17 research outputs found

    Is Deep Learning Really Necessary for Word Embeddings?

    Get PDF
    Word embeddings resulting from neural language models have been shown to be successful for a large variety of NLP tasks. However, such architecture might be difficult to train and time-consuming. Instead, we propose to drastically sim- plify the word embeddings computation through a Hellinger PCA of the word co-occurence matrix. We compare those new word embeddings with some well- known embeddings on NER and movie review tasks and show that we can reach similar or even better performance. Although deep learning is not really necessary for generating good word embeddings, we show that it can provide an easy way to adapt embeddings to specific tasks

    Syntax-based Transfer Learning for the Task of Biomedical Relation Extraction

    Get PDF
    International audienceTransfer learning (TL) proposes to enhance machine learning performance on a problem, by reusing labeled data originally designed for a related problem. In particular, domain adaptation consists, for a specific task, in reusing training data developed for the same task but a distinct domain. This is particularly relevant to the applications of deep learning in Natural Language Processing, because those usually require large annotated corpora that may not exist for the targeted domain, but exist for side domains. In this paper, we experiment with TL for the task of Relation Extraction (RE) from biomedical texts, using the TreeLSTM model. We empirically show the impact of TreeLSTM alone and with domain adaptation by obtaining better performances than the state of the art on two biomedical RE tasks and equal performances for two others, for which few annotated data are available. Furthermore, we propose an analysis of the role that syntactic features may play in TL for RE

    Transfer Learning using Computational Intelligence: A Survey

    Get PDF
    Abstract Transfer learning aims to provide a framework to utilize previously-acquired knowledge to solve new but similar problems much more quickly and effectively. In contrast to classical machine learning methods, transfer learning methods exploit the knowledge accumulated from data in auxiliary domains to facilitate predictive modeling consisting of different data patterns in the current domain. To improve the performance of existing transfer learning methods and handle the knowledge transfer process in real-world systems, ..
    corecore