
Strathprints Institutional Repository

Fang, Yong and Stankovic, Vladimir and Cheng, Samuel and Yang, En-

hui (2016) Hamming distance spectrum of DAC codes for equiprobable

binary sources. IEEE Transactions on Communications. ISSN 0090-

6778 , http://dx.doi.org/10.1109/TCOMM.2016.2518680

This version is available at http://strathprints.strath.ac.uk/55413/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/42592809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 1

Hamming Distance Spectrum of DAC Codes for

Equiprobable Binary Sources
Yong Fang, Member, IEEE, Vladimir Stankovic, Senior Member, IEEE, Samuel Cheng, Member, IEEE, and

En-hui Yang, Fellow, IEEE

Abstract—Distributed Arithmetic Coding (DAC) is an effective
technique for implementing Slepian-Wolf coding (SWC). It has
been shown that a DAC code partitions source space into unequal-
size codebooks, so that the overall performance of DAC codes
depends on the cardinality and structure of these codebooks.
The problem of DAC codebook cardinality has been solved by
the so-called Codebook Cardinality Spectrum (CCS). This paper
extends the previous work on CCS by studying the problem of
DAC codebook structure. We define Hamming Distance Spectrum
(HDS) to describe DAC codebook structure and propose a
mathematical method to calculate the HDS of DAC codes. The
theoretical analyses are verified by experimental results.

Index Terms—Distributed source coding, Slepian-Wolf coding,
distributed arithmetic coding, Hamming distance spectrum, code-
book cardinality spectrum.

I. INTRODUCTION

A
RITHMETIC coding (AC) [1] is an effective method for

data compression that works by mapping each source

sequence onto a half-open interval [l, h), where 0 ≤ l < h <
1. Though the principle of AC codes is rather simple, a major

technical problem when putting AC codec into practice is that

one has to use infinite-precision real numbers to represent l
and h, which is impossible for a digital circuit. Fortunately,

there is a canonical implementation in [2] that represents l
and h with finite-precision integers and utilizes some scaling

rules to solve the problems of renormalization and underflow

that are caused by finite-precision operations. An alternative

solution to the complexity and precision problems in the AC

codec is to use quasi-AC (QAC) codes, which can be seen as

a reduced-precision version of AC codes [3].

As other variable-length codes, AC codes suffer from error

propagation when the bitstream is conveyed over noisy chan-

nels. This problem can be solved by reserving a forbidden

interval in [0, 1) for error detection [4] and running maximum

a posteriori (MAP) decoding for error correction [5]. For

This work was supported by the National Science Foundation of China
(grant nos. 61271280 and 61377011), the Program for New Century Excel-
lent Talents in University of China (grant no. NCET-13-0481), Provincial
Foundation for Youth Nova of Science and Technology of Shaanxi, China
(grant no. 2014KJXX-41), and the Fundamental Research Fund for the Central
Universities of China (grant nos. 2014YQ001 and QN2013086).

Y. Fang is with the College of Information Engineering, Northwest A&F
University, Yangling, Shaanxi 712100, China (email: yfang79@gmail.com).
V. Stankovic is with the Department of Electronic and Electrical
Engineering, University of Strathclyde, Glasgow, UK (email:
vladimir.stankovic@strath.ac.uk). S. Cheng is with the School of Electrical
and Computer Engineering, University of Oklahoma, Tulsa, OK (email:
samuel.cheng@ou.edu). E.-H. Yang is with the Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1,
Canada (email: ehyang@uwaterloo.ca). The corresponding author is Y. Fang.

QAC codes, state models can be defined and used in a

straightforward manner for MAP or soft decoding [6]. Such

solutions are known as joint source-channel AC (JSCAC).

Forbidden interval reservation is not the only solution to this

problem, e.g., [7] achieves the same goal by inserting segment

markers at fixed positions of bitstreams. Besides hard markers,

the soft synchronization mechanism is also a powerful option

for the JSCAC which allows controlling the trade-off between

redundancy and resilience [8]. To predict and evaluate the

effectiveness of the JSCAC, [9] provides an analytical tool

to derive the distance spectrum of the JSCAC and proposes

an algorithm to compute the free distance of the JSCAC.

Recently, AC codes also find their application to loss-

less distributed source coding (DSC), or Slepian-Wolf coding

(SWC) [10], which has traditionally been implemented with

channel codes, e.g., turbo codes [11] and low-density parity-

check (LDPC) codes [12], [13], [14]. Such solutions are known

as distributed AC (DAC) codes. In fact, DAC codes are dual

codes of JSCAC codes, so they can be realized by either

interval overlapping [15], [16], [17] or bitstream puncturing

[18], [19], [20]. Naturally, DAC codes can be combined

with JSCAC codes to obtain the so-called distributed JSCAC

(DJSCAC) codes, which allow the coexistence of overlapped

and forbidden intervals to realize data compression and error

correction simultaneously [21].

Since the emergence of DAC codes, a lot of work has been

done to verify the coding efficiency of DAC codes [16]. An

important finding is that the residual errors of DAC codes

cannot be removed by increasing code rate and/or length [16].

Thus, it is better to quantitatively measure the coding efficiency

of DAC codes in terms of frame-error-rate (FER) or symbol-

error-rate (SER) at a given code rate. Moreover, it is shown

that at least for short code length, DAC codes outperform

LDPC-based SWC codes with acceptable decoder complexity

[16].

However, the above results are heuristic and lack strict

theoretical analyses. To obtain an illuminating insight into

the coding efficiency and decoder complexity of DAC codes,

the concept of spectrum was introduced, and the following

findings were reported in [22], [23], [24]:

• A DAC code partitions source space into unequal-size

codebooks whose cardinalities are proportional to the so-

called initial spectrum [23]. According to this finding, we

can draw the following conclusion: For a DAC code with

initial spectrum f0(u) (see Sect. III for a formal definition

of the initial spectrum), its total rate loss to SWC limit

[10] will tend to a constant
∫ 1

0
f0(u) log2 f0(u)du as code

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 2

length goes to infinity, and hence the per-symbol rate loss

will vanish as code length increases [24].

• DAC spectrum will become uniformly distributed as

the decoding proceeds, which implies that 1-away (in

Hamming distance) codewords in each codebook cannot

be removed by increasing code length [24]. Further, a

loose lower bound of decoding error probability is given

as ǫ(2−2R), where ǫ is the crossover probability between

source and side information (SI), and R is code rate [24].

• Two techniques can be used to improve the coding

efficiency of DAC codes [24]. First, the permutation

technique can remove those closely-packed (in Ham-

ming distance) codewords in each codebook. Second, the

weighted branching technique can reduce the mis-pruning

risk of proper paths during the decoding.

Besides the above advances, the authors of [25] also noticed

the existence of 1-away (in Hamming distance) codewords

in each DAC codebook and proposed the distributed block

arithmetic coding (DBAC) to solve this problem.

In summary, the problem of deducing DAC codebook cardi-

nality has been solved, but we still know very little about DAC

codebook structure. The only thing we know about the latter

problem is that 1-away (in Hamming distance) codewords in

each DAC codebook almost always exist [24]. Obviously, to

analyze the coding efficiency of DAC codes, more knowledge

about DAC codebook structure is necessary. Motivated by this

problem, this paper introduces the concept of Hamming dis-

tance spectrum (HDS), which is essentially proportional to the

average number of d-away (in Hamming distance) codeword-

pairs inside each DAC codebook. We denote the HDS by

ψn,R(d), a function with respect to (w.r.t.) inter-codeword

Hamming distance d ∈ {0, · · · , n} that is parameterized by

code length n and rate R, and propose a mathematical method

to calculate ψn,R(d). Equipped with the HDS, it may be

possible to calculate the FER and SER of DAC codes. Notice

that to distinguish from the HDS, the spectrum defined in [22],

[23], [24] will be formally referred to as codebook cardinality

spectrum (CCS).

The rest of this paper is arranged as follows. Section II

describes the encoding procedure of DAC codes. Section III

briefly reviews the previous work on the CCS. Section IV

defines the HDS for DAC codes and gives an example to

illustrate how to calculate it by exhaustive enumeration. Sec-

tion V develops a mathematical method to calculate ψn,R(1),
which is then generalized to ψn,R(d) for d ≥ 2 in Sect. VI.

Two implementation issues during calculating ψn,R(d), i.e.,

complexity and convergency, are discussed in Sects. VII and

VIII, respectively. Experimental results are presented in Sect.

IX to verify the correctness of the proposed method. Finally,

Sect. X concludes this paper.

Source Model Following [22], [23], [24], this paper restricts

the research scope to equiprobable binary sources. The reason

is that the tackled issue is difficult, thus we have to begin

with the simplest but non-trivial source model to simplify

the analysis and make many hard problems tractable. Note

that, the concepts proposed in this paper (and previous work

[22], [23], [24]) cannot easily be extended to nonuniform

sources, because in contrast to uniform sources, for nonuni-

form sources, the DAC behaves like a source code rather than

a channel code, making it very difficult to build the concepts

of codebook and space partitioning.

