117 research outputs found

    Hamming distance spectrum of DAC codes for equiprobable binary sources

    Get PDF
    Distributed Arithmetic Coding (DAC) is an effective technique for implementing Slepian-Wolf coding (SWC). It has been shown that a DAC code partitions source space into unequal-size codebooks, so that the overall performance of DAC codes depends on the cardinality and structure of these codebooks. The problem of DAC codebook cardinality has been solved by the so-called Codebook Cardinality Spectrum (CCS). This paper extends the previous work on CCS by studying the problem of DAC codebook structure.We define Hamming Distance Spectrum (HDS) to describe DAC codebook structure and propose a mathematical method to calculate the HDS of DAC codes. The theoretical analyses are verified by experimental results

    Analysis on tailed distributed arithmetic codes for uniform binary sources

    Get PDF
    Distributed Arithmetic Coding (DAC) is a variant of Arithmetic Coding (AC) that can realise Slepian-Wolf Coding (SWC) in a nonlinear way. In the previous work, we defined Codebook Cardinality Spectrum (CCS) and Hamming Distance Spectrum (HDS) for DAC. In this paper, we make use of CCS and HDS to analyze tailed DAC, a form of DAC mapping the last few symbols of each source block onto non-overlapped intervals as traditional AC. We first derive the exact HDS formula for tailless DAC, a form of DAC mapping all symbols of each source block onto overlapped intervals, and show that the HDS formula previously given is actually an approximate version. Then the HDS formula is extended to tailed DAC. We also deduce the average codebook cardinality, which is closely related to decoding complexity, and rate loss of tailed DAC with the help of CCS. The effects of tail length are extensively analyzed. It is revealed that by increasing tail length to a value not close to the bitstream length, closely-spaced codewords within the same codebook can be removed at the cost of a higher decoding complexity and a larger rate loss. Finally, theoretical analyses are verified by experiments

    Codebook cardinality spectrum of distributed arithmetic codes for stationary memoryless binary sources

    Get PDF
    It was demonstrated that, as a nonlinear implementation of Slepian-Wolf Coding, Distributed Arithmetic Coding (DAC) outperforms traditional Low-Density Parity-Check (LPDC) codes for short code length and biased sources. This fact triggers research efforts into theoretical analysis of DAC. In our previous work, we proposed two analytical tools, Codebook Cardinality Spectrum (CCS) and Hamming Distance Spectrum, to analyze DAC for independent and identically-distributed (i.i.d.) binary sources with uniform distribution. This article extends our work on CCS from uniform i.i.d. binary sources to biased i.i.d. binary sources. We begin with the final CCS and then deduce each level of CCS backwards by recursion. The main finding of this article is that the final CCS of biased i.i.d. binary sources is not uniformly distributed over [0, 1). This article derives the final CCS of biased i.i.d. binary sources and proposes a numerical algorithm for calculating CCS effectively in practice. All theoretical analyses are well verified by experimental results

    Near-capacity joint source and channel coding of symbol values from an infinite source set using Elias Gamma Error correction codes

    No full text
    In this paper we propose a novel low-complexity Joint Source and Channel Code (JSCC), which we refer to as the Elias Gamma Error Correction (EGEC) code. Like the recently-proposed Unary Error Correction (UEC) code, this facilitates the practical near-capacity transmission of symbol values that are randomly selected from a set having an infinite cardinality, such as the set of all positive integers. However, in contrast to the UEC code, our EGEC code is a universal code, facilitating the transmission of symbol values that are randomly selected using any monotonic probability distribution. When the source symbols obey a particular zeta probability distribution, our EGEC scheme is shown to offer a 3.4 dB gain over a UEC benchmarker, when Quaternary Phase Shift Keying (QPSK) modulation is employed for transmission over an uncorrelated narrowband Rayleigh fading channel. In the case of another zeta probability distribution, our EGEC scheme offers a 1.9 dB gain over a Separate Source and Channel Coding (SSCC) benchmarker

    Bridging Hamming Distance Spectrum with Coset Cardinality Spectrum for Overlapped Arithmetic Codes

    Full text link
    Overlapped arithmetic codes, featured by overlapped intervals, are a variant of arithmetic codes that can be used to implement Slepian-Wolf coding. To analyze overlapped arithmetic codes, we have proposed two theoretical tools: Coset Cardinality Spectrum (CCS) and Hamming Distance Spectrum (HDS). The former describes how source space is partitioned into cosets (equally or unequally), and the latter describes how codewords are structured within each coset (densely or sparsely). However, until now, these two tools are almost parallel to each other, and it seems that there is no intersection between them. The main contribution of this paper is bridging HDS with CCS through a rigorous mathematical proof. Specifically, HDS can be quickly and accurately calculated with CCS in some cases. All theoretical analyses are perfectly verified by simulation results

    Multiuser Communication through Power Talk in DC MicroGrids

    Full text link
    Power talk is a novel concept for communication among control units in MicroGrids (MGs), carried out without a dedicated modem, but by using power electronics that interface the common bus. The information is transmitted by modulating the parameters of the primary control, incurring subtle power deviations that can be detected by other units. In this paper, we develop power talk communication strategies for DC MG systems with arbitrary number of control units that carry out all-to-all communication. We investigate two multiple access strategies: 1) TDMA, where only one unit transmits at a time, and 2) full duplex, where all units transmit and receive simultaneously. We introduce the notions of signaling space, where the power talk symbol constellations are constructed, and detection space, where the demodulation of the symbols is performed. The proposed communication technique is challenged by the random changes of the bus parameters due to load variations in the system. To this end, we employ a solution based on training sequences, which re-establishes the signaling and detection spaces and thus enables reliable information exchange. The presented results show that power talk is an effective solution for reliable communication among units in DC MG systems.Comment: Multiuser extension of the power talk concept. Submitted to IEEE JSA

    Partition Information and its Transmission over Boolean Multi-Access Channels

    Full text link
    In this paper, we propose a novel partition reservation system to study the partition information and its transmission over a noise-free Boolean multi-access channel. The objective of transmission is not message restoration, but to partition active users into distinct groups so that they can, subsequently, transmit their messages without collision. We first calculate (by mutual information) the amount of information needed for the partitioning without channel effects, and then propose two different coding schemes to obtain achievable transmission rates over the channel. The first one is the brute force method, where the codebook design is based on centralized source coding; the second method uses random coding where the codebook is generated randomly and optimal Bayesian decoding is employed to reconstruct the partition. Both methods shed light on the internal structure of the partition problem. A novel hypergraph formulation is proposed for the random coding scheme, which intuitively describes the information in terms of a strong coloring of a hypergraph induced by a sequence of channel operations and interactions between active users. An extended Fibonacci structure is found for a simple, but non-trivial, case with two active users. A comparison between these methods and group testing is conducted to demonstrate the uniqueness of our problem.Comment: Submitted to IEEE Transactions on Information Theory, major revisio
    • …
    corecore