
TROPER
HCRAESER

PAIDI

IS DEEP LEARNING REALLY NECESSARY
FOR WORD EMBEDDINGS?

Rémi Lebret        Joël Legrand        Ronan Colloberta

Idiap-RR-44-2013

DECEMBER 2013

aIdiap

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148002772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Is deep learning really necessary for word
embeddings?
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Abstract

Word embeddings resulting from neural language models have been shown to be
successful for a large variety of NLP tasks. However, such architecture might
be difficult to train and time-consuming. Instead, we propose to drastically sim-
plify the word embeddings computation through a Hellinger PCA of the word
co-occurence matrix. We compare those new word embeddings with some well-
known embeddings on NER and movie review tasks and show that we can reach
similar or even better performance. Although deep learning is not really necessary
for generating good word embeddings, we show that it can provide an easy way
to adapt embeddings to specific tasks.

1 Introduction

Building word embeddings have always generated much interest for linguists. Popular approaches
such as Brown clustering algorithm [1] have been used with success in a wide variety of NLP
tasks [2, 3, 4]. Those word embeddings are often seen as a low dimensional-vector space where the
dimensions can be seen as features potentially describing syntactic or semantic properties. Recently,
distributed approaches based on neural network language models (NNLM) have revived the field of
learning word embeddings [5, 6, 7, 8, 9]. However, a neural network architecture can be hard to
train. Finding the right parameters to tune the model is often a challenging task and the training
phase is in general computationally expensive.

This paper aims to show that such good word embeddings can be obtained using simple linear op-
erations. We show that similar word embeddings can be computed using the word co-occurrence
statistics and a well-known dimensionality reduction operation such as Principal Component Anal-
ysis (PCA). We then compare our embeddings with the CW [5], Turian [7], HLBL [10] embeddings
which come from deep architectures and the LR-MVL [11] embeddings which also come from a
spectral method on several NLP tasks.

We claim that a simple spectral method as PCA can generate word embeddings as good as with deep-
learning architectures. On the other hand, deep-learning architectures have shown their potential
in several supervised NLP tasks by using these word embeddings. As they are usually generated
over large corpora of unlabeled data, words are represented in a generic manner. Having generic
embeddings, good performance can be achieved on NLP tasks where the syntactic aspect is dominant
such as Part-Of-Speech, chunking and NER [7, 8, 11]. For supervised tasks relying more on the
semantic aspect as sentiment classification, it is usually helpful to adapt the existing embeddings to
improve performance [12]. We show in this paper that such embedding specification can be easily
done via deep-learning architectures and that helps to increase general performance.
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2 Related Work

As 80% of the meaning of English text comes from word choice and the remaining 20% comes
from word order [13], it seems quite important to preserve word order. Connectionist approaches
have therefore been proposed to develop distributed representations which encode the structural
relationships between words [14, 15, 16]. Most recently, a neural network language model was
proposed in Bengio et al. [17] where word vector representations are simultaneously learned along
with a statistical language model. This architecture inspired other authors: Collobert and Weston
[5] designed a neural language model which eliminates the linear dependency on vocabulary size,
Mnih and Hinton [10] proposed a hierarchical linear neural model, Mikolov et al. [18] investigated
a recurrent neural network architecture for language modeling. Such architectures being trained
over large corpora of unlabeled text with the aim to predict correct scores end up learning the co-
occurence statistics.

Linguists assumed long ago that words occurring in similar contexts tend to have similar meanings
[19]. Using the word co-occurrence statistics is thus a natural choice to embed similar words into
a common vector space [20]. Common approaches calculate the frequencies, apply some transfor-
mations (tf-idf, PPMI), reduce the dimensionality and calculate the similarities [21]. Considering a
fixed-sized word vocabulary D, the co-occurence matrix is then vocabulary size dependent. To re-
duce the dimensionality of the co-occurence matrix F of size W × |D| by mapping F into a matrix
f of size W × d, where d � |D|, techniques such as Singular Valued Decomposition (SVD) are
widely used (e.g. LSA [22], ICA [23]). However, word co-occurence statistics are discrete distribu-
tions. We thus believe that information theory distance measure such as Hellinger distance should
be more efficient than Euclidean distance to smooth the matrix F . In this paper we will compare
our method with the Low Rank Multi-View Learning (LR-MVL) method which is another spectral
method based on Canonical Correlation Analysis (CCA) to learn word embeddings [11].

