to
offset the high cost of purchasing electricity from the real-time market.

5.8 Heterogeneous Consumers: A Discussion

Since households differ in terms of composition and attendant consumption behaviour then
similar to the telecom (Oseni and Pollitt [119]) and insurance (FCA [60]) markets, it would
be potentially more efficient for the retail market if households were to be differentiated in
terms of different dynamic tariff schemes.

However, several issues need to be resolved if one wishes to model the retail electricity
market with a retailer that offers different dynamic tariff schemes. First, households are
typically allowed to choose their own dynamic tariff scheme over the several schemes

29The number of UK households in 2017 was 27.2 million, and in that year, British Gas’ share in the
electricity retail market was about 20%.
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offered by the retailer. If this be the case, our agent-based model (5.16) that assumes all
households are facing the same dynamic tariff scheme would not be applicable. A more
complicated model, where households can choose over different dynamic tariff schemes,
would be preferable. Such model would require some additional model constraints, so as
to ensure that a particular group of households would prefer the specific tariff scheme that
are targeted to them (so that the retailer’s profit gets maximised). If this is not the case, the
retailer could be accused of market discrimination.

Second, one needs to decide the number of dynamic tariff schemes in the market, such
that the number is sufficiently large to effectively capture household heterogeneity, but not
too large so as to make it expensive in terms of computation, management and menu costs.
Government regulators such as Ofgem require that retailers set a limited number of tariffs at
any point in time (Ofgem [112]).

Finally, one needs to decide upon a clustering technique by which to categorize consumers
into different tariff schemes. At the moment, researchers are still debating which clustering
technique is most efficient in categorizing electricity consumers (e.g. Figueiredo et al.
[64], Tsekouras et al. [149], Chicco [36], Teeraratkul et al. [145]). However, it is not
guaranteed that using conventional clustering techniques would categorize consumers with
similar elasticities into the same cluster, because almost all techniques use as clustering
inputs historical loads, demographic information, or both, rather than elasticities. Therefore,
clustering techniques that target household-level elasticities might be preferable.

Given the aforementioned challenges, we leave this work to future research.

5.9 Conclusions

In this study we constructed an agent-based model in which the retailer sets dynamic tariffs
so as to maximize profit, and consumers respond to the dynamic tariff. The retailer’s profit
maximisation problem is based upon (retailer’s expected) consumer demand, wholesale
electricity prices, consumer elasticities and other factors, and is restricted by consumers’
incentives to choose the dynamic tariff over the original flat tariff, as well as some market
regulation rules.

Using the model we investigated the impact of dynamic tariffs on the electricity retail
market in terms of retail profit, consumer demand and bill, and market gain. We then
examined how the impact of dynamic tariffs varies with market regulation, consumer elastici-
ties, and demand-side management (DSM) stimuli, via changing the values of the model’s
corresponding input parameters.
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In the baseline scenario, we assumed there is no DSM stimulus, and that for a repre-
sentative consumer, the electricity bill under the dynamic tariff is no more than that under
the original flat tariff. Our results suggest that by applying the proposed dynamic tariff, the
retailer earns from the representative household an additional 1% (e7.35) of annual profit.
Although the increase is small relative to the total retail profit, our calculation suggests that in
2017, the implementation of a dynamic tariff would have brought a company like British Gas
e40 million of additional annual profit. The proposed dynamic tariff shifts about 13.8% of
the peak demand to shoulder and off-peak periods, comparable with other related research.

Our results also suggest that the retailer makes more profit with less-restrictive retail price
constraints. This additional profit would hence increase market gain. Market regulations
– such as easing the licensing process to become an electricity retailer – may result in a
win-win condition by reinforcing a more competitive retail market and transferring some of
the retail profit to consumers.

Investigating further we found that the DSM stimuli would reduce consumer electricity
demand and under the baseline scenario, bringing more profit to the retailer. Because the
DSM stimuli increase the retail profit while market regulations redistribute the retail profit,
the interaction between DSM stimuli and market regulation can further reduce consumers’
electricity demand, increase retail profit, and lower consumer bills.

We also found that the retailer can obtain higher profit from more elastic consumers,
further increasing the market gain from implementing dynamic tariffs. The intuition is that it
is challenging for the retailer to use price signals to shift inelastic consumers’ demand from
low-profit periods to high-profit periods. For this reason, higher retail profit can be obtained
from more elastic consumers.

Finally, our agent-based model allowed us to estimate the value-added of improving
the accuracy of electricity demand forecasts. Our results demonstrate that a 1% reduction
in the mean absolute percentage error on the electricity demand forecast corresponds to a
e0.72 increase in the annual retail profit from a representative household, or about e3.9
million/year for a major electricity supplier comparable to British Gas.

In application, it would be challenging to convince households to choose dynamic over
flat tariffs unless the retailer guarantees profit sharing. This is possible from the retailer’s
perspective as our model shows that the dynamic tariff increases retail profit. In a most
extreme case where in a perfectly competitive market where all retailers offer dynamic
tariffs to consumers, all market gain would go to the consumer. Our results suggest that in
the baseline scenario, consumers could pay up to 0.6% less under the dynamic tariff than
the flat tariff. The number goes up to 0.8% with DSM stimuli implemented. Note that
reducing energy bill is not the main purpose for dynamic tariffs, although the reduction in
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the electricity bill could lower the burden on households from the increasing electricity bills
during the past twenty years due to the increasing fuel costs and carbon prices.





Chapter 6

Conclusion

The United Kingdom’s (UK’s) Climate Change Act has so far been of a great success.
Meanwhile, the UK’s economy has been growing at a faster rate than other G7 countries (who
have much smaller emissions reduction rate on average), suggesting that carbon mitigation
does not necessarily conflict with economic growth.

One of the greatest achievement of the Act is that it has successfully decarbonised the
power sector, triggered the Electricity Market Reform (EMR) which aims at decarbonising
electricity supply, minimising the cost of energy to consumers, and ensuring the security of
supply.

Decarbonising electricity supply

Decarbonisation requires increasing the capacity of renewable energy to phase out carbon
insensitive fossil plants, and replacing the more carbon-intensive fossil plants with the less
carbon-intensive ones. Its efficacy depends on the cost of emissions reduced. The main
EU instrument for setting the price of CO2 is the Emissions Trading System (ETS). From
plausible levels of the allowance (EUA) price of e20-30/tonne in 2008, the price sharply
declined after the Renewables Directive reduced demand without withdrawing EUAs, and
for long periods of time after 2012 has remained well below e10/tonne, at which level it has
little effect on the fuel mix and CO2 emission reduction.

The UK Government has committed to tough carbon limits in the UK Climate Change
Act 2008 and introduced a Carbon Price Floor (CPF) in the 2011 Budget that applies to fossil
fuels used to generate electricity. To implement the CPF, the Treasury publishes the Carbon
Price Support (CPS, a carbon tax in addition to the EUA price) based on forward EUA prices
at the time of the autumn budgets to come into effect at the start of the fiscal year in the
following April. The CPS was revised several times to bring the total carbon price up to the
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announced CPF trajectory that was planned to reach £(2011) 30/tonne by 2020 and £(2011)
70/tonne by 2030. After the failure of other EU countries to either reform the ETS or impose
a similar CPF, the Government froze the CPS in 2016 at £18/tonne until 2021.

The impact of this considerable increase in the cost of fossil fuel for electricity generation
has been dramatic. Before the introduction of the CPS coal generation was cheaper than the
most efficient Combined Cycle Gas Turbines (CCGTs), so that gas was the marginal fuel in
the mid-merit part of the market. After the introduction of the CPS, coal eventually became
the most expensive fossil fuel (in April 2015, when the CPS increased from £9.55/tonne to
£18.08/tonne), causing a massive switch from coal-fired generation to gas. The share of coal
fell from 41% in 2013 to 6% in 2018. Great Britain (GB, the CPS does not apply in Northern
Ireland) therefore offers an excellent test-bed for the impact of a carbon tax (the CPS) on the
electricity market.

Chapter 2 quantifies the impact of the CPS on the carbon savings from wind. Wind
is hard to forecast with much accuracy day-ahead, when the time comes to decide which
types of generation to commit and run. As wind varies from moment to moment, the carbon
displaced will depend on the plant operating and its flexibility. We study this short-run impact
econometrically to find the main drivers of the short-run displacement achieved.

Policies are chosen for their long-run impact. Governments set targets for the future
share of renewable electricity and carbon budgets. These policies will affect the future fuel
mix, and hence the dispatchable plant available daily. We determine this long-run impact
with a unit commitment dispatch model of the 2015 GB system. We examine the effect of
increasing wind capacity by varying amounts up to 25%. Long run has the conventional
meaning that it is a period over which wind capacity can change, in contrast to the short run
in which wind capacity is fixed but its output may vary. We study the impact of the CPS in
2015. The first counterfactual has no CPS, but just the EUA price. The second looks at the
CPS in 2018 after the EU ETS was reformed, which raised the GB carbon price substantially
above its 2015 level.

We find that the CPS lowered the short-run Marginal Displacement Factor (MDF, the
CO2 emission reduced from the last unit of wind generation in MWh/tonne CO2) by 7% in
2015 but raised the long-run MDF (for a 25% increase in wind capacity) by 18%. We discuss
reasons for the modest differences in the short- and long-run MDFs.

Other countries and regions, such as The Netherlands and the island of Ireland, also show
interests in adopting a CPF, although the Dutch Parliament failed to pass the vote in 2019.
Therefore, using unit-commitment dispatch models of the Dutch and Irish electricity systems
to investigate the impact of a CPF on their electricity system would be interesting topics for
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future research. Future works could also be focus on which level of carbon price and fuel
mix are required to completely decarbonise the British power (or electricity) sector in 2050.

Chapter 3 develops a methodology for quantifying the impact of an asymmetric carbon
tax on electricity trade within a closed region such as the European Union (EU) and North
America. The EU’s Third Electricity Package came into force in 2014, requiring day-ahead
market coupling of interconnectors. Before market coupling, traders had to buy interconnector
volume and direction before knowing the market clearing price at each end, often resulting in
inefficient trades. Market coupling ensured that interconnector capacity would be cleared
at the same time as electricity markets, securing efficient trade. If market prices can be
equilibrated without violating interconnector capacity constraints, prices at each end will be
the same. Otherwise, trade will be set at full capacity and prices will diverge.