Notation This paper will adopt the notations defined in [26],

which are also used in [24]. We use X to denote a random

variable and f(X) to denote a function of X . Correspondingly,

we use x ∈ X to denote a realization of X , where X is

the alphabet of X , and f(x) to denote a function of x. We

use Xn , (X0, · · · , Xn−1) to denote the tuple of n random

variables and xn , (x0, · · · , xn−1) to denote a realization of

Xn. We use 0n to denote the tuple of n consecutive 0s, while

the meaning of 1n is similar. We define [i : j] , {i, · · · , j}
and (i : j) , {(i + 1), · · · , (j − 1)}, while the meanings

of [i : j) and (i : j] are similar. Further, we define q[i:j) ,

(qi, · · · , qj−1) and the meanings of q[i:j], q(i:j), and q(i:j] are

similar. For brevity, the crossover probability between source

and SI is abbreviated to source-SI crossover probability and

denoted by ǫ. Moreover, we use q to denote the length of

enlarged intervals (the same as [22] and [23], while different

from [24]). The operation of | · | may denote the absolute

value of a number, the cardinality of a set, or the length of an

interval, depending on the operand. The dot product of xn and

yn is denoted by 〈xn, yn〉, and the Hamming distance between

xn and yn is denoted by dH(xn, yn). We use {(l, h]+∆} and

{ξ(l, h]} to denote the interval shifting and interval scaling

operations, respectively, i.e.,
{

{(l, h] + ∆} , (l +∆, h+∆]

{ξ(l, h]} , (ξl, ξh]
. (1)

The clip function max(0, ·) is abbreviated to (·)+, i.e., (·)+ ,

max(0, ·).

II. REVIEW OF DAC ENCODING

Let Y n be a tuple of n independent and uniformly-

distributed (i.u.d.) binary random variables with Yi ∼ p(y) =
0.5, where y ∈ B , {0, 1} and i ∈ [0 : n). Let Xn

be another tuple of n i.u.d. binary random variables with

Xi|{Yi = y} ∼ p(x|y) for x ∈ B. The correlation between

Xn and Y n is modeled as a virtual binary symmetric channel

(BSC) with crossover probability p(0|1) = p(1|0) = ǫ.
According to the Slepian-Wolf theorem [10], if only Y n is

available at the decoder, lossless recovery of Xn will be

possible at rates R ≥ H(X|Y) = Hb(ǫ) bits per symbol (bps),

where Hb(·) denotes the binary entropy function (BEF), no

matter whether Y n is available at the encoder or not.

To compress Xn, the rate-R, where 0 < R < 1,

DAC encoder iteratively maps source symbols onto partially-

overlapped intervals [0, q) and [(1 − q), 1), where q , 2−R

[15], [16]. Let [Li, Hi) be the interval after coding Xi. It is

easy to show that [L0, H0) = [0, 1) and (Hi − Li) = qi =
2−iR [24]. Therefore, we only need to trace either Li or Hi.

It is usually more convenient to trace Li. As shown in [24],

Li = l(Xi), where

l(Xi) , (1− q)〈q[0:i), Xi〉. (2)

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 3

Since the length of the final interval after coding Xn is

always qn, it can be uniquely identified by ⌈− log2 q
n⌉ =

⌈nR⌉ bits. To obtain the bitstream of Xn, we scale Ln to get

S , 2⌈nR⌉Ln. It is easy to see S = s(Xn) , 2⌈nR⌉l(Xn).
The final interval [Ln, Ln + qn) is now mapped onto [S, S +
2⌈nR⌉−nR), which will be referred to as scaled final interval.

An important problem is: What is the range of S? This prob-

lem can be solved by considering the following two extreme

cases: If Xn = 0n, then [Ln, Hn) = [0, qn); and if Xn = 1n,

then [Ln, Hn) = [(1− qn), 1). Hence, Ln ∈ [0, (1− qn)] and

further S ∈ [0, (2⌈nR⌉ − 2⌈nR⌉−nR)]. Then we calculate ⌈S⌉.

Because (⌈nR⌉ − nR) ∈ [0, 1), we have 2⌈nR⌉−nR ∈ [1, 2)
and further ⌈2⌈nR⌉ − 2⌈nR⌉−nR⌉ = (2⌈nR⌉ − 1). Therefore,

⌈S⌉ ∈ [0 : 2⌈nR⌉), implying that ⌈S⌉ can be binarized into a

string of ⌈nR⌉ bits, which is just the DAC bitstream of Xn.

Length of Scaled Final Interval For simplicity, we will no

longer consider the case ⌈nR⌉ > nR in the following. The

reason is: If ⌈nR⌉ > nR, we can always re-encode Xn at rate

R′ = ⌈nR⌉/n, which will produce a bitstream with exactly the

same length. Therefore, in the rest of this paper, S = q−nLn

and

s(Xn) = q−nl(Xn) = (1− q)〈q[0:n)−n, Xn〉. (3)

It is easy to know S ∈ [0, (2nR − 1)] and ⌈S⌉ ∈ [0 : 2nR).
The scaled final interval after coding Xn is always [S, S+1),
i.e., the length of the scaled final interval is always 1.

Illustration of DAC Encoding An illustration to better un-

derstand DAC encoding is shown in Fig. 1. As shown in Fig. 1,

if we take each codeword xn ∈ B
n as a ball, DAC encoding

is equivalent to putting 2n balls into 2nR bins according to

s(xn). The rule is: If s(xn) = 0, xn is put into the 0-th bin;

otherwise if s(xn) ∈ ((m− 1),m], where m ∈ [1 : 2nR), xn

is put into the m-th bin (cf. Fig. 1).

III. REVIEW ON CODEBOOK CARDINALITY SPECTRUM

In this section, we briefly review the main results on CCS

[22], [23], [24]. As shown in [24], a (2nR, n) binary DAC

code is defined as

• an encoder m : Bn → [0 : 2nR) that assigns index m ∈
[0 : 2nR) to each source sequence xn ∈ B

n, and

• a decoder x̂n : [0 : 2nR) → B
n ∪ {e} that assigns an

estimate x̂n ∈ B
n or an error message e to each index

m ∈ [0 : 2nR).

The DAC encoding is in fact a many-to-one nonlinear mapping

B
n → [0 : 2nR), which unequally partitions source space B

n

into 2nR codebooks. Let Cm, where m ∈ [0 : 2nR), be the

m-th codebook. If xn ∈ Cm, then ⌈s(xn)⌉ = m and

s(xn) ∈ ((m− 1),m] ∩ [0, (2nR − 1)]. (4)

Especially, if xn ∈ C0, s(xn) ≡ 0; otherwise, s(xn) ∈ ((m−
1),m]. Since l(xn) = qns(xn),

l(xn) ∈ ((m− 1)qn,mqn] ∩ [0, (1− qn)]. (5)

Especially, if xn ∈ C0, l(xn) ≡ 0; otherwise, l(xn) ∈ ((m −
1)qn,mqn].

An important property of DAC codebooks is cardinality,

which is determined in [22], [23], [24] by defining the so-

called initial spectrum.

Initial Spectrum Let X∞ , (X0, X1, · · ·) and q[0:∞) ,

(q0, q1, · · ·). Both L∞ and H∞ will converge to the following

continuous random variable

U0 , (1− q)〈q[0:∞), X∞〉, (6)

whose probability density function (pdf) f0(u) is called the

initial spectrum [22], [23], [24].

According to the definition of f0(u), for m ∈ [1 : 2nR), the

cardinality of Cm is proportional to the integral of f0(u) over

((m− 1)qn,mqn] in the asymptotic sense, i.e., as n→ ∞,

|Cm| → 2n
∫ mqn

(m−1)qn
f0(u)du. (7)

For n sufficiently large, the interval ((m− 1)qn,mqn] will be

so short that f0(u) almost holds constant in ((m−1)qn,mqn].
Thus |Cm| → f0(mq

n)2n(1−R) as n → ∞, i.e., |Cm| is

proportional to f0(mq
n) in the asymptotic sense. For this

reason, we will call f0(u) the codebook cardinality spec-

trum (CCS) from now on. For equiprobable binary sources,

Pr{Xn = xn} ≡ 2−n for all xn ∈ B
n. Thus, for all xn ∈ Cm,

Pr{Xn = xn|Xn ∈ Cm} ≡ 1/|Cm|, and for all m ∈ [0 : 2nR),
Pr{⌈s(Xn)⌉ = m} = |Cm|2−n.

The 0-th Codebook Because ⌈s(xn)⌉ = 0 only if xn = 0n,

C0 has one and only one codeword 0n in any case, and its

cardinality is always 1, i.e., |C0| ≡ 1.

Conditional CCS The pdf of U0 given Xj = b ∈ B is called

the conditional CCS given Xj = b, and denoted by f0,j(u|b)
[27].

Though DAC codebook cardinality has been well studied,

very little about DAC codebook structure is known up to now.

The only thing we know is that for a (2nR, n) binary DAC

code, as n → ∞, the proportion of twin leaf nodes in the

decoding tree will tend to (2− 2R). Thus, the decoding error

probability is lower bounded by ǫ(2 − 2R), where ǫ is the

source-SI crossover probability [24].

IV. HAMMING DISTANCE SPECTRUM

Just as channel codes, it is rather intuitive that another very

important property of DAC codes is how far (in Hamming

distance) the codewords in each codebook keep away from

each other. Therefore, we will below define the Hamming

distance spectrum (HDS) to measure quantitatively the dis-

tribution of inter-codeword Hamming distances within each

DAC codebook, which will be helpful for understanding DAC

codebook structure.

A. Definition of Hamming Distance Spectrum

Codeword HDS The HDS w.r.t. codeword Xn is defined as

kd(X
n) ,

∣

∣

∣

{

X̃n : ⌈s(Xn)⌉ = ⌈s(X̃n)⌉ and dH(Xn, X̃n) = d
}∣

∣

∣ .

(8)

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 4

0 1 2 2 3
nR

− 2 2
nR

− 2 1
nR

−

bin 1 bin 2 bin (2 2)
nR

− bin (2 1)
nR

−

……
… … ……

Fig. 1. Explanation of DAC encoding with ball binning. The horizontal axis is s(xn).