It has been proved that using word embeddings as features helps to improve general performance
on many NLP tasks [7]. However these embeddings can be too generic to perform well on other
tasks such as sentiment classification. For such task, word embeddings must capture the sentiment
information. Maas et al. [24] proposed a model for jointly capturing semantic and sentiment com-
ponents of words into vector spaces. More recently, Labutov and Lipson [12] presented a method
which takes existing embeddings and by using labeled data re-embed them in the same space to be
better predictor in a supervised task. Inspired by the work of Collobert et al. [8], we rather apply a
deep learning architecture to our NLP systems and we propose to fine-tune our existing embedding
for each task by backpropagation.

3 Spectral Method for Word Embeddings

A NNLM learns which words among the vocabulary appear more likely after a given context se-
quence of words. More formally, it learns the next word probability distribution. Instead, simply
counting words on a large corpus of unlabeled text can be performed to retrieve those word distri-
butions and to represent words [20].

3.1 Word co-occurence statistics

”You shall know a word by the company it keeps” [25]. It is a natural choice to use the word
co-occurence statistics to acquire representations of word meanings. Raw word co-occurence fre-
quencies are computed by counting the number of times each word w ∈ D occurs after a context
sequence of words T :

p(w|T ) = p(w, T )

p(T )
=

n(w, T )∑
w n(w, T )

(1)

where n(w, T ) is the number of times each context wordw occurs after the context T . The next word
probability distribution p for each word or sequence of words is thus obtained. It is a multinomial
distribution of |D| classes (words). A co-occurence matrix of size N × |D| is thus obtained by
computing those frequencies over all the N possible sequences of words.

2



3.2 Hellinger distance

Similarities between words can be derived by computing a distance between their correspond-
ing word distributions. Several distances (or metric) over discrete distributions exist, such as the
Bhattacharyya distance, the Hellinger distance or Kullback-Leibler divergence. We chose here the
Hellinger distance for its simplicity and symmetry property (as it is a true distance). Considering two
discrete probability distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk), the Hellinger distance is
formally defined as:

H(P,Q) = − 1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 (2)

which is directly related to the Euclidean norm of the difference of the square root vectors:

H(P,Q) =
1√
2
‖
√
P −

√
Q‖2 (3)

Note that it makes more sense to take the Hellinger distance rather than the Euclidean distance for
comparing discrete distributions, as P and Q are unit vectors according to the Hellinger distance
(
√
P and

√
Q are units vector according to the `2 norm).

3.3 Dimensionality Reduction

As discrete distributions are vocabulary size dependent, using directly the distribution as a word
embedding is not really tractable for large vocabulary. We propose to perform a principal component
analysis (PCA) of the word co-occurence probabilities square root matrix to represent words in
a lower dimensional space while minimizing the reconstruction error according to the Hellinger
distance.

4 Deep Learning Architectures for NLP tasks

Traditional NLP approaches extract from documents a rich set of hand-designed features which are
then fed to a standard classification algorithm. The choice of features is a task-specific empirical
process. In contrast, we want to pre-process our features as little as possible. In that respect, a
multilayer neural network architecture seems appropriate as it can be trained in an end-to-end fashion
on the task of interest.

4.1 Sentence-level Approach

The sentence-level approach aims at tagging with a label each word in a given sentence. Embeddings
of each word in a sentence are fed to a convolutional layer followed by some linear and non-linear
layers, ending by a sentence tags inference layer.

Convolutional layer Our convolutional network successively takes the complete sentences, pro-
duces local features around each word of the sentence thanks to convolutional layers, combines these
feature into a global feature vector which can then be fed to standard affine layers.

Sentence tags inference There exists strong dependencies between tags in a sentence: some tags
cannot follow other tags. To take this specificity into account, we infer tag paths from the previous
scores using a lattice. A transition score Atu for jumping from tag t ∈ T to u ∈ T is introduced, as
well as an initial score At0 for starting from the tth tag. Each node Gtn is assigned a score s(xn)t
from the previous layer of the architecture. Given a pair of nodes Gtn and Gun+1

, an edge with
transition score Atu is added on the lattice.

Finally, a score for a path [t]N1 in the lattice G is obtained, as the sum of scores along [t]N1 in G:

S([w]N1 , [t]
N
1 , θ) =

N∑
n=1

(Atn−1tn + s(xn)tn)
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where θ represents all the trainable parameters of the complete architecture. The sentence tags [t∗]N1
are then inferred by finding the path which leads to the maximal score:

[t∗]N1 = argmax
[t]N1 ∈T N

S([w]N1 , [t]
N
1 , θ)

The Viterbi algorithm is the natural choice for this inference. All parameters θ are trained in a
end-to-end manner.