Being a unilateral carbon tax, the CPS can distort electricity trade with external markets.
Chapter 3 takes GB as a case study and quantifies the impact of the CPS on electricity prices,
interconnector flows, congestion income (from buying low and selling high), and social value
from trade. It also estimates the deadweight loss and carbon leakage in the electricity sector
created by the asymmetric carbon taxes. This has implications for the design and ideally
harmonisation of the EU carbon tax to improve the efficiency of electricity trade.

We estimated that Over 2015-2018, the CPS raised the GB day-ahead electricity price by
about e11/MWh, after allowing for replacement by cheaper imports. It raised the French
wholesale price by 3.5% and Dutch wholesale price by 2.8%. The CPS increased GB imports
by 12 TWh/yr, thereby reducing carbon tax revenue by e100 m/yr. Congestion income
increased by e150 m/yr, half transferred to foreign interconnector owners. The unilateral
CPS created e80 m/yr deadweight loss, about 32% of the initial social value created by the
interconnector, or 4% of the global emissions benefit of the CPS at e2 bn/yr. About 0.9% of
the CO2 emission reduction is undone by France and The Netherlands, the monetary loss of
which is about e18 m/yr.

Despite that the UK has officially departed from the EU, there are three more intercon-
nectors (between GB and the Continent) under construction. Under unilateral carbon taxes,
more interconnector capacity would further distort the cross-border electricity trading, and
eventually, the deadweight loss may exceed the social value of the newly built interconnec-
tors. With more interconnectors being commissioned, it would be interesting to estimate
the monetary value of the deadwight loss if the unilateral carbon taxes continue to exist.
Furthermore, leaving the EU offers the UK a great opportunity to fix the market distortion via
introducing a Carbon Emission Tax or a UK ETS (or a Border Tax Adjustment). The goal is
to minimise the deadweight loss from market distortion, and meanwhile, keep decarbonising
the energy sector.
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Minimising the cost of energy to consumers

A competitive electricity market ensures that consumers pay electricity bills that reflect the
actual cost of electricity generation, transmission, and distribution. Policymakers often rely
on cost Pass-Through Rates (PTRs) to measure market competition since these can measure
the degree to which a change in costs determines a change in prices. An increase in the
input cost raises the marginal cost of electricity generation, but generators may absorb part
of the increase by marking up their offer by a smaller or larger amount if the market is
imperfectly competitive, depending on the shape of the residual demand (i.e. total demand
minus renewables) curve. The PTR would then differ from 100%. However, given that
consumers are inelastic to wholesale electricity prices in the short-run, a PTR significantly
different from 100% would cast doubt on the assumption of competitiveness.

Chapter 4, therefore, investigates a wide range of costs pass-through. In particular, we
focus on fuel prices, carbon prices, and exchange rates PTRs. We investigate whether they
are consistent with the notion of a competitive British wholesale electricity market. Our
investigation is conducted both theoretically and empirically.

Political events and reforms in the United Kingdom (UK) and the European Union (EU)
could strongly influence the cost of energy to producers and hence to consumers. The
Brexit referendum and the recent EU ETS reform resulted in substantial changes in Sterling
exchange rates and carbon prices (respectively), providing an ideal test-bed for studying
PTRs.

We employ a sector-level dataset, and use econometrics to estimate long-run relationships
between the input cost of electricity generation and the GB wholesale electricity price during
2015-2018. In the theoretical part, we show that the long-run relationships cannot be directly
used as PTR. Instead, certain transformations are needed to deliver the estimates of PTRs.
For example, we show that the carbon price PTR is equal to the ratio between the impact of
carbon prices on electricity prices and the Marginal Emissions Factor (MEF) of the electricity
system. Another example is that the fuel price PTR is equal to the ratio between the impact
of fuel prices on electricity prices and the marginal share of the fuel. Note that most related
empirical literature uses thermal unit-level data to directly estimate the PTR, while we show
how to use a much cruder sector-level dataset to estimate the cost pass-through in a wholesale
electricity market.

We do not reject the hypothesis that gas prices, carbon prices, and exchange rates are
entirely passed through to British wholesale electricity prices. We find heterogeneous PTRs
for different times of the day and days of the week, consistent with the argument that this
occurs due to electricity generators exercising different bidding strategies over different
periods of the day. We extend this argument by discussing generators’ actual bidding strategy:
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the off-peak bids are mainly based on fuel costs, while the peak bids depend on both fuel and
carbon costs. Finally, assuming that the wholesale cost has been fully passed through to the
domestic electricity bill, we estimate that the depreciation of GBP associated with the Brexit
referendum and MSR have increased the average annual bills by £41/year/household, or a
7% rise.

The national-wide lock-down for COVID-19 has substantially reduced electricity demand,
providing another ideal test-bed for monitoring the cost pass-through and generators’ bidding
strategy. The market structure of electricity generation may also be changed during the
pandemic, as the daily load curve is much flatter than it used to be. Hence, peak loading
plants such are coal-fired power plants as no longer producing electricity, making CCGTs
the only fossil fuel that responds to changes in demand and wind supply.

Ensuring the security of supply

The EMR also aims to ensure the security of electricity supply. One possible solution
is demand response (DR), which helps balance supply and demand by introducing load
flexibility at the consumer level. DR usually provides consumers with financial incentives to
shift or reduce peak load to off-peak periods. As such, the direct impact of DR can be more
effective in the retail market as opposed to the spot market.

Electricity retailers buy electricity from the wholesale market and resell it to consumers.
While they can hedge wholesale prices, retailers are unable to hedge against demand risk and
uncertainty from the retail side using flat tariffs. Hence, neither they can hedge their exposure
to spot and balancing prices. As a result, dynamic tariffs such as time-of-use, critical peak
pricing, and real-time pricing are advocated as a means to align retail prices with spot market
prices, thereby transferring some of retailers’ risks to customers.

The first aim of Chapter 5 is to study the impact of dynamic tariffs on the retail electricity
market, in terms of retail profit, consumer bill, consumer demand, and market gains. We do
this by constructing an agent-based model to derive retail electricity prices that maximises
the retail profit and the corresponding demand. We assume that an electricity retailer supplies
electricity to some households who initially face a flat tariff. Then, the retailer offers
households a new dynamic tariff, with prices varying on a daily basis, while ensuring an
average household prefers the dynamic tariff over the flat tariff. Each day, the dynamic
tariff is announced one-day-ahead for the following day, and the retailer sets the dynamic
tariff to maximise its profit conditional on households’ decision on how much electricity
to consume. During the whole process, the retailer faces various market regulation rules,
such as restrictions on the maximum and minimum retail prices. Those regulation rules are
reflected as model constraints in the agent-based model.
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The second aim is to evaluate the impacts of market regulation, consumer elasticities,
and demand-side management stimuli on the retail market. We demonstrate these impacts
by changing the values of the corresponding input parameters in the agent-based model.
For example, market regulations aiming to establish a more competitive retail market is
reflected as the retailer’s maximum revenue being curtailed, and demand-side management
stimuli are reflected as a reduction in the consumer demand. Eventually, the solution of the
agent-based model would give us different retail prices and the associated consumer bill,
consumer demand, and market gains under different parameter values.

The model results suggest that in the baseline scenario, the dynamic tariff brings the
retailer an additional e7.35 of annual profit from an average household, or e40 million
for a firm as large as British Gas in 2017. With market regulations, the dynamic tariff will
benefit both consumers and retailers, resulting in a win-win situation. We also find that the
interaction between demand-side management stimuli and market regulation can further
reduce consumers’ electricity demand, increase retail profit, and lower consumer bills.

One direction to extend the agent-based model is to investigate the scenario where
households are allowed to choose over several different dynamic tariff schemes. In that case,
households demographic information such as income level and household size might play
crucial roles in predicting which tariff scheme a household will choose. On the other hand,
due to data availability, Chapter 5 fails to deliver estimates on households’ elasticities of
electricity demand. This is left for future work.
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Appendix A

Appendix for Chapter 2

A.1 The linear SR-MDF econometric model

In addition to Table 2.3, we also use the linear regressions to study the asymmetric partial
effects when wind rises against falls, when the demand on fossil generation increases against
declines, and weekdays against weekends. To do this, we run several regressions based on
the sign of ∆Wt and ∆Ct +∆Gt , and on the day of week. The results are shown in Figure A.1
and A.2. We find the results robust to these factors.

The non-linear regression results are shown in Table A.3.
We aggregate the half-hourly data to daily, and re-run the linear regression. Table A.4

shows the result, which are similar to those in Table 2.3. In this case, the marginal effects of
wind and demand on coal and gas sum to about 0.95, higher than the half-hourly case. The
reason is well explained in the main body of the paper (See discussion under Figure 2.6 and
to the start of Section 2.8). Although coal does respond more to wind and demand changes,
the trend of the estimated SR-MDF will not be affected. However, we argue that this is the
wrong counterfactual as attributing the fuel source for replenishing pumped storage to wind
is arguable at best, and pumped storage actions are primarily driven by system balancing
actions which would happen regardless of short-run wind variations.

A.2 Marginal Emission Factor

Table A.5 reports the Marginal Emission Factors (MEF) for each quarters from 2012-2017,
estimated from the non-linear regressions. Note that the standard errors are negligible (about
0.001 for all quarters), hence unreported.