In plain words, kd(X
n) is the number of codewords X̃n

in codebook ⌈s(Xn)⌉ = m that are d-away (in Hamming

distance) from Xn. It is easy to see d ∈ [0 : n] and

0 ≤ kd(X
n) ≤

(

n

d

)

. If we define k0(X
n) = 1, then

∑n

d=0 kd(X
n) = |Cm|.

Codebook HDS The HDS of the m-th codebook is defined

as

φm(d) , E[kd(X
n)|Xn ∈ Cm]. (9)

Code HDS The HDS of the (2nR, n) DAC code is defined as

ψn,R(d) , E[kd(X
n)]. (10)

It is easy to see that φm(d) is proportional to the number

of d-away codeword-pairs within the m-th codebook and

similarly, ψn,R(d) is proportional to the average number of

d-away codeword-pairs within all codebooks of the (2nR, n)
DAC code.

Asymptotic Code HDS The asymptotic HDS of the rate-R
DAC code is defined as

λR(d) , lim
n→∞

ψn,R(d). (11)

B. Calculating HDS by Exhaustive Enumeration

In practice, ψn,R(d) can be calculated by exhaustive enu-

meration. Let us first consider φm(d). For equiprobable binary

sources,

φm(d) =
∑

xn∈Cm

Pr{Xn = xn|Xn ∈ Cm}kd(xn)

= (1/|Cm|)
∑

xn∈Cm

kd(x
n), (12)

where kd(x
n) is a realization of kd(X

n) [23]. Further, we can

obtain

ψn,R(d) =

2nR−1
∑

m=0

Pr{⌈s(Xn)⌉ = m}φm(d)

= 2−n

2nR−1
∑

m=0

∑

xn∈Cm

kd(x
n). (13)

Convexity of Sum-of-HDS Since
∑n

d=0 kd(x
n) ≡ |Cm| for

all xn ∈ Cm, we have [24]

n
∑

d=0

ψn,R(d) = 2−n

2nR−1
∑

m=0

|Cm|2

→ 2n(1−R)

∫ 1

0

f20 (u)du, (14)

as n→ ∞. Hence,

Γn ,

∑n

d=0 ψn,R(d)

2n(1−R)
→
∫ 1

0

f20 (u)du ≥ 1. (15)

After expansion, we have Γn =
∏n−1

i=0 γi, where γi is the level-

i expansion factor that is defined as the ratio of the number of

level-(i+1) nodes to that of level-i nodes in the DAC decoding

tree [23]. Apparently, Γ∞ is a nonnegative and convex function

in f0(u), which takes the minumum value 1 only when f0(u)
is uniform over [0, 1). Similarly, we have

n
∑

d=0

ψn,R(d) ≥ 2n(1−R) (16)

and the equality holds only if |Cm| ≡ 2n(1−R), i.e., source

space B
n is equally partitioned into 2nR codebooks of cardi-

nality 2n(1−R).

C. Example of Hamming Distance Spectrum

To illustrate the concept of HDS, we give an example to

show how to calculate ψn,R(d) for n = 4 and R = 0.5.

The source space B
n contains 2n = 16 codewords and is

partitioned into 2nR = 4 codebooks. We list all codewords

of the source space in Tab. I. For each codeword xn, s(xn)
(the lower bound of the scaled final interval) and m (the

corresponding codebook index) are included in Tab. I, where

different codebooks are marked with different colors for clar-

ity. We also plot the positions of s(xn) for all codewords xn

in Fig. 2. It can be seen that |C0| = 1, |C1| = 4, |C2| = 7, and

|C3| = 4. We list the HDS of each codeword in Tab. I. After

a simple calculation, we obtain the HDS of each codebook

and the code HDS, as shown in Tab. II. It is easy to verify

Γn = 5.125/4 > 1.

V. MATHEMATICAL CALCULATION OF ψn,R(1)

For a large n, it is difficult to calculate code HDS ψn,R(d)
through exhaustive enumeration in Subsect. IV-C because it

needs the HDS kd(x
n) of all 2n codewords. To get around

it, we propose below a mathematical method that is able

to obtain ψn,R(d) directly in the absence of kd(x
n). The

procedure of the proposed method is still very time-consuming

for large d. Nevertheless, this is usually enough in practice

because the decoding failure of DAC codes is caused mainly

by closely-packed (in Hamming distance) codewords within

each codebook. For clarity, we first use the simplest case

d = 1 to illustrate the principle of the developed method in

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 5

0

1

2

3

0001 0100

0010 0011

1000

0101

0110

1001

1010

0111

1100

1011

1101

1110 1111

0000

()
n

s x

Fig. 2. Example for illustrating the mapping of xn and s(xn), where n = 4 and R = 0.5. Each node at the horizontal axis denotes the position of s(xn)
corresponding to codeword xn. Different codebooks are marked with different colors.

TABLE I
EXAMPLE OF CODEWORD HDS

xn s(xn) m k0(xn) k1(xn) k2(xn) k3(xn) k4(xn)

0000 0.0000 0 1 0 0 0 0

0001 0.4142 1 1 1 2 0 0

0010 0.5858 1 1 1 2 0 0

0011 1.0000 1 1 2 0 1 0

0100 0.8284 1 1 0 2 1 0

0101 1.2426 2 1 1 3 1 1

0110 1.4142 2 1 1 3 1 1

0111 1.8284 2 1 2 0 3 1

1000 1.1716 2 1 3 0 2 1

1001 1.5858 2 1 1 3 1 1

1010 1.7574 2 1 1 3 1 1

1011 2.1716 3 1 1 2 0 0

1100 2.0000 2 1 1 4 1 0

1101 2.4142 3 1 1 2 0 0

1110 2.5858 3 1 1 2 0 0

1111 3.0000 3 1 3 0 0 0

Sum — — 16 20 28 12 6

TABLE II
EXAMPLE OF CODEBOOK HDS AND CODE HDS

Term d = 0 d = 1 d = 2 d = 3 d = 4 Sum

φ0(d) 1 0 0 0 0 1
φ1(d) 1 4/4 6/4 2/4 0 4
φ2(d) 1 10/7 16/7 10/7 6/7 7
φ3(d) 1 6/4 6/4 0 0 4
ψn,R(d) 1 20/16 28/16 12/16 6/16 5.125

this section and then extend it to the general case d ≥ 2 in

the next section. The core idea of our proposed method is to

expand ψn,R(d) as the sum of multiple tractable terms (called

atoms below). To achieve this goal, we define the following

important concept.

XOR Pattern We refer to Zn = (Xn ⊕ X̃n) as the XOR

pattern between Xn and X̃n, where Xn and X̃n are two

binary vectors.

A. Expansion of ψn,R(1) as Sum-of-Atoms

Given dH(Xn, X̃n) = 1, there are
(

n

1

)

= n different XOR

patterns between Xn and X̃n, which must take the form of

zn(j) , (0j , 1, 0n−j−1), where j ∈ [0 : n). Let zi(j) be the

i-th element of zn(j), then zj(j) = 1 and zi(j) = 0 for all

other i 6= j. We define

k
(j)
1 (Xn) ,
∣

∣

∣

{

X̃n : ⌈s(X̃n)⌉ = ⌈s(Xn)⌉ and (Xn ⊕ X̃n) = zn(j)
}∣

∣

∣ .

(17)

In plain words, k
(j)
1 (Xn) is the number of codewords X̃n in

codebook ⌈s(Xn)⌉ = m that satisfy (Xn ⊕ X̃n) = zn(j).

It is easy to see k
(j)
1 (Xn) = 0 or 1, and

∑n−1
j=0 k

(j)
1 (Xn) =

k1(X
n), where kd(X

n) is the codeword HDS of Xn (see

Subsect. IV-A). With the help of XOR patterns, we can expand

ψn,R(1) as ψn,R(1) =
∑n−1

j=0 ωj , where ωj , E[k
(j)
1 (Xn)].

We refer to ωj as molecule, which can be further expanded as

ωj = Pr{Xj = 0}βj(0) + Pr{Xj = 1}βj(1)
= (1/2) (βj(0) + βj(1)) , (18)

where βj(b) , E[k
(j)
1 (Xn)|Xj = b] for b ∈ B. Similarly, we

refer to βj(b) as atom. In this way, we expand ψn,R(1) as

the sum of n molecules, each of which is the average of two

atoms. The problem finally boils down to calculating atoms

βj(b) for all j ∈ [0 : n) and b ∈ B.

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 6

B. Definition of Risky Interval

Before calculating βj(b), we need to introduce the concept

of risky interval. From (3), it is easy to see that given (Xn ⊕
X̃n) = zn(j),

s(X̃n) =

{

s(Xn) + (1− q)qj−n, if Xj = 0

s(Xn)− (1− q)qj−n, if Xj = 1
, (19)

which can be abbreviated to s(X̃n) = s(Xn) + τj(b), where

b ∈ B is the value of Xj and τj(b) , (1− q)(−1)bqj−n. For

m ∈ [1 : 2nR), notice the following two points:

• if ⌈s(Xn)⌉ = m, then s(Xn) ∈ ((m− 1),m];
• if ⌈s(X̃n)⌉ = m, then s(X̃n) ∈ ((m − 1),m] and

s(Xn) ∈ {((m−1),m]− τj(b)}, where {((m−1),m]−
τj(b)} denotes a shifted version of ((m−1),m] (refer to

the Notation part of Sect. I for the definition of interval

shifting operation).