Training The neural network is trained by maximizing a likelihood over the training data, using
stochastic gradient ascent. The score for a path can be interpreted as a conditional probability over a
path by taking it to the exponential (making it positive) and normalizing with respect to all possible
paths (summing to 1 over all paths). We define P the set of possible tag path for a sentence. Taking
the log(.) leads to the following conditional log-probability:

log ([t]N1 , [w]
N
1 , θ) = S([w]N1 , [t]

N
1 , θ)− logadd

∀[u]N1 ∈T
S([w]N1 , [u]

N
1 , θ)) (4)

where we adopt the notation logaddzn = log (
∑
i e
zi)

Computing the log-likelihood efficiently is not straightforward, as the number of terms in the logadd
grows exponentially with the length of the sentence. Fortunately, it can be computed in linear time
with the Forward algorithm, which derives a recursion similar to the Viterbi algorithm (see Rabiner
[26]).

4.2 Document-level Approach

The document-level approach is a document classifier. Embeddings of each word in a sentence are
fed to a convolutional layer followed a max layer and ending by a class prediction layer. Some linear
and non-linear layers can be added between the first and the last layer.

Max Layer The size of the output will depend on the number of words in the document fed to the
network. Local feature vectors extracted by the convolutional layer have to be combined to obtain
a global feature vector, with a fixed size independent of the document length, in order to apply
subsequent standard affine layers. We used a max approach, which forces the network to capture the
most useful local features produced by the convolutional layer, for the task at hand. Given a matrix
f l−1θ output by a convolutional layer l − 1, the Max layer l outputs a vector f lθ:

[f lθ]i = max[f l−1θ ]i,t 1 ≤ i ≤ nl−1hu (5)

The hyper-parameter nl−1hu is the number of hidden units of the convolution layer. This fixed sized
global feature vector can be then fed to standard affine network layers.

Class prediction As any classical neural network, the architecture performs several matrix-vector
operations on its inputs, interleaved with some non-linear transfer function. The output size of the
last layer is equal to the number of possible classes for the task of interest. Each output can be then
interpreted as a score of the corresponding class (given the input of the network).

Training The network is trained by maximizing a likelihood over the training data, using stochas-
tic gradient ascent. We note [fθ]y the yth output of the network and θ all the trainable parameters.
Using a training set T , we want to maximize the following log-likelihood with respect to θ:

θ ←
∑

(x,y)∈T

log p(y|x, θ)

where x corresponds to a training document and y represents the corresponding class. The proba-
bility p(y|x, θ) is computed from the outputs of the neural network by adding a softmax operation
over all the classes:
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p(i|x, θ) = e[fθ]i∑
j e

[fθ]j

We can express the log-likelihood for one training example (x, y) as follows:

log p(y|x, θ) = [fθ]y − log(
∑
j

e[fθ]j )

4.3 Embedding Fine-Tuning

As seen in section 3, the process to compute generic word embedding is quite straightforward.
These embeddings can then be used as features for supervised NLP systems and help to improve
the general performance [7, 8, 9]. However, most of these systems cannot tune these embeddings as
they are not structurally able to. By leveraging the deep architecture of our system, we can define a
lookup-table layer initialized with existing embeddings as the first layer of the network.

Lookup-Table Layer We consider a fixed-sized word dictionaryD. Given a sequence ofN words
w1, w2, . . . , wN , each word wn ∈ W is first embedded into a dwrd-dimensional vector space, by
applying a lookup-table operation:

LTW (wn) =W

(
0, . . . , 0, 1 , 0, . . . , 0

at index wn

)
= 〈W 〉wn (6)

where the matrix W ∈ Rdwrd×|D| represents the embeddings to be tuned in this lookup layer.
〈W 〉wn ∈ Rdwrd is the wth column of W and dwrd is the word vector size. Given any sequence of
N words [w]N1 inD, the lookup table layer applies the same operation for each word in the sequence,
producing the following output matrix:

LTW ([w]
N
1 ) =

(
〈W 〉1[w]1

〈W 〉1[w]2
. . . 〈W 〉1[w]N

)
(7)

Training Given a task of interest, a relevant representation of each word is then given by the cor-
responding lookup table feature vector, which is trained by backpropagation, starting from existing
embeddings.

5 Experimental Setup

We evaluate the quality of our embeddings obtained on a large corpora of unlabeled text by compar-
ing their performance against the CW [5], Turian [7], HLBL [10], and LR-MVL [11] embeddings
on NER and movie review tasks. We also show that the general performance can be improved for
these tasks by fine-tuning the word embeddings.