150 Appendix for Chapter 2

Table A.1 Estimate asymmetric partial effects, Off-peak (23:00-07:00)

∆Ct ∆Gt
COAL-BASE GAS-BASE COAL-BASE GAS-BASE

When wind rises, ∆Wt > 0

∆Wt −0.57∗∗∗ −0.16∗∗∗ −0.39∗∗∗ −0.76∗∗∗

(0.04) (0.02) (0.04) (0.03)

∆Dt 0.42∗∗∗ 0.19∗∗∗ 0.56∗∗∗ 0.75∗∗∗

(0.01) (0.00) (0.01) (0.01)

When wind falls, ∆Wt ≤ 0

∆Wt −0.46∗∗∗ −0.17∗∗∗ −0.49∗∗∗ −0.73∗∗∗

(0.04) (0.02) (0.04) (0.03)

∆Dt 0.42∗∗∗ 0.21∗∗∗ 0.53∗∗∗ 0.73∗∗∗

(0.01) (0.00) (0.01) (0.01)

When fossil generation increases ∆Ct +∆Gt > 0

∆Wt −0.41∗∗∗ −0.16∗∗∗ −0.35∗∗∗ −0.55∗∗∗

(0.04) (0.02) (0.03) (0.02)

∆Dt 0.33∗∗∗ 0.21∗∗∗ 0.61∗∗∗ 0.69∗∗∗

(0.01) (0.00) (0.01) (0.01)

When fossil generation increases ∆Ct +∆Gt ≤ 0

∆Wt −0.43∗∗∗ −0.12∗∗∗ −0.49∗∗∗ −0.75∗∗∗

(0.02) (0.01) (0.02) (0.02)

∆Dt 0.40∗∗∗ 0.17∗∗∗ 0.48∗∗∗ 0.69∗∗∗

(0.01) (0.01) (0.01) (0.01)

Weekdays

∆Wt −0.54∗∗∗ −0.17∗∗∗ −0.43∗∗∗ −0.90∗∗∗

(0.03) (0.01) (0.02) (0.02)

∆Dt 0.44∗∗∗ 0.20∗∗∗ 0.40∗∗∗ 0.62∗∗∗

(0.01) (0.00) (0.01) (0.01)

Weekends

∆Wt −0.51∗∗∗ −0.13∗∗∗ −0.52∗∗∗ −0.77∗∗∗

(0.03) (0.02) (0.03) (0.02)

∆Dt 0.48∗∗∗ 0.17∗∗∗ 0.40∗∗∗ 0.72∗∗∗

(0.01) (0.01) (0.01) (0.01)
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Table A.2 Estimate asymmetric partial effects, Peak (07:00-23:00)

∆Ct ∆Gt
COAL-BASE GAS-BASE COAL-BASE GAS-BASE

When wind rises, ∆Wt > 0

∆Wt −0.15∗∗∗ −0.15∗∗∗ −0.67∗∗∗ −0.69∗∗∗

(0.02) (0.01) (0.03) (0.02)

∆Dt 0.14∗∗∗ 0.21∗∗∗ 0.63∗∗∗ 0.60∗∗∗

(0.00) (0.00) (0.00) (0.00)

When wind falls, ∆Wt ≤ 0

∆Wt −0.12∗∗∗ −0.14∗∗∗ −0.64∗∗∗ −0.61∗∗∗

(0.02) (0.02) (0.03) (0.02)

∆Dt 0.14∗∗∗ 0.21∗∗∗ 0.65∗∗∗ 0.62∗∗∗

(0.00) (0.00) (0.00) (0.00)

When fossil generation increases ∆Ct +∆Gt > 0

∆Wt −0.12∗∗∗ −0.12∗∗∗ −0.55∗∗∗ −0.55∗∗∗

(0.02) (0.01) (0.02) (0.01)

∆Dt 0.15∗∗∗ 0.16∗∗∗ 0.54∗∗∗ 0.54∗∗∗

(0.00) (0.00) (0.00) (0.00)

When fossil generation increases ∆Ct +∆Gt ≤ 0

∆Wt −0.14∗∗∗ −0.15∗∗∗ −0.58∗∗∗ −0.56∗∗∗

(0.02) (0.01) (0.02) (0.01)

∆Dt 0.10∗∗∗ 0.25∗∗∗ 0.69∗∗∗ 0.56∗∗∗

(0.00) (0.00) (0.01) (0.00)

Weekdays

∆Wt −0.01 −0.19∗∗∗ −0.81∗∗∗ −0.68∗∗∗

(0.01) (0.01) (0.02) (0.01)

∆Dt 0.29∗∗∗ 0.21∗∗∗ 0.48∗∗∗ 0.55∗∗∗

(0.00) (0.00) (0.00) (0.00)

Weekends

∆Wt −0.09∗∗∗ −0.15∗∗∗ −0.73∗∗∗ −0.70∗∗∗

(0.02) (0.01) (0.02) (0.02)

∆Dt 0.21∗∗∗ 0.19∗∗∗ 0.54∗∗∗ 0.57∗∗∗

(0.00) (0.00) (0.00) (0.00)
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Table A.3 Estimation results from non-linear regressions (iii) and (iv)

Off-peak (23:00-07:00) Peak (07:00-23:00)
∆Ct ∆Gt ∆Ct ∆Gt

(Intercept) −2.57 11.27 59.08∗∗∗ 38.57∗∗∗

(5.22) (5.76) (6.48) (8.72)

∆Wt −0.34∗∗∗ −0.54∗∗∗ −0.22∗∗∗ −0.59∗∗∗

(0.02) (0.03) (0.01) (0.02)

∆Dt 0.35∗∗∗ 0.58∗∗∗ 0.23∗∗∗ 0.60∗∗∗

(0.00) (0.00) (0.00) (0.00)

∆Wt ×PDt 2.39×10−2∗∗∗ −2.13×10−2∗∗∗ 0.05×10−2 −0.09×10−2

(0.27×10−2) (0.29×10−2) (0.16×10−2) (0.21×10−2)

∆Wt ×PD2
t 3.26×10−4 −10.47×10−4∗ 8.30×10−4∗∗∗ −6.47×10−4∗

(4.12×10−4) (4.55×10−4) (2.41×10−4) (3.24×10−4)

∆Wt ×PD3
t −2.91×10−5∗ 3.04×10−5∗ −0.36×10−5 0.74×10−5

(1.37×10−5) (1.51×10−5) (0.79×10−5) (1.07×10−5)

∆Wt ×PD4
t −0.82×10−6 3.62×10−6∗ −1.15×10−6 0.48×10−6

(1.48×10−6) (1.63×10−6) (0.86×10−6) (1.15×10−6)

∆Dt ×PDt −1.86×10−2∗∗∗ 1.38×10−2∗∗∗ 0.16×10−2∗∗∗ 0.10×10−2∗∗∗

(0.03×10−2) (0.04×10−2) (0.02×10−2) (0.03×10−2)

∆Dt ×PD2
t −6.65×10−4∗∗∗ 9.84×10−4∗∗∗ −4.80×10−4∗∗∗ 1.81×10−4∗∗∗

(0.50×10−4) (0.55×10−4) (0.30×10−4) (0.40×10−4)

∆Dt ×PD3
t 3.71×10−5∗∗∗ −2.50×10−5∗∗∗ −1.30×10−5∗∗∗ −0.21×10−5

(0.19×10−5) (0.21×10−5) (0.11×10−5) (0.15×10−5)

∆Dt ×PD4
t 0.90×10−6∗∗∗ −1.68×10−6∗∗∗ −0.03×10−6 0.30×10−6∗

(0.18×10−6) (0.20×10−6) (0.11×10−6) (0.14×10−6)

R2 0.64 0.84 0.48 0.84
Num. obs. 34503 34503 68902 68902
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

A.3 Replicating Thomson et al. [147]

We use the five-minute average generation by fuel data from the Elexon Portal1 for the year
2009-2016. The replication process can be summarized as follows:

1. Use the same fuel intensity values for coal (0.39988kg CO2/kWhth) and gas (0.22674kg
CO2/kWhth)2 as Thomson et al. [147], and the average thermal efficiency of 35.6%

1See Elexon Portal.
2NCV plus well-to-tank NCV.

https://www.elexonportal.co.uk/article/view/216?cachebust=72iua05a54
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Table A.4 Estimation results from linear regressions (i) and (ii), using daily data

(a) Off-peak period (23:00-07:00)

∆Ct ∆Gt
COAL-BASE GAS-BASE COAL-BASE GAS-BASE

(Intercept) −6.69 37.54 66.56 31.06
(54.43) (52.42) (52.95) (57.94)

∆Wt −0.61∗∗∗ −0.10∗∗∗ −0.29∗∗∗ −0.76∗∗∗

(0.02) (0.02) (0.02) (0.02)

∆Dt 0.69∗∗∗ 0.26∗∗∗ 0.35∗∗∗ 0.75∗∗∗

(0.03) (0.03) (0.03) (0.03)

Time Dummies YES YES YES YES

R2 0.79 0.33 0.47 0.86
Obs. 1105 1080 1105 1080

(b) Peak period (07:00-23:00)

∆Ct ∆Gt
COAL-BASE GAS-BASE COAL-BASE GAS-BASE

(Intercept) 54.93 −125.91∗ −25.45 107.99
(77.94) (62.13) (80.54) (65.42)

∆Wt −0.20∗∗∗ −0.19∗∗∗ −0.73∗∗∗ −0.77∗∗∗

(0.02) (0.02) (0.03) (0.02)

∆Dt 0.30∗∗∗ 0.25∗∗∗ 0.70∗∗∗ 0.73∗∗∗

(0.02) (0.02) (0.02) (0.02)

Time Dummies YES YES YES YES

R2 0.64 0.62 0.87 0.93
Obs. 1099 1072 1099 1072
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

and 54.5% respectively for coal and gas plants, to calculate the emission factors for
coal (1.111kg CO2/kWh) and gas (0.412kg CO2/kWh).3

2. We use the same emission factors for other generation types as Thomson et al. [147],
and extend their Table 2 to 2016. However, although the emission factors for overseas
electricity can be found at the IEA website,4 it is not publicly available, hence we use
the overseas emission factors for 2014 to proxy the overseas emission factors for 2015
and 2016.

3Thomson et al. [147] argue that the thermal efficiency of a generating unit should be varying with the
relative load (i.e. actual load relative to its full capacity), while we are unable to obtain the data for generating
units, hence used the average efficiency.

4See IEA website.

http://data.iea.org//payment/products/115-co2-emissions-from-fuel-combustion-2018-edition-coming-soon.aspx
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Table A.5 Marginal Emission Factors

year season Peak MEF Off-peak MEF Average MEF
2012 Q1 -0.381 -0.551 -0.438
2012 Q2 -0.370 -0.565 -0.435
2012 Q3 -0.369 -0.565 -0.434
2012 Q4 -0.344 -0.561 -0.416
2013 Q1 -0.331 -0.518 -0.393
2013 Q2 -0.354 -0.570 -0.426
2013 Q3 -0.348 -0.566 -0.421
2013 Q4 -0.337 -0.550 -0.408
2014 Q1 -0.346 -0.558 -0.417
2014 Q2 -0.393 -0.524 -0.436
2014 Q3 -0.396 -0.503 -0.431
2014 Q4 -0.371 -0.565 -0.436
2015 Q1 -0.382 -0.551 -0.438
2015 Q2 -0.401 -0.480 -0.427
2015 Q3 -0.401 -0.467 -0.423
2015 Q4 -0.397 -0.441 -0.411
2016 Q1 -0.392 -0.421 -0.402
2016 Q2 -0.392 -0.423 -0.402
2016 Q3 -0.357 -0.384 -0.366
2016 Q4 -0.337 -0.369 -0.348
2017 Q1 -0.350 -0.381 -0.360
2017 Q2 -0.345 -0.371 -0.354
2017 Q3 -0.307 -0.365 -0.327
2017 Q4 -0.326 -0.370 -0.341

3. Now that we have the emission factors for all fuel types, we can calculate CO2

emissions for each five-minute interval. As in Thomson et al. [147], we set negative
imports to zero. However, for reasons given in Section 2.6, we ignore pumped storage.