Clearly, given Xj = b and ⌈s(Xn)⌉ = m ∈ [1 : 2nR), the

necessary and sufficient condition for the existence of a binary

vector X̃n in the m-th codebook satisfying (X̃n ⊕ Xn) =

zn(j) is s(Xn) ∈ I(b)
m,j , where

I(b)
m,j , {((m− 1),m]− τj(b)} ∩ ((m− 1),m]. (20)

Conversely, once s(Xn) falls into I(b)
m,j , there must exist a

binary vector X̃n in the m-th codebook that satisfies (Xn ⊕
X̃n) = zn(j). Let

{

δ−j (b) , min (1, (|τj(b)| − τj(b)) /2)

δ+j (b) , min (1, (|τj(b)|+ τj(b)) /2)
, (21)

where |τj(b)| is the absolute value of τj(b). Then (20) can be

rewritten as

I(b)
m,j =

(

(m− 1) + δ−j (b),m− δ+j (b)
]

. (22)

where m ∈ [1 : 2nR), j ∈ [0 : n), and b ∈ B. We refer to I(b)
m,j

as a risky interval. It is easy to know I(b)
m,j = ∅ if |τj(b)| ≥ 1.

The 0-th Risky Interval Because C0 contains only one code-

word 0n, I(b)
m,j is meaningless for m = 0. Thus, we will ignore

I(b)
0,j in the following discussion.

Length of Risky Interval Let |I(b)
m,j | be the length of I(b)

m,j

and (·)+ , max(0, ·), then

|I(b)
m,j | = (1− |τj(b)|)+ = (1− (1− q)qj−n)+. (23)

Obviously, |I(b)
m,j | ∈ [0, 1), |I(0)

m,j | = |I(1)
m,j |, and |I(b)

1,j | = · · · =
|I(b)

2nR−1,j
|. In addition, |I(b)

m,j | is a nondecreasing function

w.r.t. j, i.e., 0 ≤ |I(b)
m,0| ≤ · · · ≤ |I(b)

m,n−1| < 1.

Example of Risky Interval Let n = 4 and R = 0.5, then

m ∈ [0 : 2nR) = {0, 1, 2, 3}, j ∈ [0 : n) = {0, 1, 2, 3}, and

q = 1/
√
2. It is easy to obtain

(|τ0(b)|, |τ1(b)|, |τ2(b)|, |τ3(b)|) =
(1.1716, 0.8284, 0.5858, 0.4142). (24)

The risky intervals I(b)
m,j for all m ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3},

and b ∈ B are listed in Tab. III. For clarity, the relative

TABLE III
EXAMPLE OF RISKY INTERVALS

Term j = 0 j = 1 j = 2 j = 3

I(0)
1,j ∅ (0, 0.1716] (0, 0.4142] (0, 0.5858]

I(0)
2,j ∅ (1, 1.1716] (1, 1.4142] (1, 1.5858]

I(0)
3,j ∅ (2, 2.1716] (2, 2.4142] (2, 2.5858]

I(1)
1,j ∅ (0.8284, 1] (0.5858, 1] (0.4142, 1]

I(1)
2,j ∅ (1.8284, 2] (1.5858, 2] (1.4142, 2]

I(1)
3,j ∅ (2.8284, 3] (2.5858, 3] (2.4142, 3]

|I(b)
m,j | 0 0.1716 0.4142 0.5858

relationship of I(b)
m,j for different j and b is illustrated by Fig.

3. It is easy to see that I(b)
m,j ⊂ I(b)

m,j′ for j < j′. It can be

seen that because |τ0(b)| > 1, I(b)
m,0 = ∅ for all m ∈ {1, 2, 3}.

In addition, we can find that |I(b)
m,j | is indeed nondecreasing

w.r.t. j.

C. Link between Atom and Risky Interval

According to the definitions of βj(b) and I(b)
m,j , we can

easily link them as

βj(b) =
2nR−1
∑

m=0

Pr{⌈s(Xn)⌉ = m|Xj = b}p(I(b)
m,j |m, b),

(25)

where

p(I(b)
m,j |m, b) , Pr{s(Xn) ∈ I(b)

m,j |⌈s(Xn)⌉ = m,Xj = b}.
(26)

It is easy to see that in the asymptotic sense, i.e., as n→ ∞,

p(I(b)
m,j |m, b) →

∫

{qnI
(b)
m,j

}
f0,j(u|b)du

∫mqn

(m−1)qn
f0,j(u|b)du

, (27)

where f0,j(u|b) is the conditional CCS given Xj = b (see

Sect. III) and {qnI(b)
m,j} denotes a scaled version of I(b)

m,j (see

the Notation part of Sect. I for the definition of interval scaling

operation). As n increases, ((m−1)qn,mqn] will converge to

a real number. Hence, for n sufficiently large, f0,j(u|b) will

be approximately uniform over ((m− 1)qn,mqn] and

p(I(b)
m,j |m, b) →

|qnI(b)
m,j |

|((m− 1)qn,mqn]| = |I(b)
m,j |

= (1− (1− q)qj−n)+, (28)

where j ∈ [0 : n). Equivalently,

p(I(b)
m,n−j |m, b) → (1− (1− q)q−j)+, (29)

where j ∈ [1 : n]. It can be seen that p(I(b)
m,n−j |m, b) keeps

the same for all m ∈ [1 : 2nR), thus for n sufficiently

large, βn−j(b) → (1 − (1 − q)q−j)+. It is easy to know

that βn−j(b) ∈ [0, 1), βn−j(0) = βn−j(1), and βn−j(b) is

a nonincreasing function w.r.t. j.

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 7

... ...

(1,]m m−

(0)

, 3m n−

I

(0)

, 1m n−

I

(1)

, 2m n−

I

(1)

, 1m n−

I

1m − m

(1)

, 3m n−

I

(0)

, 2m n−

I

Fig. 3. Illustration of risky interval I(b)
m,j for q = 1/

√
2. The horizontal axis is s(xn).

D. Calculation of Code HDS

After knowing atoms, we can obtain molecules ωn−j →
(1− (1− q)q−j)+, where j ∈ [1 : n]. In turn, we can obtain

the code HDS as below

ψn,R(1) →
n
∑

j=1

(1− (1− q)q−j)+. (30)

Finally, we can obtain the asymptotic code HDS as below

λR(1) =

∞
∑

j=1

(1− (1− q)q−j)+. (31)

VI. MATHEMATICAL CALCULATION OF ψn,R(d) FOR d ≥ 2

One can easily extend the method developed in Sect. V to

the general case d ≥ 2. This section will first expand ψn,R(d)
as the sum of atoms, then define the risky interval to calculate

atoms, and finally give the expression for ψn,R(d).

A. Expansion of ψn,R(d) as Sum-of-Atoms

Given dH(Xn, X̃n) = d, there are
(

n

d

)

different XOR

patterns between Xn and X̃n. Let j , (j1, · · · , jd), where

0 ≤ j1 < · · · < jd < n. The XOR pattern between Xn and

X̃n must take the form of

zn(j) , (0j1 , 1, 0j2−j1−1, · · · , 0jd−jd−1−1, 1, 0n−jd−1).
(32)

In other words, zj1(j) = · · · = zjd(j) = 1 and zi(j) = 0 for

other i /∈ j, where zi(j) denotes the i-th element of zn(j).
Beginning with j1 ∈ [0 : (n−d)], we can obtain jd′ ∈ (jd′−1 :
n− d+ d′) for d′ ∈ [2 : d] by recursion. Let us define

k
(j)
d (Xn) ,
∣

∣

∣

{

X̃n : ⌈s(X̃n)⌉ = ⌈s(Xn)⌉ and (Xn ⊕ X̃n) = zn(j)
}∣

∣

∣

(33)

and ωj , E[k
(j)
d (Xn)]. Then we can expand ψn,R(d) as

ψn,R(d) =

n−d
∑

j1=0

· · ·
n−1
∑

jd=jd−1+1

ωj . (34)

Let Xj , (Xj1 , · · · , Xjd) and b , (b1, · · · , bd) ∈ B
d, then

we can further expand ωj as ωj = 2−d
∑1d

b=0d βj(b), where

βj(b) , E[k
(j)
d (Xn)|Xj = b].

B. Length of Risky Interval

According to (3), given (Xn ⊕ X̃n) = zn(j), we have

s(X̃n) = s(Xn) + τj(b), where b ∈ B
d is the value of Xj

and

τj(b) , (1− q)
d
∑

d′=1

(−1)bd′ qjd′−n. (35)

Given Xj = b and ⌈s(Xn)⌉ = m ∈ [1 : 2nR), the necessary

and sufficient condition for the existence of a binary vector

X̃n in the m-th codebook satisfying (X̃n ⊕Xn) = zn(j) is

s(Xn) ∈ I(b)
m,j , where

I(b)
m,j , {((m− 1),m]− τj(b)} ∩ ((m− 1),m]. (36)

Let us define
{

δ−j (b) , min (1, (|τj(b)| − τj(b)) /2)

δ+j (b) , min (1, (|τj(b)|+ τj(b)) /2)
. (37)

It is easy to obtain the risky interval

I(b)
m,j =

(

(m− 1) + δ−j (b),m− δ+j (b)
]

. (38)

Obviously, I(b)
m,j = ∅ if |τj(b)| ≥ 1. The length of I(b)

m,j is

|I(b)
m,j | = (1− |τj(b)|)+.