5.1 Building Word Representation over Large Corpora

Our English corpus is composed of the entire English Wikipedia1 (where all MediaWiki markups
have been removed), the Reuters corpus and the Wall Street Journal (WSJ) corpus. We chose to
consider lower case words to limit the number of words in the vocabulary. Additionally, all oc-
currences of sequences of numbers within a word are replaced with the string “NUMBER”. The
resulting text was tokenized using the Stanford tokenizer2. The data set contains about 1,652 mil-
lion words. As vocabulary we considered all the words within our corpus which appear at least
one hundred times. This results in a 178,080 words vocabulary. To build the co-occurence matrix
we used only the 10,000 most frequent words within our vocabulary as context words. Each word
is represented in a 50-dimensional vector as the other embeddings in the literature. The resulting

1Available at http://download.wikimedia.org. We took the May 2012 version.
2Available at http://nlp.stanford.edu/software/tokenizer.shtml
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embeddings will be referred as H-PCA in the following sections. To highlight the importance of the
Hellinger distance, we also computed the co-occurence probabilities matrix without the square root.
The resulting embeddings after PCA are called E-PCA.

5.2 Existing Available Word Embeddings

We choose to compare our H-PCA’s embeddings with the following publicly available embeddings:

• LR-MVL3: it covers 300,000 words with 50 dimensions for each word. They were trained
on the RCV1 corpus using the Low Rank Multi-View Learning method. We only used their
context oblivious embeddings coming from the eigenfeature dictionary.

• CW4: it covers 130,000 words with 50 dimensions for each word. They were trained for
about two months, over Wikipedia, using a neural network language model approach.

• Turian5: it covers 268,810 words with 25, 50, 100 or 200 dimensions for each word. They
were trained on the RCV1 corpus using the same system as the CW embeddings but with
different parameters. We used only the 50 dimensions.

• HLBL5 : it covers 246,122 words with 50 or 100 dimensions for each word. They were
trained on the RCV1 corpus using a Hierarchical Log-Bilinear Model. We used only the
50 dimensions.

5.3 Supervised Evaluation Tasks

Using word embeddings as feature proved that it can improve the generalization performance on sev-
eral NLP tasks [7, 8, 9]. Using our word embeddings, we thus trained the sentence-level architecture
described in section 4.1 on a NER task.

Named Entity Recognition (NER) It labels atomic elements in the sentence into categories such
as “PERSON” or “LOCATION”. The CoNLL 2003 setup6 is a NER benchmark data set based on
Reuters data. The contest provides training, validation and testing sets. The networks are fed with
two raw features: word embeddings and a capital letter feature. The “caps” feature tells if each
word was in lowercase, was all uppercase, had first letter capital, or had at least one non-initial
capital letter. No other feature has been used to tune the models. This is a main difference with
other systems which usually use more features as POS tags, prefixes and suffixes or gazetteers. The
optimal hyper-parameters were a window of 5 words for the convolutional layer and 300 hidden
units. As benchmark system, we report the system of Ando et al. [27] which reached 89.31% F1
with a semi-supervised approach and less specialized features than CoNLL 2003 challengers.

The NER evaluation task is mainly syntactic. We wish to evaluate whether our word embeddings
can also capture semantic. We thus trained the document-level architecture described in section 4.2
with movie reviews to predict whether they are positives or negatives.

IMDB Review Dataset We used a collection of 50,000 reviews from IMDB7. It allows no more
than 30 reviews per movie. It contains an even number of positive and negative reviews, so randomly
guessing yields 50% accuracy. Only highly polarized reviews have been considered. A negative
review has a score ≤ 4 out of 10, and a positive review has a score ≥ 7 out of 10. It has been
evenly divided into training and test sets (25,000 reviews each). For this task, we only used the word
embeddings as features. The optimal hyper-parameters for the network were a window of 5 words
for the convolutional layer and 1,000 hidden units. As benchmark system, we report the system
of Maas et al. [24] which reached 88.90% accuracy with a mix of unsupervised and supervised
techniques to learn word vectors capturing semantic term-document information as well as rich
sentiment content.