4. The five-minute changes in wind output (∆Pw), total system supply (∆Ps) and total
system emissions (∆C) are calculated as the difference between successive values.

5. After removing outliers, we run the following regression for each year:

∆C = k0 + k1∆Ps + k2∆Pw +h′Xth′Xth′Xt + ε,

where k1 is the marginal emission factor (MEF) and k2 is the marginal displacement
factor (MDF).

The results are shown in Table A.6 and Figure 2.9. The numbers following “±” are standard
errors multiplied by 1.96.



A.4 Figure Appendix 155

Table A.6 Comparisons of annual MDFs, tCO2(eq)/MWh

MDF (wind)
Year Our Estimates Replicated Results Thomson et al.
2009 0.650±0.039 0.597±0.065
2010 0.628±0.023 0.611±0.049
2011 0.562±0.022 0.553±0.032
2012 0.436±0.031 0.564±0.018 0.547±0.025
2013 0.426±0.063 0.480±0.012 0.487±0.017
2014 0.430±0.046 0.455±0.010 0.483±0.014
2015 0.413±0.030 0.438±0.009
2016 0.362±0.031 0.382±0.008
2017 0.334±0.029

Fig. A.1 Displacement Factors v.s. Residual Demand, £37/tCO2

A.4 Figure Appendix

Figure A.1 graphs a rolling average (over 672 non-consecutive hours ranked by residual
demand) of the displacement of coal output (−∆C/∆W ), gas output (−∆G/∆W ), pumped
storage output (−∆PS/∆W ), and the implied carbon saving, the LR-MDF (−∆CO2/∆W ,
tCO2/MWh) as a function of residual demand (here the summation of coal, gas and pumped
storage) for the 2015 constant fuel prices and the carbon cost seen towards the end of 2018
(£37/tCO2). It also shows the deviation of the average wind over these hours compared to
the annual average.
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Appendix for Chapter 3

B.1 Cost Pass-through in a Competitive Market: Calcula-
tion

Equation (3.3) shows the increase in the system SRMC is a function of the MEF with the
CPS applying (µH

1 ), the difference of the SRMCs between coal and gas (cC − cG), and the
change in the coal share at margin (∆α = α1 −α0).

Using the data and results from Chapter 2, during electricity years 2015-2018 the MEFs
(µ̂1) for peak and off-peak are 0.363 and 0.405, respectively.1 The change in the marginal
share of coal (∆̂α) during the period is -0.008 and -0.236 for peak and off-peak, respectively.2

Finally, (cC − cG) is estimated to be -e0.323/MWh.3 Given this, the increase in the system
SRMC is e0.366/MWh for peak and e0.481/MWh for off-peak.

The impact of the CPS on the GB electricity price when there is no cross-border trade
from Appendix B.4.1 is estimated to be ∆̂pH = e0.635/MWh (s.e.=0.049) for peak periods
and ∆̂pH = e0.346/MWh (s.e.=0.060) for off-peak periods.

Based on this, assuming the estimates from Chapter 2 have zero standard errors4 and
are independent with this chapter, the CPS pass-through rate to GB’s peak prices is 173%

1Chapter 2’s period of estimation is 2012-2017 in the Appendix, here we assume the MEF for GB in Q1
2018 is the same as that in Q1 2017. These estimated MEFs use rather low emission factors as they ignore
any upstream emissions (from mine/well-head to power station). Using MEFs from other studies may give
somewhat different results.

2In Chapter 2, we demonstrate that the marginal share of coal/gas is a function of price differences between
the SRMC of coal and gas. The price differences is -e0.32/MWh without the CPS, and e11.55/MWh with
CPS. Given this, α0 = 0.356 for off-peak and 0.229 for peak; α1 = 0.120 for off-peak and 0.221 for peak.

3Precisely, using the notation in Table 3.1, SRMC j =VC j + e j ·EUA, j ∈ {sccoal,scccgt}, where e j is the
emission factor which takes the value of 0.871 for coal and 0.337 for gas, consistent with Chapter 2.

4Estimates in Chapter 2 have much smaller standard errors, we assume that parameters whose values are
taken from them have zero standard error.
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with a 95% confidence interval of 147-200%, and to GB’s off-peak prices is 72% with a
95% confidence interval of 47-96%. The weighted average is 133% with a 95% confidence
interval of 108-159%.

B.2 Data Appendix

Here we list exactly where the data comes from. GB day-ahead price from Nord Pool at
https://www.nordpoolgroup.com/historical-market-data/. French day-ahead price from Epex
Spot using Bloomberg. IFA day-ahead capacity from Entso-e at https://transparency.entsoe.
eu/. GB load and wind from National Grid ESO at https://demandforecast.nationalgrid.
com/efs_demand_forecast/faces/DataExplorer. GB nuclear from Elexon Portal at https:
//www.elexonportal.co.uk/news/latest. French load, wind and nuclear from RTE at https:
//www.services-rte.com/en/download-data-published-by-rte.html. NBP gas price, EUA price,
and CME coal price are all downloaded from Bloomberg.

B.2.1 M-GARCH Rest of Table 3.2 for IFA

Table B.1 shows the M-GARCH results for other covariates and the ARCH and GARCH
terms, as a continuation of Table 3.2.

B.3 Model Extension

Figure B.1 presents Case (b). Similar to Cases (a), the deadweight loss is the trapezium ACDF

and L = 1/2 · (θ H +θ F) ·∆m2+∆m · (pF
0 − pH

0 ). The social value is the trapezium ABEF and
S = 1/2 · (θ H +θ F) ·m2

0 +m0 · (pH
0 − pF

0 ).
The change in congestion income is also ∆R = (pF

1 − pH
1 ) ·m1 − (pF

0 − pH
0 ) ·m0, where

in this case, m1 =−m0 = K.
Figure B.2 presents Case (c), without the CPS, H’s net supply curve meets F’s net supply

curve at point A, with prices equalised (pH
0 = pF

0 ), no congestion income, and imports at m0.
The social value is the triangle AEF, or S = 1/2 · (θ H +θ F) ·m2

0 and the deadweight loss is
the triangle ABD, or L = 1/2 · (θ H +θ F) ·∆m2. As the interconnector flow is unconstrained
with and without the CPS, there is no congestion income before or after and hence no change
in congestion revenue. In this case, equations (3.4)-(3.6) still apply, given pH

j = pF
j .

Figure B.3 presents Case (d), where exactly the same argument as Case (c) can be made.
The triangle ABD measures deadweight losses L and the triangle AEF measures social value

https://www.nordpoolgroup.com/historical-market-data/
https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
https://demandforecast.nationalgrid.com/efs_demand_forecast/faces/DataExplorer
https://demandforecast.nationalgrid.com/efs_demand_forecast/faces/DataExplorer
https://www.elexonportal.co.uk/news/latest
https://www.elexonportal.co.uk/news/latest
https://www.services-rte.com/en/download-data-published-by-rte.html
https://www.services-rte.com/en/download-data-published-by-rte.html
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Table B.1 M-GARCH Results (Cont’d)

Mean Equations
Unit (i) (ii) (iii)

Great Britain Off Peak Off Peak
(Constant) −6.249∗∗∗ −16.38∗∗∗ −5.064∗∗∗ −10.91∗∗∗ −4.147∗

(1.639) (1.932) (1.129) (2.100) (1.953)
GB load GW 0.470∗∗∗ 0.857∗∗∗ 0.404∗∗∗ 0.822∗∗∗ 0.488∗∗∗

(0.044) (0.078) (0.032) (0.071) (0.038)
French load GW 0.061∗∗∗ −0.086∗∗ 0.108∗∗∗ −0.053∗ 0.082∗∗∗

(0.019) (0.026) (0.015) (0.024) (0.019)
GB Nuclear GW −0.884∗∗∗ −0.432∗∗∗ −0.502∗∗∗ −0.452∗∗∗ −0.789∗∗∗

(0.085) (0.117) (0.074) (0.108) (0.116)
French Nuclear GW −0.063∗∗ −0.060∗ −0.108∗∗∗ −0.101∗∗∗ −0.062∗

(0.022) (0.028) (0.018) (0.028) (0.024)
France
(Constant) −29.45∗∗∗ −23.10∗∗∗ −33.21∗∗∗ −22.84∗∗∗ −32.55∗∗∗

(3.047) (2.699) (2.853) (2.748) (2.980)
GB load GW 0.156 0.000 0.303∗∗∗ −0.012 0.304∗∗∗

(0.114) (0.111) (0.067) (0.111) (0.067)
French load GW 1.022∗∗∗ 0.850∗∗∗ 0.895∗∗∗ 0.854∗∗∗ 0.891∗∗∗

(0.036) (0.036) (0.034) (0.036) (0.034)
GB Nuclear GW 1.023∗∗∗ 1.227∗∗∗ 1.146∗∗∗ 1.236∗∗∗ 1.096∗∗∗

(0.168) (0.167) (0.181) (0.172) (0.190)
French Nuclear GW −0.908∗∗∗ −0.462∗∗∗ −0.574∗∗∗ −0.473∗∗∗ −0.578∗∗∗

(0.046) (0.045) (0.047) (0.046) (0.048)

Conditional Variance Equations
Great Britain
(Constant) 0.400∗∗∗ 2.242∗∗∗ 3.328∗∗∗ 2.227∗∗∗ 1.831∗∗∗

(0.080) (0.265) (0.239) (0.265) (0.284)
ARCH 0.308∗∗∗ 0.609∗∗∗ 1.746∗∗∗ 0.665∗∗∗ 1.132∗∗∗

(0.031) (0.065) (0.110) (0.069) (0.099)
GARCH 0.710∗∗∗ 0.321∗∗∗ −0.001 0.282∗∗∗ 0.266∗∗∗

(0.020) (0.043) (0.002) (0.043) (0.040)
France
(Constant) 6.331∗∗∗ 7.019∗∗∗ 5.204∗∗∗ 7.166∗∗∗ 5.428∗∗∗

(1.001) (0.912) (0.978) (0.919) (1.039)
ARCH 0.630∗∗∗ 0.421∗∗∗ 0.303∗∗∗ 0.420∗∗∗ 0.306∗∗∗

(0.070) (0.043) (0.036) (0.042) (0.037)
GARCH 0.244∗∗∗ 0.298∗∗∗ 0.544∗∗∗ 0.291∗∗∗ 0.534∗∗∗

(0.061) (0.060) (0.055) (0.060) (0.057)
Standard errors in parentheses. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Fig. B.1 Impact of CPS on imports and deadweight losses, Case (b)

Fig. B.2 Impact of CPS on imports and deadweight losses, Case (c)

S. There is an increase in congestion income ∆R = (pH
1 − pF

1 ) ·m1, as shown in Figure B.3
as the rectangle DGHI. Again, equations (3.4)-(3.6) still apply in this case given pH

0 = pF
0 .