C. Link between Atom and Risky Interval

According to the definitions of βj(b) and I(b)
m,j , we have

βj(b) =
2nR−1
∑

m=0

Pr{⌈s(Xn)⌉ = m|Xj = b}p(I(b)
m,j |m, b),

(39)

where

p(I(b)
m,j |m, b) , Pr{s(Xn) ∈ I(b)

m,j |⌈s(Xn)⌉ = m,Xj = b}.
(40)

In the asymptotic sense,

p(I(b)
m,j |m, b) → |I(b)

m,j | = (1− |τj(b)|)+. (41)

Let (n−j) , (n−j1, · · · , n−jd) for 1 ≤ j1 < · · · < jd ≤ n,

then (41) is equivalent to

p(I(b)
m,n−j |m, b) → (1− (1− q) |ρj(b)|)+ , (42)

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 8

where

ρj(b) ,
d
∑

d′=1

(−1)bd′ q−jd′ . (43)

Therefore, for n sufficiently large,

βn−j(b) → (1− (1− q) |ρj(b)|)+ . (44)

After a simple deduction, we obtain the tight ranges of jd′ in

(43) as follows: j1 ∈ [1 : (n − d + 1)] and jd′ ∈ (jd′−1 :
(n− d+ d′)] for d′ ∈ [2 : d].

D. Calculation of Code HDS

After knowing atoms, we can obtain molecules as below

ωn−j → 2−d

1d
∑

b=0d

(1− (1− q)|ρj(b)|)+, (45)

where 1 ≤ j1 < · · · < jd ≤ n. In turn, we can obtain the code

HDS as below

ψn,R(d) → 2−d

n−d+1
∑

j1=1

· · ·
n
∑

jd=jd−1+1

1d
∑

b=0d

(1− (1− q)|ρj(b)|)+.

(46)

Finally, we can obtain the asymptotic code HDS as below

λR(d) = 2−d

∞
∑

j1=1

· · ·
∞
∑

jd=jd−1+1

1d
∑

b=0d

(1− (1− q)|ρj(b)|)+.

(47)

VII. COMPLEXITY OF CALCULATING DAC HDS

The complexity of (46) is O(
(

n

d

)

2d). To reduce the com-

plexity, we exploit the fact ρj(b) = −ρj(1d ⊕ b) to obtain

ψn,R(d) = 21−d

n−d+1
∑

j1=1

· · ·
n
∑

jd=jd−1+1

(0,1d−1)
∑

b=0d

(1− (1− q)|ρj(b)|)+.

(48)

Therefore, in the following, the leading bit of b will always

be 0 without explicit declaration. Though the complexity of

(46) is now reduced to O(
(

n

d

)

2d−1), it is still unacceptable for

large n and d. Thus the proposed method is feasible only for

small n and d.

The complexity of (48) can further be reduced by swapping

the order of summations

ψn,R(d) = 21−d

(0,1d−1)
∑

b=0d

θ(b), (49)

where θ(b) ,
∑n

jd=d η(b, jd) and further

η(b, jd) ,

jd−1
∑

jd−1=d−1

· · ·
j2−1
∑

j1=1

(1− (1− q)|ρj(b)|)+. (50)

The complexity of θ(b) is O(
(

n

d

)

), still high for large n and

d. However, we find that in some special cases, η(b, jd) ≡ 0
for all jd > J(b), where J(b) is an integer totally de-

pending on q while unrelated to n. Thus, we can obtain

θ(b) =
∑J(b)

jd=d η(b, jd), whose complexity is O(
(

J(b)
d

)

). For

n ≫ J(b), the complexity of θ(b) will be significantly

reduced.

The trick for finding J(b) is to make |ρj(b)| ≥ (1 − q)−1

for all jd > J(b). However, up to now, this problem is solved

only for the special case that there is no more than one 1 in

b, while still remains open for the general case. To facilitate

the description, we divide the case that there is no more than

one 1 in b into three subcases:

• b is an all-0 vector, i.e., b = 0d;

• there is only one 0 before the 1 in b, i.e., b = (0, 1, 0d−2);
• there are two or more 0s before the 1 in b, i.e., b =
(0a, 1, 0d−a−1), where a ≥ 2.

We list the expressions of J(b) and θ(b) in the above three

subcases in Tab. IV, while the detailed deductions are placed

in the Appendix.

Below we will give some examples of J(b) and θ(b) in

special cases by looking up Tab. IV and discuss the existence

of J(b) in general cases. Afterwards, we will propose an

approximation of ψn,R(d) for large n and d, and finally justify

the practical values of (46).

A. Examples in Special Cases

1) Examples when b = 0d: For d = 1, by looking up Tab.

IV, we can obtain

J(0) = ⌊logq (1− q)⌋

θ(0) =

J(0)
∑

j=1

(

1− (1− q)q−j
) . (51)

For d = 2, by looking up Tab. IV, we can obtain

J(02) = ⌊logq (1− q)− logq (2− q−1)⌋

θ(02) =

J(02)
∑

j2=2

j2−1
∑

j1=1

(

1− (1− q)(q−j2 + q−j1)
) . (52)

2) Examples when b = (0, 1, 0d−2): For d = 2, by looking

up Tab. IV, we can obtain

J(01) = ⌊2 logq (1− q)⌋

θ(01) =

J(01)
∑

j2=2

j2−1
∑

j1=1

(

1− (1− q)(q−j2 − q−j1)
) . (53)

For d = 3, by looking up Tab. IV, we can obtain

J(010) = ⌊2 logq (1− q)− logq (2− q−1)⌋

θ(010) =

J(010)
∑

j3=3

j3−1
∑

j2=2

j2−1
∑

j1=1

(

1− (1− q)(q−j3 − q−j2 + q−j1)
) .

(54)

3) Examples when b = (0a, 1, 0d−a−1) and a ≥ 2: For

d = 3 and a = 2, by looking up Tab. IV, we can obtain

J(001) = ⌊logq (1− q)− logq (2q
−1 − q−2)⌋

θ(001) =

J(001)
∑

j3=3

j3−1
∑

j2=2

j2−1
∑

j1=1

(

1− (1− q)(q−j3 + q−j2 − q−j1)
) .

(55)

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 9

TABLE IV
EXAMPLE OF J(b) AND θ(b)

Term Expression

J(0d)
⌊

logq (1− q)− logq (2− q1−d)
⌋

J(010d−2)
⌊

2 logq (1− q)− logq (2− q2−d)
⌋

J(0a10d−a−1)
⌊

− logq

(

(2− q1−d)(1− q)−1 + 2qa−d
)⌋

θ(0d)

J(0d)
∑

jd=d

jd−1
∑

jd−1=d−1

· · ·
j2−1
∑

j1=1

(

1− (1− q)
d
∑

d′=1

q−jd′

)

θ(010d−2)

J(010d−2)
∑

jd=d

jd−1
∑

jd−1=d−1

· · ·
j2−1
∑

j1=1

(

1− (1− q)

(

d
∑

d′=1

q−jd′ − 2q−jd−1

))

θ(0a10d−a−1)

J(0a10d−a−1)
∑

jd=d

jd−1
∑

jd−1=d−1

· · ·
j2−1
∑

j1=1

(

1− (1− q)

(

d
∑

d′=1

q−jd′ − 2q−ja+1

))

B. Discussions in General Cases

As shown above, if the leading bit of b is 0 and b contains no

more than one 1, there will exist an integer J(b) unrelated to

n such that η(b, jd) ≡ 0 for all jd > J(b). The secret hidden

behind it is that ρj(b) is always positive in this case. On the

contrary, if there are more than one 1s in b, the positiveness of

ρj(b) cannot be guaranteed so that it is unknown whether there

still exists an integer J(b) unrelated to n such that η(b, jd) ≡ 0
for all jd > J(b). Through many experiments, we find that

η(b, jd) usually tends to zero as jd increases. Thus, in most

cases, there exists an integer J(b) unrelated to n such that

η(b, jd) ≡ 0 for all jd > J(b). However, we are not able

to prove this conjecture. Note that, if J(b) exists, the two

codewords Xn and X̃n belonging to the same codebook differ

from each other only in the last J(b) symbols.

C. Approximation of ψn,R(d) for large n and d

The complexity of calculating ψn,R(d) by (46) is unaccept-

able for large n and d, so we give below a simple method

to calculate the approximation of ψn,R(d) for large n and d.

Let Xn and X̃n be two binary sequences belonging to the

same codebook. As dH(Xn, X̃n) = d increases, Xn and X̃n

will become less correlated. Thus, for a large d, Xn and X̃n

can be taken as two binary sequences that are independently

drawn from B
n. This means: For d sufficiently large, ψn,R(d)

can be well approximated by the scaled combination formula

ψn,R(d) ≈
(

n

d

)(∫ 1

0

f20 (u)du

)

2n(1−R), (56)

where
(

∫ 1

0
f20 (u)du

)

2n(1−R) is in fact the average codebook

cardinality [24].

D. Practical Values of the Proposed Method

To obtain a complete HDS by (46), one must try all possible

source sequences xn ∈ B
n and all possible XOR patterns

zn ∈ B
n. Actually, by the Monte-Carlo method, one may

obtain an approximate HDS much faster. Naturally, one may

ask: Does the proposed method make sense in practice? Our

answer is YES. There are two reasons for this answer.

First, the decoding failures of DAC codes come mainly

from closely-packed (in Hamming distance) codewords in each

codebook (cf. Fig. 7(a) in Subsect. IX-D), so it is unnecessary

to calculate the exact value of ψn,R(d) for large d by (46).

Though the complexity of computing ψn,R(d) by (46) is rather

high for large d, it is very low for small d (much faster than the

Monte-Carlo method). Hence, the proposed method is useful

in practice.

Second, the proposed method may be used to compute

the FER of DAC codes. Let yn be the SI available only

at the decoder and x̂n be the recovered version of xn.

If we assume that xn−1 is known at the decoder, then

x̂n−1 = xn−1. Let Pr{e} be the FER and Pr{e|xn−1} be

the conditional FER given xn−1 known at the decoder, then

Pr{e|xn−1} = Pr{x̂n−1 6= xn−1} and Pr{e|xn−1} < Pr{e}.