3Available at http://www.cis.upenn.edu/ ungar/eigenwords/
4From SENNA: http://ml.nec-labs.com/senna/
5Available at http://metaoptimize.com/projects/wordreprs/
6http://www.cnts.ua.ac.be/conll2003/ner/
7Available at http://www.andrew-maas.net/data/sentiment

6



5.4 Results

Approach Fixed Embedding Tuned Embedding
Benchmark System 89.31

Non-Linear Approach
H-PCA 87.91 89.37
E-PCA 79.91 86.17
LR-MVL 76.80 82.65
CW 88.09 88.93
Turian 85.80 87.28
HLBL 83.42 85.76

Linear Approach
H-PCA 84.39 88.04
E-PCA 67.95 77.48
LR-MVL 65.52 80.02
CW 84.52 86.90
Turian 83.30 86.60
HLBL 80.19 84.90

Table 1: Comparison in performance on NER task with different embeddings. Results are reported
in F1 score.

Results summarized in Table 1 reveal that performance on NER task can be as good with word
embeddings from a word co-occurence matrix decomposition as with a neural network language
model trained for weeks. The best F1 score (89.37), which outperforms the benchmark system, is
indeed obtained using the H-PCA tuned embeddings. Results for the movie review task in Table
2 show that H-PCA’s embeddings also perform as well as all the other embeddings on the movie
review task. This task confirms the importance of embedding fine-tuning for NLP tasks with a high
semantic component. We note that our tuned embeddings leads to a performance gain of about 1%
or 2% for NER, while the gain is between about 4% and 8% for the movie review. We thus show
in Table 3 that the embeddings after fine-tuning give a higher rank to words that are related to the
task of interest which is movie-sentiment-based relations in this case. It is worth mentioning that on
both tasks H-PCA’s embeddings outperform the LR-MVL’s and E-PCA’s embeddings which are also
obtained from a spectral method, demonstrating the value of the Hellinger distance. On the other
hand, they give similar or slightly better results than the embeddings obtained via deep-learning
architectures. We also report results with a linear version of our neural networks (instead of having
linear layers interleaved with a non-linearity). We note that this approach performs as well as the
non-linear approach for the movie review task. However, having non-linearity helps for NER.

Approach Fixed Embedding Tuned Embedding
Benchmark System 88.90

Non-Linear Approach
H-PCA 83.88 89.86
E-PCA 68.08 89.58
LR-MVL 81.28 89.19
CW 85.01 89.58
Turian 84.88 89.99
HLBL 84.93 89.24

Linear Approach
H-PCA 84.01 89.78
E-PCA 67.65 89.55
LR-MVL 81.28 89.03
CW 88.06 89.85
Turian 83.90 89.41
HLBL 84.71 89.39

Table 2: Comparison in performance on movie review task with different embeddings. Results are
reported in classification accuracy.
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BORING BAD AWESOME
before after before after before after
SAD CRAP HORRIBLE TERRIBLE SPOOKY TERRIFIC

SILLY LAME TERRIBLE STUPID AWFUL TIMELESS
SUBLIME MESS DREADFUL BORING SILLY FANTASTICE

FANCY STUPID UNFORTUNATE DULL SUMMERTIME LOVELY
SOBER DULL AMAZING CRAP NASTY FLAWLESS
TRASH HORRIBLE AWFUL WRONG MACABRE MARVELOUS
LOUD RUBBISH MARVELOUS TRASH CRAZY EERIE

RIDICULOUS SHAME WONDERFUL SHAME ROTTEN LIVELY
RUDE AWFUL GOOD KINDA OUTRAGEOUS FANTASY

MAGIC ANNOYING FANTASTIC JOKE SCARY SURREAL

Table 3: Set of words with their 10 nearest neighbors before and after fine-tuning for the movie
review task (using the Euclidean metric). H-PCA embeddings are used here.

6 Conclusion

We have demonstrated that appealing word embeddings can be obtained by computing a Hellinger
PCA of the word co-occurence matrix. While a neural network language model can be painful and
long to train, we can get a word co-occurence matrix by simply counting words over a large cor-
pus. The resulting embeddings give similar results on NLP tasks even from a N × 10, 000 word
co-occurence matrix. It reveals that having a significant but not too large set of common words
seems sufficient for capturing most of the syntactic and semantic characteristics of words. As PCA
of a N × 10, 000 matrix is really fast and not memory consuming, our method gives an interesting
and practical alternative to neural language models for generating word embeddings. However, we
showed that deep-learning architectures is a good choice for supervised NLP tasks as we outperform
benchmark results on NER and movie review tasks. By leveraging the deep architecture of our sys-
tems, we also showed that existing embeddings can be fine-tuned to a specific task which leads to
improve general performance for this task. Finally, deep learning is not that necessary for generat-
ing word embeddings but it can be extremely convenient for adapting these embeddings. We then
encourage people wishing to play with NLP tasks to use our word embeddings8 in a deep-learning
framework.
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