In Case (e), there is no change in trade or output and hence no distortion, but as H’s
prices increase, so does the price difference pH

1 − pF
1 , with consequential changes in the

congestion income ∆R = m0 · (pH
1 − pH

0 ). As a result, there will be a transfer of revenue from
H’s consumers to the foreign owners of the interconnectors, who, such as the French system
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Fig. B.3 Impact of CPS on imports and deadweight losses, Case (d)

operator, shares 50% of the interconnector revenue. Similar to Cases (a) and (b), the social
from trading is also S = 1/2 · (θ H +θ F) ·m2

0 +m0 · (pH
0 − pF

0 ). Finally, given ∆m = 0 and
pF

0 = pF
1 , equations (3.4)-(3.6) still apply.

B.4 Empirical Results Extension

B.4.1 Estimating counterfactual flows

As before, superscripts H and F represent the Home and Foreign countries, and subscripts
1 and 0 are with and without the CPS. Variables with “∼” above are scenarios with no
interconnector trading, and with “−” above represents the average over the whole period.
Subscripts representing hours are removed to simplify. We implement the following steps to
estimate the counterfactual flows:5

1. For each hour, given the actual flows6 (m1 > 0 for importing and < 0 for exporting)
and prices (pH

1 and pF
1 ), and the marginal effects of wind on prices (θ H

1 , θ H
0 and θ F ,

different before and after April 2015 for H),7 we can calculate the prices when there is

5The most ideal way is to include both IFA and BritNed, but it complicates the matters with negligible
gain in terms of making the post-econometric results more robust. Therefore, we analyse IFA and BritNed
separately.

6The day-ahead scheduled IFA flow is collected from RTE.
7From Table 3.2, for off-peak periods, θ̂ H

1 = 0.289, θ̂ H
0 = 1.162 and θ̂ F = 1.898; for peak periods, θ̂ H

1 =

1.047, θ̂ H
0 = 0.826 and θ̂ F = 1.485.
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no trade ( p̃H
1 and p̃F

1 ) as

p̃H
1 =

pH
1 +m1 ·θ H

0 , before April 2015

pH
1 +m1 ·θ H

1 , after April 2015

p̃F
1 = pF

1 −m1θ
F .

2. Assuming that without trading, e1/tCO2 of the British CPS would raise h’s price by
∆pH ,8 then the prices without the CPS (τ) and trading, denoted as p̃H

0 and p̃F
0 , are

p̃H
0 = p̃H

1 −∆pH · τ,
p̃F

0 = p̃F
1 .

3. Calculate the interconnector flow where the CPS is not applied (m0) under the inter-
connector capacity constraint (−K < m0 < K), taking the Mid Channel loss factor of
the interconnector (l) into consideration.9 Precisely,10

m0 =



K, p̃H
0 · (1− l)> p̃F

0 · (1+ l) and K ≤ p̃H
0 −

1+l
1−l ·p̃

F
0

1+l
1−l ·θ F+θ H

0
,

p̃H
0 −

1+l
1−l ·p̃

F
0

1+l
1−l ·θ F+θ H

0
, p̃H

0 · (1− l)> p̃F
0 · (1+ l) and K >

p̃H
0 −

1+l
1−l ·p̃

F
0

1+l
1−l ·θ F+θ H

0
,

p̃F
0 −

1+l
1−l ·p̃

H
0

1+l
1−l ·θ

H
0 +θ F , p̃H

0 · (1− l)< p̃F
0 · (1+ l) and −K <

p̃F
0 −

1+l
1−l ·p̃

H
0

1+l
1−l ·θ

H
0 +θ F ,

−K, p̃H
0 · (1− l)< p̃F

0 · (1+ l) and −K ≥ p̃F
0 −

1+l
1−l ·p̃

H
0

1+l
1−l ·θ

H
0 +θ F ,

0, otherwise.
8Here we assume that the CPS has no direct impact on the French price other than through trading via IFA,

which survives statistical tests as discussed in footnote 25 of Chapter 3.
9For IFA, the loss factor is l = 1.17%.

10Suppose there is no capacity limit and p̃H
0 > p̃F

0 , then equalising the prices would require

(p̃H
0 −m0 ·θ H

0 ) · (1− l) = (p̃F
0 +m0 ·θ F

0 ) · (1+ l),

or

m0 =
p̃H

0 − 1+l
1−l · p̃F

0
1+l
1−l ·θ F +θ H

0
.

The derivation is similarly for p̃H
0 < p̃F

0 .
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4. Derive the counterfactual prices under the counterfactual flows:

pH
0 = p̃H

0 −m0 ·θ H
0 .

pF
0 = p̃F

0 +m0 ·θ F .

5. Given the actual and counterfactual prices for H and F , we can calculate the average
actual and counterfactual prices during the period of study (i.e. p̄H

1 , p̄H
0 for H, and p̄H

1 ,
p̄H

0 for F). Then, given the average CPS during the period (τ̄), the effect of the CPS on
H’s price, counting in the effect of interconnector trading, is (p̄H

1 − p̄H
0 )/τ̄ .

6. From Steps 1-5, the only unknown parameters is ∆pH in Step 2. Table 3.2 gives
estimates of the marginal effects of the CPS on H’s (GB’s) prices ( ̂∂ pH/∂τ). We
iteratively adjust the value of ∆pH in Step 2 and repeat Steps 2-5, until (p̄H

1 − p̄H
0 )/τ̄

in Step 5 is equal to ̂∂ pH/∂τ from Table 3.2 Regression (iii).

7. Once (p̄H
1 − p̄H

0 )/τ̄ and ̂∂ pH/∂τ equate, the associated flows and prices are the coun-
terfactual prices and flows.

Because the undiluted (by trade) effect of the CPS on the GB price (∆pH in Step 2) is
positively correlated with the diluted effect ((p̄H

1 − p̄H
0 )/τ̄ in Step 6, there is a unique ∆pH

that equalises ̂∂ pH/∂τ and (p̄H
1 − p̄H

0 )/τ̄ in Step 6.
In these calculations, m1, pH

1 , pF
1 , τ , K, and l are observed, while θ H

1 , θ H
0 , θ F and

∂ pH/∂τ are estimated separately for peak and off-peak periods.
Using point estimates of θ H

1 , θ H
0 , θ F and ∂ pH/∂τ only gives point estimates of the

counterfactuals. To circumvent this problem, we assume that the actual values of θ H
1 , θ H

0 , θ F

and ∂ pH/∂τ follow a jointly normal distribution, with mean and variance-covariances equal
to the estimated values from Regression (iii). We then apply a Monte Carlo technique to take
500 random draws from the jointly normal distribution, and for each draw, we follow Steps
1-7 to obtain the counterfactual electricity prices and flows and hence the annual average
electricity prices, net imports and congestion income. The resulting means and the standard
deviations of the counterfactuals are reported in Table 3.3.

B.4.2 Estimating market distortion

In this subsection, we use the same 500 combinations of counterfactuals to estimate the social
value of trading and deadweight losses from asymmetric carbon taxes discussed in Section
3.3.2. In addition, as the CPS does not apply to the increased GB imports, we estimate
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the loss in the GB government’s carbon-tax revenue from the reduction in GB generation
displaced,.

From Section 3.6.1 and Appendix B.4.1, given θ̂ H
0 and θ̂ F , and the estimated m0, ∆m, pF

0

and pH
0 , the social value is 1/2 · (θ̂ H

0 + θ̂ F) ·m2
0 +m0 · (pH

0 − pF
0 ), and the deadweight loss

is 1/2 · (θ̂ H
1 + θ̂ F

1 ) ·∆m2 +∆m · (pF
0 − pH

0 ). Finally, the carbon-tax revenue loss is defined as
the product between the change in trading volumes (∆m) and GB’s marginal emission factors
(MEFs), µH

1 , estimated yearly in Chapter 2.

B.4.3 Estimating the Marginal Emission Factors for France

France is apparently well-connected to Germany, Belgium and The Netherlands and these
have higher carbon intensities, as Figure B.4 shows.

Fig. B.4 Carbon intensity of electricity, 1990-2016

Source: European Environment Agency: CO2-emission intensity from electricity generation.

Table B.2 shows the shares of fossil fuels in 2017 in France and its interconnected
neighbours. In all these countries gas is the dominant fossil fuel, but coal was more expensive
(including the EUA price) than gas in 2017-2018. While gas is more flexible than coal, coal
might have been price-setting at least part of the time.