Given xn ∈ Cm, cn = xn ⊕ (0n−1, 1) may or may not belong

to Cm. If cn /∈ Cm, the decoding will always be correct,

regardless of yn−1; otherwise, i.e., if cn ∈ Cm, the correctness

of the decoding purely depends on yn−1. Therefore,

Pr{e|xn−1} = Pr{cn ∈ Cm} · Pr{yn−1 6= xn−1}. (57)

It is easy to obtain

Pr{cn ∈ Cm} = Pr{s(xn) ∈ I(b)
m,n−1}. (58)

Let Pr{X 6= Y } = ǫ. By (29), we can obtain Pr{e|xn−1} →
(2 − 2R)ǫ as n → ∞, which is just the lower bound given

in [24]. The above method can be extended to more complex

cases, i.e., all but the last n′ > 1 symbols of each sequence

are known at the decoder. When n′ = n, Pr{e|xn−n′} =
Pr{e}. Actually, the residual errors of DAC codes happen

mainly at sequence tails (cf. Fig. 7(b) in Subsect. IX-D),

so Pr{e|xn−n′} may be very close to Pr{e} for n′ ≪ n.

Therefore, Pr{e|xn−n′}, where n′ ≪ n, may be taken as an

approximation of Pr{e} and the complexity of computing the

FER of DAC codes is significantly reduced.

VIII. CONVERGENCY OF DAC HDS

Another interesting question regarding the DAC HDS is:

Will ψn,R(d) finally converge to a finite value for any finite d
as n goes to infinity, i.e., λR(d) <∞ for d <∞? The answer

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 10

in general is NO. However, we will show below that for d = 1
and 2, the answer is YES.

In the case of d = 1, according to the analysis in Subsect.

VII-A, we can obtain

λR(1) =

J(0)
∑

j=1

(

1− (1− q)q−j
)

, (59)

where J(0) is given by (51). Apparently, λR(1) < ∞, i.e.,

λR(d) converges for d = 1.

In the case of d = 2, according to the analysis in Subsect.

VII-A, we can obtain

λR(2) =
1

2

J(00)
∑

j2=2

j2−1
∑

j1=1

(

1− (1− q)(q−j2 + q−j1)
)

+

J(01)
∑

j2=2

j2−1
∑

j1=1

(

1− (1− q)(q−j2 − q−j1)
)

 , (60)

where J(00) and J(01) are given by (52) and (53), respec-

tively. Apparently, λR(2) < ∞, i.e., λR(d) converges for

d = 2.

The convergency of ψn,R(d) for d ≥ 3 is unknown.

However, we have found that ψn,R(d) may not converge in

some cases. For example, if d = 3 and q = (
√
5− 1)/2, it is

easy to verify (q−j3 − q−(j3−1) − q−(j3−2)) ≡ 0 and thus

(1− (1− q)|q−j3 − q−(j3−1) − q−(j3−2)|)+ ≡ 1. (61)

Therefore,

θ(011) =

n
∑

j3=3

j3−1
∑

j2=2

j2−1
∑

j1=1

(1− (1− q)|q−j3 − q−j2 − q−j1 |)+

>

n
∑

j3=3

(1− (1− q)|q−j3 − q−(j3−1) − q−(j3−2)|)+

= n− 2. (62)

As n goes to infinity, θ(011) will tend to infinity, i.e., ψn,R(d)
does not converge for d = 3 if q = (

√
5− 1)/2.

IX. EXPERIMENTAL RESULTS

We implemented (46) in MATLAB to calculate the theo-

retical values of ψn,R(d) and the DAC codec in C language

to obtain the empirical values of ψn,R(d). Since DAC HDS

does not depend on SI, we ignored SI in implementation for

simplicity. We first generated a length-n equiprobable binary

sequence as the source and compressed it by the DAC encoder.

Then, the DAC decoder parsed the bitstream through a depth-

first full search that was implemented by a recursive function.

For each d ∈ [0 : n], the decoder counted the number of paths

that were d-away (in Hamming distance) from the source.

For fairness, 103 trials were run and the average number of

paths that were d-away from the source was output as the

empirical value of ψn,R(d). The precision of the used DAC

codec was 32-bit. Four experiments were conducted to study

the properties of DAC codes from different aspects.

TABLE V
COMPARISON OF THEORETICAL AND EMPIRICAL VALUES OF Γn

R 2/6 3/6 4/6 5/6

Theoretical Γn 1.6094 1.3046 1.1394 1.1677
Empirical Γn 1.6121 1.3071 1.1384 1.1675
∫ 1
0 f

2(u)du 1.6147 1.3047 1.1340 1.1541

A. Correctness Verification of (46)

The aim of the first experiment is to verify the correctness

of (46), which was achieved by comparing the theoretical

values of ψn,R(d) with its empirical values. Some results for

code length n = 12 are presented in Fig. 4. Notice that since

ψn,R(0) ≡ 1, it is not plotted in Fig. 4. We tested four different

code rates: R = 2/6, 3/6, 4/6, and 5/6, but only the results for

R = 2/6 and 5/6 are included in Fig. 4 for conciseness. It can

be seen that the theoretical values of ψn,R(d) coincide with

its empirical values perfectly, which confirms the correctness

of (46). Similar results are obtained for different values of n
and R.

In addition, we calculated the theoretical values of Γn using

(15) and its empirical values by experiments. The results are

listed in Tab. V, where the numerical values of
∫ 1

0
f2(u)du,

which were obtained through the numerical algorithm in [23],

are also included. It can be seen that the theoretical values of

Γn, the empirical values of Γn, and the numerical values of
∫ 1

0
f2(u)du are very close to each other. These findings also

confirm the correctness of (46).

B. Convergency of DAC HDS

The aim of the second experiment is to study the conver-

gency of DAC HDS, which was achieved by trying different

code lengths n ranged from 12 to 28. Both theoretical and

empirical values of ψn,R(d) are plotted in Fig. 5. Considering

the computational complexity, only the results of d = 1, 2,

and 3 are included in Fig. 5. To show how code rate R
impacts the convergency of DAC HDS, two special code rates

R = 0.5 and log2 [(
√
5− 1)/2] were tried. From Fig. 5, it

can be seen that the theoretical values of ψn,R(d) coincide

with its empirical values perfectly. For d = 1 and 2, ψn,R(d)
remains constant as code length n increases, i.e., ψn,R(d)
converges as n goes to infinity. For d = 3, ψn,R(d) remains

constant when code rate R = 0.5 while grows continuously

when R = log2 [(
√
5− 1)/2] as n increases. Therefore, the

convergency of ψn,R(d) for d ≥ 3 depends on code rate: At

some code rates, ψn,R(d) may tend to infinity as code length

increases, i.e., does not converge. This property of DAC codes

is very different from that of random codes because according

to the law of large numbers (LLN), for any d < ∞, ψn,R(d)
of random codes will tend to 0 as code length goes to infinity.

C. Comparison of DAC Codes with Other Codes

The aim of the third experiment is to compare DAC codes

with random codes and some practical channel codes. For code

length n = 24, the empirical HDS of DAC codes and the

theoretical HDS of random codes are given in Fig. 6. For

random codes, the inter-codeword Hamming distances within

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 11

2 4 6 8 10 12

10

20

30

40

50

60

70

80

d

ψ
n
,R
(d
)

n = 12, R = 2/6

Theoretical
Empirical

(a)

2 4 6 8 10 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d

ψ
n
,R
(d
)

n = 12, R = 5/6

Theoretical
Empirical

(b)

Fig. 4. Correctness verification of (46) for n = 12. (a) R = 2/6. (b) R = 5/6.

12 14 16 18 20 22 24 26 28
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

n

ψ
n
,R
(d
)

R = 1/2

Theoretical, d = 1
Theoretical, d = 2
Theoretical, d = 3
Empirical, d = 1
Empirical, d = 2
Empirical, d = 3

(a)

12 14 16 18 20 22 24 26 28
0

1

2

3

4

5

6

7

n

ψ
n
,R
(d
)

R = log2[(
√
5− 1)/2]

Theoretical, d = 1
Theoretical, d = 2
Theoretical, d = 3
Empirical, d = 1
Empirical, d = 2
Empirical, d = 3

(b)

Fig. 5. Convergency of DAC HDS. (a) R = 0.5. (b) R = log2 [(
√
5− 1)/2].

each codebook obey the binomial distribution, so ψn,R(d) can

be calculated by (56). It can be seen that at low rates, the HDS

of DAC codes is similar to that of random codes, while at high

rates, the HDS of DAC codes is different from that of random

codes. Similar results are also obtained for different values of

n and R.

For turbo codes, the Fano algorithm was modified to com-

pute the HDS in [28], where some examples of selected turbo

codes with short interleaving were given. For a rate-0.5 turbo

code based on the (7, 5) recursive systematic convolutional

(RSC) code with 8 × 8 nonuniform interleaving, the HDS is

w(8) = 0.34, w(9) = 1.5, w(10) = 0.63, w(11) = 0.12, and

w(12) = 1.71. The minimum Hamming distance (MHD) is 8.

For LDPC codes, the nearest nonzero codeword search

(NNCS) algorithm was proposed to find the MHD and multi-

plicity in [29], where the results for some well-known LDPC

codes were reported. For the (3, 6)-regular (504, 252) and

(1008, 504) MacKay codes [30], the MHDs are 20 and 34,

and the multiplicities are 2 and 1, respectively. For the p-11
Margulis code [31], the MHD is 40 and the multiplicity is 66.

For the (13, 5) and (17, 5) Ramanujan-Margulis codes [32],

the MHDs are 14 and 24, and the multiplicities are 2184 and

204, respectively.

From the above results, we can find that compared to ran-

dom codes, turbo codes, and LDPC codes, the main drawback

of DAC codes is that the MHD is almost always 1, regardless

of code length n and rate R. This is because for d < ∞,

ψn,R(d) of DAC codes does not converge to 0 as code length

n goes to infinity (refer to Sect. VIII for the examples of

d = 1 and 2). On the contrary, the MHDs of turbo codes and

LDPC codes are far larger than 1. Even for random codes, as

code length n goes to infinity, the MHD will gradually tend

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 12

5 10 15 20

2000

4000

6000

8000

10000

12000

14000

16000

d

ψ
n
,R
(d
)

n = 24, R = 2/6

Random codes
DAC codes

(a)

5 10 15 20
0

0.5

1

1.5

2

2.5

d

ψ
n
,R
(d
)

n = 24, R = 5/6

Random codes
DAC codes

(b)

Fig. 6. Comparison of the HDS of DAC codes with that of random codes for n = 24. (a) R = 2/6. (b) R = 5/6.

to infinity because ψn,R(d) will tend to zero for any d < ∞
according to the LLN. In addition, it can be seen that ψn,R(d)
of DAC codes is greater than that of random codes for small d
while smaller than that of random codes for large d, implying

that the HDS of DAC codes is inferior to that of random codes

(especially at high rates). Based on these results, it can be

concluded that the pure DAC codes (mapping all symbols of

each sequence onto overlapped intervals) should be worse than

random codes, turbo codes, and LDPC codes.

D. Properties of Decoding Errors

Let us first study the property of frame errors. In Fig. 7(a),

we plot the occurrence rate of d-errors frames, where n = 64
and R = 0.5. For clarity, the occurrence rate of error-free

frames is not included in Fig. 7(a). It can be seen that most of

erroneous frames include only very few erroneous symbols,

implying that DAC decoding errors are caused mainly by

closely-packed codewords within the same codebook.

Next we study the property of symbol errors. It is pointed

out in Subsect. VII-B that the two codewords belonging to

the same codebook differ mainly in the last few symbols, so

symbol errors should happen mainly at the tail of each frame.

To verify this point, we investigate how the error probability

of each symbol is impacted by its position in a frame. For

n = 64 and R = 0.5, the individual SER of each symbol

versus its index i is plotted in Fig. 7(b). It can be seen that

symbol errors are not uniformly distributed over i ∈ [0 : n)
and most of symbol errors do happen at the last few symbols

of each frame, as reported in [15], [16].

The above phenomena inspire some improvements of DAC

codes, e.g., permutating codewords in each codebook [24],

mapping the last few symbols of each sequence onto non-

overlapped intervals [15], [16], [27], etc. After these improve-

ments, DAC codes may outperform LDPC codes and turbo

codes, especially for short sequences [15], [16], [24], [27].

These improvements are all based on the principle of refining

the HDS of DAC codes by sparsifying the last few levels of

DAC decoding trees. In such a way, closely-packed codewords

in each codebook can be removed, i.e., ψn,R(d) → 0 for small

d.

X. CONCLUSION

The analysis of DAC codes is an interesting and chal-

lenging task. By extending our previous work, this paper

makes another step forward. We define Hamming distance

spectrum to describe how DAC codebooks are constructed and

propose a method to calculate DAC HDS by the mathematical

means. The correctness of the proposed method is verified by

experiments. We also show how DAC codes can be improved

from the viewpoint of HDS.

Despite the above advances, many important questions

regarding DAC HDS, e.g., complexity, convergency, etc., still

remain open. First, under which conditions will the HDS

converge as code length increases? Second, if the HDS does

converge as code length increases, can we find some way

to calculate the HDS with linear or near-linear complexity?

Third, if the HDS does not converge, how fast will it grow

as code length increases? These difficult problems will be

tackled in the future. Finally, another big challenge is the

generalization of DAC HDS to nonuniform binary sources and

even non-binary sources.

APPENDIX

A. Deduction of J(b)

1) Special Case of b = 0d: In this case, since jd′ ≥ d′ for

all d′ ∈ [1 : d], we have

ρj(b) =

d
∑

d′=1

q−jd′ ≥ q−jd +

(

d−1
∑

d′=1

q−d′

)

> 0. (63)

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 13

10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

Number of Erroneous Symbols

O
cc
u
rr
en
ce

R
a
te

n = 64 and R = 0.5

ǫ = 0.04
ǫ = 0.05
ǫ = 0.06

(a)

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

i

I
n
d
iv
id
u
a
l
S
E
R

n = 64 and R = 0.5

ǫ = 0.04
ǫ = 0.05
ǫ = 0.06

(b)

Fig. 7. Properties of DAC decoding errors, where n = 64 and R = 0.5. (a) Occurrence rate of d-errors frames, where d means the number of erroneous
symbols in a recovered frame. (b) Individual SER versus symbol position.

A necessary condition for |ρj(b)| < (1− q)−1 is

q−jd < (1− q)−1 −
(

d−1
∑

d′=1

q−d′

)

= (2− q1−d)(1− q)−1, (64)

which is followed by jd < logq (1− q)− logq (2− q1−d).
2) Special Case of b = (0, 1, 0d−2): In this case, since

jd′ ≥ d′ for all d′ ∈ [1 : d], we have

ρj(b) =

(

d
∑

d′=1

q−jd′

)

− 2q−jd−1

≥ q−jd − q−(jd−1) +

(

d−2
∑

d′=1

q−d′

)

> 0. (65)

A necessary condition for |ρj(b)| < (1− q)−1 is

q−jd(1− q) < (1− q)−1 −
(

d−2
∑

d′=1

q−d′

)

= (2− q2−d)(1− q)−1, (66)

which is followed by jd < 2 logq (1− q)− logq (2− q2−d).
3) Special Case of b = (0a, 1, 0d−a−1) for a ≥ 2 and

d ≥ 3: In this case, since jd′ ≥ d′ for all d′ ∈ [1 : d], we

have

ρj(b) =

(

d
∑

d′=1

q−jd′

)

− 2q−jd−a

≥ q−jd +

(

d−1
∑

d′=1

q−d′

)

− 2qa−d > 0. (67)

A necessary condition for |ρj(b)| < (1− q)−1 is

q−jd < (1− q)−1 −
(

d−1
∑

d′=1

q−d′

)

+ 2qa−d

= (2− q1−d)(1− q)−1 + 2qa−d, (68)

which is followed by jd <
− logq

(

(2− q1−d)(1− q)−1 + 2qa−d
)

.

REFERENCES

[1] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM

J. Research & Development, vol. 20, no. 3, pp. 198–203, May 1976.

[2] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compres-
sion,” Commun. of the ACM, vol. 30, no. 6, pp. 520–540, Jun. 1987.

[3] P. Howard and J. Vitter, “Practical implementations of arithmetic cod-
ing,” in: Image and Text Compression, J. A. Storer, ed., pp. 85–112,
Kluwer Academic Publishers, Boston, Mass, USA, 1992.

[4] C. Boyd, J. Cleary, S. Irvine, I. Rinsma-Melchert, and I. Witten, “Inte-
grating error detection into arithmetic coding,” IEEE Trans. Commun.,
vol. 45, no. 1, pp. 1–3, Jan. 1997.

[5] B. Pettijohn, M. Hoffman, and K. Sayood, “Joint source/channel coding
using arithmetic codes”, IEEE Trans. Commun., vol. 49, no. 5, pp. 826–
836, May 2001.

[6] T. Guionnet and C. Guillemot, “Soft and joint source-channel decoding
of quasi-arithmetic codes,” EURASIP J. Applied Signal Process., no. 3,
pp. 393–411, Mar. 2004.

[7] I. Sodagar, B. Chai, and J. Wus, “A new error resilience technique for
image compression using arithmetic coding,” in: Proc. IEEE ICASSP,
pp. 2127–2130, Istanbul, Turkey, Jun. 2000.

[8] T. Guionnet and C. Guillemot, “Soft decoding and synchronization
of arithmetic codes: Application to image transmission over noisy
channels,” IEEE Trans. Image Process., vol. 12, no. 12, pp. 1599–1609,
Dec. 2003.

[9] S. Ben-Jamaa, C. Weidmann, and M. Kieffer, “Analytical tools for
optimizing the error correction performance of arithmetic codes,” IEEE

Trans. Commun., vol. 56, no. 9, pp. 1458–1468, Sep. 2008.

[10] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inform. Theory, vol. 19, no. 4, pp. 471–480, Jul.
1973.

[11] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources
using turbo codes,” IEEE Commun. Lett., vol. 5, no. 10, pp. 417–419,
Oct. 2001.

[12] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary
sources with side information at the decoder using LDPC codes,” IEEE

Commun. Lett., vol. 6, no. 10, pp. 440–442, Oct. 2002.

[13] Y. Fang, “LDPC-based lossless compression of nonstationary binary
sources using sliding-window belief propagation,” IEEE Trans. Com-

mun., vol. 60, no. 11, pp. 3161–3166, Nov. 2012.

[14] Y. Fang, “Asymmetric Slepian-Wolf coding of nonstationarily-correlated
M -ary sources with sliding-window belief propagation,” IEEE Trans.

Commun., vol. 61, no. 12, pp. 5114–5124, Dec. 2013.

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 14

[15] M. Grangetto, E. Magli, and G. Olmo, “Distributed arithmetic coding,”
IEEE Commun. Lett., vol. 11, no. 11, pp. 883–885, Nov. 2007.