To investigate this further Table B.3 estimates the share of fossil fuel responses to
increased fossil demand. For the cases of Belgium, all responses at the margin come from
changes in CCGT output. In the case of Germany, Spain, and France, where there are several
fossil fuels simultaneously generating, response is measured by looking at the change of each
fuel from the previous hour compared to the change in all fossil output over that hour, adjusted
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to add to 100%. For Germany and Spain, most of the response is from lignite and coal, with
a higher MEF, giving the average as 0.68 tCO2/MWh and 0.48 tCO2/MWh, respectively. Our
estimated German MEF is not very different from the modelled for Germany for 2020 of
0.63 tCO2/MWh from Böing and Regett [17]. (Northern) Italy has gas and “other” as fossil
fuels. While we have no further information on what “other” represents, we assume it is
some combinations of lignite, coal, gas and biomass, whose emission factor is half of coal
and lignite. The MEF for Italy is taken at 0.38 tCO2/MWh. Switzerland has no fossil fuels,
but it is densely connected to Germany and (Northern) Italy, hence we assume its MEF is
the average of those in Germany and Italy, or 0.53 tCO2/MWh. As Belgium is 100% gas, its
MEF is taken at 0.34 tCO2/MWh. Finally, when the French interconnectors are all congested,
the MEF is taken at 0.46 tCO2/MWh.

Table B.2 Share of different fuels in generation, 2017

Country Lignite Coal Oil Gas Other
Germany 22% 11% 0% 5%
Spain 2% 15% 1% 23%
Italy 27% 42%
Belgium 0% 0 0% 27%
France 2% 0% 8%

Table B.3 Contribution of fossil fuels to flexibility, 2017

Fossil Fuels
Country Lignite Coal Oil Gas Other MEF (fossil only)
Germany 29% 45% 1% 25% 0.68
Spain 5% 31% 1% 63% 0.48
Italy 51% 49% 0.53
Switzerland 0.53
Belgium 100% 0.34
France 23% 10% 67% 0.46

Table B.4 Percent time links constrained when IFA unconstrained and MEF for France

Interconnectors
FR-BE FR-DE FR-ES FR-IT FR-CH MEF

15-16 67% 83% 53% 56% 64% 0.463
16-17 59% 73% 69% 66% 64% 0.456
17-18 60% 74% 69% 66% 65% 0.461
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The next step is to determine the MEF when IFA is uncongested, and that will depend on
whether is trading freely with Continental neighbours. If France’s borders are all uncongested
in any hour then it is assumed that the MEF is the average of the MEFs of the uncongested
neighbours plus France, weighted by their shares in their total fossil generation, otherwise
it is the weighted average of the remaining uncongested links with France. If France is
isolated then it is just the French MEF. The results are shown in table B.4, assuming the same
responsive fossil shares in each year.

B.4.4 Estimating the impact of the CPS on BritNed

Due to data availability, our analysis on BritNed runs from January 2015 to September
2018. Electricity load, wind and nuclear generation for The Netherlands and the net transfer
capacity of BritNed are collected from the ENTSO-E Transparency Platform. Unfortunately,
there is no reliable data source providing BritNed’s day-ahead scheduled flow. We simulate
the hourly BritNed day-ahead flow using the following algorithm:

• if both the unadjusted price differential (UPD) and adjusted price differential (APD)11

are greater (or smaller) than zero, the interconnector capacity (K) will be fully used for
importing (or exporting);

• if the APD is zero and the UPD is positive, then the day-ahead commercial exchange
would be randomly (uniformly) allocated within the interval between zero and K;

• if the APD is zero and the UPD is negative, day-ahead flows would be randomly
(uniformly) allocated as a negative number between −K and zero;

• if the APD and UPD have different signs, we assume the direction of flows follows that
in the previous hour, and the volume of the flow is randomly taken from the uniform
distribution between zero and K.

Due to consistency and data quality concerns, the impact of GB’s import/wind and the
CPS on the GB prices are taken from Regression (iii) in Table 3.2, and the impact of the
Dutch wind on its prices are taken from our new estimates for BritNed. Because of this, we
will not include interaction terms between variables and follow Regression (ii)’s specification
(but excluding the dummy variable for the French nuclear outages)12 to study the impact of
the Dutch wind on its wholesale prices. The estimation results are reported in Table B.5 as
Regression (iv), showing that during off-peak (peak) periods, a 1 GW increase in the Dutch
wind generation (or Dutch exports) is associated with a e2.4 (1.8)/MWh reduction in its

11Adjusted by the BritNed loss factor of 3%, see BritNed.
12The dummy variable is not statistically significant even if we include it in the regressions.

https://www.britned.com/about-us/operations/
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Table B.5 M-GARCH Results, BritNed

Mean Equations
Great Britain The Netherlands

Unit Off Peak Off Peak
(Constant) −7.226∗∗ −5.675∗ −3.926 −16.54∗∗∗

(2.302) (2.332) (2.631) (3.181)
GB load GW 0.501∗∗∗ 0.594∗∗∗ 0.153∗∗ 0.464∗∗∗

(0.050) (0.033) (0.055) (0.044)
Dutch load GW −0.111∗ 0.114∗ 0.248∗∗∗ −0.152∗

(0.052) (0.055) (0.052) (0.074)
GB Nuclear GW −0.681∗∗∗ −0.671∗∗∗ −0.027 0.239

(0.144) (0.152) (0.134) (0.194)
Dutch Nuclear GW −0.718 −2.907∗∗∗ −1.703∗∗∗ −5.061∗∗∗

(0.533) (0.549) (0.497) (0.691)
GB wind GW −0.432∗∗∗ −0.916∗∗∗ −0.051 −0.065

(0.060) (0.050) (0.063) (0.072)
Dutch wind GW −0.060 0.138 −2.377∗∗∗ −1.814∗∗∗

(0.151) (0.128) (0.157) (0.182)
BritNed capacity GW −0.862 −3.709∗∗∗ 0.087 0.991

(0.804) (0.654) (0.893) (0.810)
Coal price e/MWhe 0.326∗∗∗ 0.349∗∗∗ 0.466∗∗∗ 0.449∗∗∗

(0.024) (0.028) (0.025) (0.034)
Gas price e/MWhe 0.804∗∗∗ 0.823∗∗∗ 0.499∗∗∗ 0.866∗∗∗

(0.019) (0.023) (0.023) (0.033)
EUA e/tCO2 0.469∗∗∗ 0.459∗∗∗ 0.768∗∗∗ 0.551∗∗∗

(0.032) (0.036) (0.036) (0.058)
CPS e/tCO2 0.412∗∗∗ 0.558∗∗∗ −0.198∗∗∗ 0.021

(0.035) (0.034) (0.042) (0.046)

Conditional Variance Equations
Great Britain The Netherlands

Off Peak Off Peak
(Constant) 2.836∗∗∗ 0.731∗∗∗ 1.816∗∗∗ 1.087∗∗∗

(0.407) (0.139) (0.394) (0.245)
ARCH 0.661∗∗∗ 0.348∗∗∗ 0.395∗∗∗ 0.251∗∗∗

(0.088) (0.049) (0.063) (0.030)
GARCH 0.278∗∗∗ 0.699∗∗∗ 0.495∗∗∗ 0.742∗∗∗

(0.055) (0.028) (0.071) (0.025)
Standard errors in parentheses. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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off-peak(peak) wholesale prices. The magnitudes are higher than those in GB and France
mainly because the electricity demand in The Netherlands is much lower.

Table B.6 Statistical Measurements for BrtiNed: prices, flows, and congestion revenue

Electricity GB Prices (e/MWh) Dutch Prices (e/MWh)
years w. CPS w/o CPS ∆ w. CPS w/o CPS ∆

15-16 e53.24 e40.52 e12.72 e36.25 e35.24 e1.01
(0.93) (0.93) (0.14) (0.14)

16-17 e51.76 e40.70 e11.07 e35.98 e35.01 e0.97
(0.81) (0.81) (0.14) (0.14)

17-18 e52.70 e42.24 e10.46 e39.87 e38.80 e1.07
(0.77) (0.77) (0.13) (0.13)

Ave.(15-18) e52.57 e41.15 e11.42 e37.37 e36.35 e1.02
(0.84) (0.84) (0.13) (0.13)

GB Net Import (TWh) Congestion Income (me)
w. CPS w/o CPS ∆ w. CPS w/o CPS ∆

15-16 8.21 TWh 3.49 TWh 4.72 TWh e134 e60 e74
(0.58) (0.58) (3.31) (3.31)

16-17 7.28 TWh 2.71 TWh 4.57 TWh e121 e68 e53
(0.56) (0.56) (2.34) (2.34)

17-18 7.14 TWh 2.11 TWh 5.03 TWh e97 e51 e46
(0.50) (0.50) (1.94) (1.94)

Ave.(15-18) 7.54 TWh 2.77 TWh 4.77 TWh e117 e59 e58
(0.54) (0.54) (2.51) (2.51)

Standard errors in parentheses.

Note that Table B.5 can be used as a robustness check for our IFA study in Table 3.2.
Both studies show some similar magnitudes for the slope coefficients of GB wind, coal and
gas prices, as well as EU and British carbon price impacts on GB prices. Perhaps surprisingly,
we find the CPS has a negative impact on off-peak Dutch prices. The could be that the data
only allow us to have few observations with a CPS of £9.55/tCO2. Estimates of the effects of
the CPS on the wholesale prices are vulnerable to unexpected shocks — for example, the
winter of 2016 was one of the warmest in Dutch history, resulting in less domestic heating
load and lower electricity prices. Fortunately, this would not affect our post-econometric
analysis as we assume that without interconnector trading, the impacts of the CPS on the
foreign wholesale prices are zero.

Using the result from Tables 3.2 and B.5, and applying the same steps as Section B.4.1,
Table B.6 reports the counterfactuals of the GB and Dutch wholesale prices, as well as the
net import and congestion income of BritNed. Our results for BritNed are cosistent with our
IFA analysis in Section 3.6.1-3.6.3. During electricity years 2015-2018, the CPS on average
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raised Dutch wholesale prices by e1.02/MWh, or about 2.8%. About 63% (4.77 TWh) of
GB’s net import from The Netherlands is due to the CPS, and the associated congestion
income almost doubled from e59 m/yr to e117 m/yr.

Table B.7 BritNed: surplus, distortion and losses

Electricity Social Deadweight GB CPS Rev.
years Value (me) Loss (me) Loss (me)
15-16 e78 e40.6 e47.2

(3.69) (5.17) (5.76)
16-17 e85 e37.1 e35.4

(2.70) (4.41) (4.44)
17-18 e68 e39.6 e34.8

(2.15) (4.60) (3.51)
Ave. 15-18 e77 e39.1 e39.2

(2.83) (4.73) (4.55)
Standard errors in parentheses.