[16] M. Grangetto, E. Magli, and G. Olmo, “Distributed arithmetic coding
for the Slepian-Wolf problem,” IEEE Trans. Signal Process., vol. 57,
no. 6, pp. 2245–2257, Jun. 2009.

[17] X. Artigas, S. Malinowski, C. Guillemot, and L. Torres, “Overlapped
quasi-arithmetic codes for distributed video coding,” in: Proc. IEEE

ICIP, 2007, vol. II, pp. 9–12.
[18] S. Malinowski, X. Artigas, C. Guillemot, and L. Torres, “Distributed

coding using punctured quasi-arithmetic codes for memory and mem-
oryless sources,” IEEE Trans. Signal Process., vol. 57, no. 10, pp.
4154–4158, Oct. 2009.

[19] X. Chen and D. Taubman, “Distributed source coding based on
punctured conditional arithmetic codes,” in: Proc. IEEE ICIP, pp. 3713–
3716, Sep. 2010.

[20] X. Chen and D. Taubman, “Coupled distributed arithmetic coding,” in:
Proc. IEEE ICIP, pp. 341–344, Sep. 2011.

[21] M. Grangetto, E. Magli, and G. Olmo, “Distributed joint source-channel
arithmetic coding,” in: Proc. IEEE ICIP, 2010, pp. 3717–3720.

[22] Y. Fang, “Distribution of distributed arithmetic codewords for equiprob-
able binary sources,” IEEE Signal Process. Lett., vol. 16, no. 12, pp.
1079–1082, Dec. 2009.

[23] Y. Fang, “DAC spectrum of binary sources with equally-likely symbols,”
IEEE Trans. Commun., vol. 61, no. 4, pp. 1584–1594, Apr. 2013.

[24] Y. Fang and L. Chen, “Improved binary DAC codec with spectrum for
equiprobable sources,” IEEE Trans. Commun., vol. 62, no. 1, pp. 256–
268, Jan. 2014.

[25] J. Zhou, K. Wong, and J. Chen, “Distributed block arithmetic coding
for equiprobable sources,” IEEE Sensors Journal, vol. 13, no. 7, pp.
2750–2756, Jul. 2013.

[26] A. Gamal and Y. Kim, “Network information theory,” Cambridge
University Press, 2012.

[27] Y. Fang, V. Stankovic, S. Cheng, and E.-H. Yang, “Depth-first decoding
of distributed arithmetic codes for uniform binary sources,” submitted
to IEEE Trans. Commun.

[28] R. Podemski, W. Holubowicz, C. Berrou, and G Battail, “Hamming
distance spectra of turbo-codes,” Annals of Telecommunications, vol.
50, no. 9–10, pp. 790–797, Sep.-Oct., 1995.

[29] X. Hu, M. Fossorier, and E. Eleftheriou, “On the computation of the
minimum distance of low-density parity-check codes,” in: Proc. IEEE

Int’l Conf. Commun., vol. 2, pp. 767–771, Jun. 2004.
[30] D. MacKay, “Good error-correcting codes based on very sparse matri-

ces,” IEEE Trans. Inform. Theory, vol. 45, no. 3, pp. 399–431, Mar.
1999.

[31] G. Margulis, “Explicit constructions of graphs without short cycles and
low density codes,” Combinatorica, vol. 2, no. 1, pp. 71–78, Jan. 1982.

[32] J. Rosenthal and P. Vontobel, “Construction of LDPC codes based on
Ramanujan graphs and ideas from Margulis,” in: Proc. 38th Annual

Allerton Conf. Commun., Computing, and Control, Monticello, IL, Oct.
2000.

Yong Fang received his BEng, MEng, and PhD from
Xidian University, Xi’an China, in 2000, 2003, and
2005, respectively, all in signal processing. Then,
he was a post-doctoral fellow for one year with
Northwestern Polytechnical University, Xi’an China.
From 2007 to 2008, he joined Hanyang University,
Seoul Korea, as a research professor. He is currently
a full professor with Northwest A&F University,
Shaanxi Yangling, China. He had long experiences
in hardware system development, e.g., FPGA-based
(Xilinx Vertex series) video codec design, DSP-

based (TI C64 series) video surveilliance system, etc.. His research inter-
ests include distributed source coding, joint source-channel coding, network
information theory, and image/video coding, processing, and transmission.

Vladimir Stankovic (M03-SM10) received the Dr.-
Ing. (Ph.D.) degree from the University of Leipzig,
Leipzig, Germany in 2003. From 2003 to 2006, he
was with Texas A&M University, College Station,
first as Research Associate and then as a Research
Assistant Professor. From 2006 to 2007 he was with
Lancaster University. Since 2007, he has been with
the Dept. Electronic and Electrical Engineering at
University of Strathclyde, Glasgow, where he is cur-
rently a Reader. He has co-authored 4 book chapters
and over 160 peer-reviewed research papers. He

was an IET TPN Vision and Imaging Executive Team member, Associate
Editor of IEEE Communications Letters, member of IEEE Communications
Review Board, and Technical Program Committee co-chair of Eusipco- 2012.
Currently, he is Associate Editor of IEEE Transactions on Image Processing,
IEEE Transactions on Communications, and Elsevier Signal Processing:
Image Communication. His research interests include source/channel/network
coding, user-experience driven image processing and communications and
energy disaggregation.

Samuel Cheng received the B.S. degree in Electrical
and Electronic Engineering from the University of
Hong Kong, and the M.Phil. degree in Physics and
the M.S. degree in Electrical Engineering from Hong
Kong University of Science and Technology and
the University of Hawaii, Honolulu, respectively. He
received the Ph.D. degree in Electrical Engineering
from Texas A&M University in 2004. He worked
in Microsoft Asia, China, and Panasonic Technolo-
gies Company, New Jersey, in the areas of texture
compression and digital watermarking during the

summers of 2000 and 2001. In 2004, he joined Advanced Digital Imaging
Research, a research company based near Houston, Texas, as a Research
Engineer to perform biomedical imaging research and was promoted to
Senior Research Engineer the next year. Since 2006, he joined the School
of Electrical and Computer Engineering at the University of Oklahoma and
is currently an associate professor. He has been awarded six US patents in
miscellaneous areas of signal processing. He is a senior member of IEEE
and a member of ACM. His research interests include information theory,
image/signal processing, and pattern recognition.

IEEE TRANSACTIONS ON COMMUNICATIONS (SUBMISSION) 15

En-hui Yang (M’97-SM’00-F’08) received the B.S.
degree in applied mathematics from Huaqiao Uni-
versity, Quanzhou, China, and Ph.D. degree in math-
ematics from Nankai University, Tianjin, China, in
1986 and 1991, respectively. Since June 1997, he
has been with the Department of Electrical and
Computer Engineering, University of Waterloo, ON,
Canada, where he is currently a Professor and
Canada Research Chair in information theory and
multimedia compression, and the founding Director
of the Leitch-University of Waterloo multimedia

communications lab. He held a Visiting Professor position at the Chinese
University of Hong Kong, Hong Kong, from September 2003 to June 2004;
positions of Research Associate and Visiting Scientist at the University
of Minnesota, Minneapolis-St. Paul, the University of Bielefeld, Bielefeld,
Germany, and the University of Southern California, Los Angeles, from
January 1993 to May 1997; and a faculty position (first as an Assistant
Professor and then an Associate Professor) at Nankai University, Tianjin,
China, from 1991 to 1992. A Co-Founder of SlipStream Data Inc. (now a
subsidiary of BlackBerry), he currently also serves as an Executive Council
Member of China Overseas Exchange Association, an Overseas Advisor
for the Overseas Chinese Affairs Office of the City of Shanghai, and a
director of Board of Trustees of Huaqiao University, China, and serves on
the Overseas Expert Advisory Committee for the Overseas Chinese Affairs
Office of the State Council of China. His current research interests are:
multimedia compression, multimedia transmission, digital communications,
information theory, source and channel coding, image and video coding, image
and video understanding and management, big data analytics, and information
security. Dr. Yang is a recipient of several awards and honors, a partial
list of which includes the prestigious Inaugural Premier’s Catalyst Award in
2007 for the Innovator of the Year; the 2007 Ernest C. Manning Award of
Distinction, one of the Canada’s most prestigious innovation prizes; the 2013
CPAC Professional Achievement Award; the 2014 IEEE Information Theory
Society Padovani Lecture; and the 2014 FCCP Education Foundation Award
of Merit. He has exemplified research excellence in both theory and practice.
Products based on his early inventions and commercialized by his previous
company, SlipStream, received the 2006 Ontario Global Traders Provincial
Award. With over 210 papers and more than 200 patents/patent applications
worldwide, his research work has benefited people over 170 countries through
commercialized products, video coding open sources, and video coding
standards. He is a Fellow of the Canadian Academy of Engineering and a
Fellow of the Royal Society of Canada: the Academies of Arts, Humanities
and Sciences of Canada. He served, among many other roles, as a review panel
member for the International Council for Science; a General Co-Chair of the
2008 IEEE International Symposium on Information Theory; an Associate
Editor for IEEE Transactions on Information Theory; a Technical Program
Vice-Chair of the 2006 IEEE International Conference on Multimedia & Expo
(ICME); the Chair of the award committee for the 2004 Canadian Award
in Telecommunications; a Co-Editor of the 2004 Special Issue of the IEEE
Transactions on Information Theory; a Co-Chair of the 2003 US National
Science Foundation (NSF) workshop on the interface of Information Theory
and Computer Science; and a Co-Chair of the 2003 Canadian Workshop on
Information Theory.