The effects of the CPS on the Dutch price, GB’s net import and congestion revenue from
BritNed are more than half of those from our IFA estimates. Although BritNed is half the
size of IFA, the slope of the Dutch supply curve (measured by the impact of wind on the
Dutch price) is steeper than GB and France because of its smaller electricity load. Table B.7
further shows that during electricity years 2015-2018, the social value of BritNed is e77
m/yr and the deadweight loss is e39.1 m/yr, about half of the social value of IFA’s social
value and about the same size of the IFA loss. The UK Government has lost about e39.2
million worth of tax revenue, or about 4% of its total CPF receipts in 2017.
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Appendix for Chapter 4

C.1 Estimating the Marginal Emission Factor of GB

To estimate the marginal fuel of the GB electricity supply, we replicate Chapter 2 and run the
following regressions:

∆Coalt = α0 +α1∆Windt +α2∆Demandt +θ
′
CoalXtθ
′
CoalXtθ
′
CoalXt + ε

Coal
t , (C.1)

∆CCGTt = β0 +β1∆Windt +β2∆Demandt +θ
′
CCGT Xtθ
′
CCGT Xtθ
′
CCGT Xt + ε

CCGT
t , (C.2)

∆PSt = γ0 + γ1∆Windt + γ2∆Demandt +θ
′
PSXtθ
′
PSXtθ
′
PSXt + ε

PS
t , (C.3)

∆Importt = δ0 +δ1∆Windt +δ2∆Demandt +θ
′
ImportXtθ
′
ImportXtθ
′
ImportXt + ε

Import
t , (C.4)

∆Hydrot = ζ0 +ζ1∆Windt +ζ2∆Demandt +θ
′
HydroXtθ
′
HydroXtθ
′
HydroXt + ε

Hydro
t , (C.5)

where ∆ is the first-different operator, and XtXtXt contains dummy variables for each half-hour of
the day.

The half-hourly generation-by-fuel-type data comes from Elexon Portal. As the negative
values in the columns “import” and “pumped storage” (PS) are missing, we replace the
“import” column by the data from the National Grid (NG) Electricity System Operator (ESO),
and replace the “pumped storage” by aggregating the PS data from the Elexon P114 data set,
which gives half-hourly generation for each Balancing Mechanism Unit.

Table C.1 lists the estimation results of (C.1)-(C.5), and we can calculate the MEF of GB
as

M̂EF = EFCOAL · α̂2 +EFCCGT · β̂2 +EFPS · γ̂2 +EFIMPORT · δ̂2, (C.6)

where “∧” refers to estimates. We assume that EFCOAL = 0.871 and EFCCGT = 0.337, consis-
tent with Chapter 2. The values of EFPS and EFIMPORT depend on our assumption on which
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Table C.1 Estimating Marginal Fuels

Dependent Variables
∆Coalt ∆CCGTt ∆PSt ∆Importt ∆Hydrot

(Intercept) 89.369∗∗∗ 164.669∗∗∗ −324.716∗∗∗ 64.180∗∗∗ 6.421∗∗∗

(5.109) (8.574) (5.322) (7.507) (1.304)
∆Windt −0.125∗∗∗ −0.676∗∗∗ −0.123∗∗∗ −0.053∗∗∗ −0.017∗∗∗

(0.005) (0.008) (0.005) (0.007) (0.001)
∆Demandt 0.190∗∗∗ 0.602∗∗∗ 0.119∗∗∗ 0.059∗∗∗ 0.021∗∗∗

(0.001) (0.003) (0.002) (0.002) (0.000)
Time Dummies YES YES YES YES YES

R2 0.444 0.805 0.467 0.102 0.308
Num. obs. 64469 64469 64469 64469 64469
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

fuel types supply imports and pumped storages. Then, from Table C.1, if we assume all im-
ports and pumped storages come from CCGTs, the MEF is 0.429 tCO2/MWh; if we assume
all imports and pumped storages come from coal plants, the MEF is 0.525 tCO2/MWh.

Tables C.2 and C.3 report the similar results expect in these cases, we separate the data
into peak and off-peak periods, and into weekdays and weekends. From Tables C.2, if we
assume all imports and pumped storages come from CCGTs, the MEFs for peak and off-peak
periods are 0.434 tCO2/MWh and 0.410 tCO2/MWh, respectively. If we assume all imports
and pumped storages come from coal plants, the MEFs for peak and off-peak periods are
0.521 tCO2/MWh and 0.532 tCO2/MWh. The difference between peak and off-peak is, in
fact, statistically significant.

Similarly, from Tables C.3, if we assume all imports and pumped storages come from
CCGTs, the MEFs for weekdays and weekends are 0.432 tCO2/MWh and 0.424 tCO2/MWh,
respectively. If we assume all imports and pumped storages come from coal plants, the MEFs
for weekdays and weekends are 0.537 tCO2/MWh and 0.529 tCO2/MWh, respectively. The
difference is between weekdays and weekends is, again, statistically significant.

C.2 Validity Test Statistics

We use the Augmented Dickey-Fuller (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) tests to determine the existence of a unit root in the dependent variables. The ADF
test uses Auto-Regression (AR) regressions to determine whether a time series variable is non-
stationary, while KPSS is a reversed version which uses stationarity as the null hypothesis.
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Table C.2 Estimating Marginal Fuels, Peak v.s Off-peak

PEAK PERIODS
Dependent Variables

∆Coalt ∆CCGTt ∆PSt ∆Importt ∆Hydrot
(Intercept) −222.677∗∗∗ 184.696∗∗∗ 190.981∗∗∗ −175.384∗∗∗ 10.767∗∗∗

(7.526) (11.910) (6.914) (10.345) (2.147)
∆Windt −0.141∗∗∗ −0.670∗∗∗ −0.124∗∗∗ −0.042∗∗∗ −0.022∗∗∗

(0.006) (0.009) (0.005) (0.008) (0.002)
∆Demandt 0.204∗∗∗ 0.599∗∗∗ 0.094∗∗∗ 0.068∗∗∗ 0.026∗∗∗

(0.002) (0.003) (0.002) (0.002) (0.001)
Time Dummies YES YES YES YES YES

R2 0.468 0.809 0.246 0.116 0.319
Num. obs. 43263 43263 43263 43263 43263

OFF-PEAK PERIODS
Dependent Variables

∆Coalt ∆CCGTt ∆PSt ∆Importt ∆Hydrot
(Intercept) 48.208∗∗∗ 172.591∗∗∗ −246.820∗∗∗ 34.742∗∗∗ −8.260∗∗∗

(5.154) (9.936) (6.736) (8.816) (0.722)
∆Windt −0.090∗∗∗ −0.689∗∗∗ −0.118∗∗∗ −0.081∗∗∗ −0.006∗∗∗

(0.007) (0.014) (0.010) (0.013) (0.001)
∆Demandt 0.146∗∗∗ 0.611∗∗∗ 0.200∗∗∗ 0.029∗∗∗ 0.005∗∗∗

(0.003) (0.005) (0.004) (0.005) (0.000)
Time Dummies YES YES YES YES YES

R2 0.378 0.794 0.619 0.078 0.243
Num. obs. 21206 21206 21206 21206 21206
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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Table C.3 Estimating Marginal Fuels, Weekdays v.s Weekends

WEEKDAYS
Dependent Variables

∆Coalt ∆CCGTt ∆PSt ∆Importt ∆Hydrot
(Intercept) 115.033∗∗∗ 162.257∗∗∗ −377.204∗∗∗ 90.157∗∗∗ 7.026∗∗∗

(6.269) (10.305) (6.065) (9.278) (1.572)
∆Windt −0.126∗∗∗ −0.683∗∗∗ −0.116∗∗∗ −0.056∗∗∗ −0.015∗∗∗

(0.005) (0.009) (0.005) (0.008) (0.001)
∆Demandt 0.209∗∗∗ 0.564∗∗∗ 0.116∗∗∗ 0.080∗∗∗ 0.022∗∗∗

(0.002) (0.003) (0.002) (0.003) (0.001)
Time Dummies YES YES YES YES YES

R2 0.471 0.820 0.512 0.125 0.311
Num. obs. 45658 45658 45658 45658 45658

WEEKENDS
Dependent Variables

∆Coalt ∆CCGTt ∆PSt ∆Importt ∆Hydrot
(Intercept) 62.984∗∗∗ 67.212∗∗∗ −185.153∗∗∗ 50.585∗∗∗ 12.262∗∗∗

(8.743) (14.967) (10.205) (12.439) (2.370)
∆Windt −0.118∗∗∗ −0.666∗∗∗ −0.138∗∗∗ −0.047∗∗∗ −0.022∗∗∗

(0.008) (0.013) (0.009) (0.011) (0.002)
∆Demandt 0.182∗∗∗ 0.590∗∗∗ 0.137∗∗∗ 0.060∗∗∗ 0.027∗∗∗

(0.003) (0.005) (0.003) (0.004) (0.001)
Time Dummies YES YES YES YES YES

R2 0.383 0.780 0.463 0.101 0.324
Num. obs. 18811 18811 18811 18811 18811
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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The ADF test has very low power (against I(0) alternatives that are close to being I(1)), while
KPSS has a high possibility of Type I errors (i.e. it tends to over-reject the null hypothesis).
Based on this, the two tests give different results, the time series is more likely to be an I(0)
process.

Table C.4 Unit Root Tests

ADF tests∗ KPSS tests
Variables Lags Stat. p-value Results∗∗ Stat. p-value Results∗∗

levels
GB DA Prices 20 −3.24 0.08 I(1) 0.36 <0.01 I(1)
Coal Prices 0 −1.82 0.69 I(1) 0.31 <0.01 I(1)
Gas Prices 0 −2.46 0.35 I(1) 0.62 <0.01 I(1)
EUA Prices 14 0.22 1.00 I(1) 1.02 <0.01 I(1)
GBP/EUR XR 4 −1.99 0.60 I(1) 0.86 <0.01 I(1)
GB DA Renew. Gen 17 −5.67 0.00 I(0) 0.19 <0.05 I(1)
GB DA Demand 23 −2.66 0.25 I(1) 0.10 >0.10 I(0)
GB Nuclear Gen. 1 −7.73 0.00 I(0) 0.41 <0.01 I(1)
first differences
∆GB DA Prices 19 −13.02 0.00 I(0) 0.00 >0.10 I(0)
∆Coal Prices 0 −37.37 0.00 I(0) 0.10 >0.10 I(0)
∆Gas Prices 7 −15.37 0.00 I(0) 0.06 >0.10 I(0)
∆EUA Prices 23 −8.00 0.00 I(0) 0.07 >0.10 I(0)
∆GBP/EUR XR 3 −20.32 0.00 I(0) 0.04 >0.10 I(0)
∆GB DA Renew. Gen 17 −14.75 0.00 I(0) 0.08 >0.10 I(0)
∆GB DA Demand 22 −8.08 0.00 I(0) 0.04 >0.10 I(0)
∆GB Nuclear Gen. 11 −14.37 0.00 I(0) 0.01 >0.10 I(0)
∗ test with constant and trend terms
∗∗ suggested results at 5% significant level

The unit root test results are shown in Table C.4. All ADF tests contain a constant term
and a trend term, therefore they test whether the dependent variables are trend stationary.
The lag lengths for the test specifications are selected by the Akaike Information Criterion
(AIC), where the upper bound for the optimal lag length is determined by the Schwert [135]
criterion. Our ADF test results fail to reject the null that all dependent variables in yyyt in
(4.8) are I(1) processes, whereas the KPSS tests suggest that these variables are not I(0).
Therefore, we can safely conclude that all variables in yyyt are non-stationary.

The ADF and KPSS tests give contrasting results about the order of integration for the
GB day-ahead renewable generation and electricity demand, and the GB nuclear generation.
Because of the aforementioned reason — the ADF test suffers from low power, while the
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KPSS is vulnerable in front of Type I errors — the three variables are treated as stationary
processes.

Table C.5 AIC for Lag Lengths

Lag Lengths
Criterion 1 2 3 4 5 6 7

AIC -13.02 -13.17 -13.15 -13.22∗ -13.20 -13.19 -13.17
∗ optimal lag length suggested by AIC.

The lag lengths for dependent variables, p in (4.8), are determined by the AIC. As Table
C.5 shows, the optimal lag length is p = 4.

The validity for the VECM requires the dependent variables to be cointegrated. The
Johansen and Juselius [85] cointegration tests work on the canonical correlation of ∆yyyt and
yyyt−1. The trace test tests the null hypothesis of r cointegrating vectors against the alternative
hypothesis of m (the number of sequences in ∆yyyt) cointegrating vectors. The maximum
eigenvalue test, on the other hand, tests the null hypothesis of r cointegrating vectors against
the alternative hypothesis of r+1 cointegrating vectors. The results in Table C.6 indicate
one cointegrating equation in the proposed VECM (4.8), and both tests are conducted at the
5% significant level.

C.3 Johansen tests results for Regressions (iii) and (iv)

Tables C.7 and C.8 report the Johansen cointegration tests for the VECM specifications
discussed in Sections 4.5.2 and 4.5.2, respectively. Both tables suggest two cointegration
equations.
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Table C.6 Cointegration Tests

Unrestricted Cointegration Rank Test (Trace)
Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.14812 269.14 79.34 0.00
At most 1 0.01644 49.99 55.25 0.13
At most 2 0.01182 27.34 35.01 0.26
At most 3 0.00798 11.08 18.40 0.38
At most 4 0.00009 0.13 3.84 0.72

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.14812 219.14 37.16 0.00
At most 1 0.01644 22.66 30.82 0.35
At most 2 0.01182 16.25 24.25 0.39
At most 3 0.00798 10.96 17.15 0.32
At most 4 0.00009 0.13 3.84 0.72

∗ denotes rejection of the hypothesis at the 0.05 level.
∗∗ MacKinnon-Haug-Michelis (Mackinnon et al. [95]) p-values.
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Table C.7 Cointegration Tests for Regression (iii), Peak v.s. Off-peak

Unrestricted Cointegration Rank Test (Trace)
Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.20132 515.91 107.35 0.00
At most 1∗ 0.10959 208.61 79.34 0.00
At most 2 0.01636 49.93 55.25 0.14
At most 3 0.01187 27.39 35.01 0.26
At most 4 0.00795 11.06 18.40 0.38
At most 5 0.00011 0.15 3.84 0.70

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.20132 307.30 43.42 0.00
At most 1∗ 0.10959 158.68 37.16 0.00
At most 2 0.01636 22.54 30.82 0.36
At most 3 0.01187 16.33 24.25 0.39
At most 4 0.00795 10.92 17.15 0.32
At most 5 0.00011 0.15 3.84 0.70

∗ denotes rejection of the hypothesis at the 0.05 level.
∗∗ MacKinnon-Haug-Michelis (Mackinnon et al. [95]) p-values.
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Table C.8 Cointegration Tests for Regression (iv), Weekdays v.s. Weekends

Unrestricted Cointegration Rank Test (Trace)
Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.51475 293.41 107.35 0.00
At most 1∗ 0.42186 153.13 79.34 0.00
At most 2 0.09995 46.83 55.25 0.22
At most 3 0.08100 26.40 35.01 0.31
At most 4 0.04737 10.02 18.40 0.48
At most 5 0.00309 0.60 3.84 0.44

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)
Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.51475 140.28 43.42 0.00
At most 1∗ 0.42186 106.30 37.16 0.00
At most 2 0.09995 20.43 30.82 0.52
At most 3 0.08100 16.39 24.25 0.38
At most 4 0.04737 9.41 17.15 0.45
At most 5 0.00309 0.60 3.84 0.44

∗ denotes rejection of the hypothesis at the 0.05 level.
∗∗ MacKinnon-Haug-Michelis (Mackinnon et al. [95]) p-values.
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Appendix for Chapter 5

D.1 Solution Method

Model (5.16) is a non-linear programming (NLP) problem, more specifically it is a quadrati-
cally constrained quadratic programming (QCQP) problem. Since both the objective function
and the inequality constraints are convex and twice continuously differentiable, the barrier
method (Boyd et al. [21]) is used for solving the problem.

The goal is to approximately formulate the inequality constrained problem as an equality
constrained problem so that Newton’s method can be applied. First, the model can be
rearranged as:

min −E[φ(x)]

subject to E[dt ] = Es
t , ∀t

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t + rt

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′ + r′t

π0,t

)
·κt , ∀t

DMin −
T

∑
t=1

E[dt ]≤ 0,

T

∑
t=1

E[dt ]−DMax ≤ 0,

π
Min
t −πt ≤ 0, ∀t

πt −π
Max
t ≤ 0, ∀t

T

∑
t=1

E[dt ]πt −δ ·
T

∑
t=1

E[d0,t ]π0,t ≤ 0.
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Then we can make the inequality constraints implicit in the objective function:

min −E[φ(x)]+ I−(DMin −
T

∑
t=1

E[dt ])+ I−(
T

∑
t=1

E[dt ]−DMax)

+
T

∑
t=1

I−(πMin
t −πt)+

T

∑
t=1

I−(πt −π
Max
t )

+ I−(
T

∑
t=1

E[dt ]πt −δ ·
T

∑
t=1

E[d0,t ]π0,t)

(D.1)

subject to E[dt ] = Es
t , ∀t

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t + rt

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′ + r′t

π0,t

)
·κt , ∀t

where I−(·) : R → R is the indicator function for the non-positive reals,

I−(u) =

0 u ≤ 0

∞ u > 0.

Then, when u ≤ 0, i.e. the inequality constraint holds, I−(u) equals 0, adding no penalty to
(D.1). However, when u > 0, i.e. the inequality constraint fails to hold, I−(u) equals infinity,
boosting (D.1) to infinity as well. Hence while minimize (D.1), the inequality constraint
would always hold.

Note that since here the indicator function is not differentiable, we approximate the
indicator function I−(·) by Î−(·):

Î−(u) =−(1/λ ) log(−u).

The accuracy of the approximation depends on the value of λ , a positive index number. As
λ increases, the approximation becomes more accurate. Similar to I−(·), Î−(·) is convex,
non-decreasing, and takes the value ∞ when u is greater than 0. However, unlike I−(·), Î−(·)
is differentiable and closed: it increases to ∞ as u increases from negative to 0.
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Then, we substitute I−(·) by Î−(·) and obtain

min −E[φ(x)]+
1
λ

g(x)

subject to E[dt ] = Es
t , ∀t

E[dt ] = E[d0,t ]

(
1+ εt,t

πt −π0,t + rt

π0,t
+

T

∑
t ′=1

εt,t ′
πt ′ −π0,t ′ + r′t

π0,t

)
·κt , ∀t,

where g(x) is the logarithm barrier, and

g(x) =− log(−DMin +
T

∑
t=1

E[dt ])− log(−
T

∑
t=1

E[dt ]+DMax)−
T

∑
t=1

log(−π
Min
t +πt)

−
T

∑
t=1

log(−πt +π
Max
t )− log(−

T

∑
t=1

log[dt ]πt +δ ·
T

∑
t=1

E[d0,t ]π0,t).

Then Newton’s method can be implemented to solve this. If we slightly simplify the notation
and multiply the objective function by λ , it becomes

min −λ E[φ(x)]+g(x)

The quality of approximation improves as λ grows. When λ is large, however, the
objective function −λφ(x)+ g(x) is hard to minimise by Newton’s method because its
Hessian varies rapidly near the boundary. As a result, the barrier method solves a sequence of
the problem by increasing λ at each step, and starts the Newton minimization at the solution
of the problem for the previous value of λ . Formally, the barrier method can be summarised
as Table D.1 (Boyd et al. [21]).

From Algorithm 1, the barrier method is a double iterative algorithm — we have the
outer iteration when we gradually increase λ by a factor µ , and compute x⋆(λ ) from the
previously computed x⋆(λ ); and the inner iteration when we apply the Newton process to
compute x⋆(λ ).

In section 3.6, we use AIMMS, a high-level modelling software to solve the NLP problem.



184 Appendix for Chapter 5

Table D.1 Algorithm: barrier method

Given
starting with a value λ := λ (0) > 0, solve the barrier problem (D.1)
using Newton’s method to get x(0) := x⋆(λ ).

Do
for barrier parameter µ > 1, update λ (1) = µλ (0) for i = 1,2, ..., do:

1. solve the barrier problem at λ := λ (i) using Newton’s method
initialised at π

(i−1)
t to produce x(i) := x⋆(λ (i));

2. stop if m
λ
≤ ε , where m is the number of inequalities and ε is a

desired level of accuracy;
3. Else, update λ (i+1) = µλ (i).
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