
Strathprints Institutional Repository

Fang, Yong and Stankovic, Vladimir and Cheng, Samuel and Yang, En-

hui (2016) Analysis on tailed distributed arithmetic codes for uniform

binary sources. IEEE Transactions on Communications, 64 (10). pp.

4305-4319. ISSN 0090-6778 ,

http://dx.doi.org/10.1109/TCOMM.2016.2599535

This version is available at http://strathprints.strath.ac.uk/57293/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/77033497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk

1

Analysis on Tailed Distributed Arithmetic

Codes for Uniform Binary Sources

Yong Fang, Member, IEEE, Vladimir Stankovic, Senior Member, IEEE,

Samuel Cheng, Senior Member, IEEE, and En-hui Yang, Fellow, IEEE

Abstract

Distributed Arithmetic Coding (DAC) is a variant of Arithmetic Coding (AC) that can realize

Slepian-Wolf Coding (SWC) in a nonlinear way. In the previous work, we defined Codebook Cardinality

Spectrum (CCS) and Hamming Distance Spectrum (HDS) for DAC. In this paper, we make use of CCS

and HDS to analyze tailed DAC, a form of DAC mapping the last few symbols of each source block

onto non-overlapped intervals as traditional AC. We first derive the exact HDS formula for tailless

DAC, a form of DAC mapping all symbols of each source block onto overlapped intervals, and show

that the HDS formula previously given is actually an approximate version. Then the HDS formula is

extended to tailed DAC. We also deduce the average codebook cardinality, which is closely related to

decoding complexity, and rate loss of tailed DAC with the help of CCS. The effects of tail length are

extensively analyzed. It is revealed that by increasing tail length to a value not close to the bitstream

length, closely-spaced codewords within the same codebook can be removed at the cost of a higher

decoding complexity and a larger rate loss. Finally, theoretical analyses are verified by experiments.

Index Terms

Distributed source coding, Slepian-Wolf coding, distributed arithmetic coding, Hamming distance

spectrum, codebook cardinality spectrum.

Y. Fang is with the College of Information Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China

(email: yfang79@gmail.com). V. Stankovic is with the Department of Electronic and Electrical Engineering, University of

Strathclyde, Glasgow, UK (email: vladimir.stankovic@strath.ac.uk). S. Cheng is with the School of Electrical and Computer

Engineering, University of Oklahoma, Tulsa, OK (email: samuel.cheng@ou.edu). E.-H. Yang is with the Department of Electrical

and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (email: ehyang@uwaterloo.ca). The

corresponding author is Y. Fang.

June 17, 2016 DRAFT

2

I. INTRODUCTION

As a variant of arithmetic coding (AC) [1], [2], distributed arithmetic coding (DAC) [3], [4]

is a nonlinear practical realization of Slepian-Wolf coding (SWC) [5], i.e., the lossless version of

distributed source coding (DSC), which is traditionally solved by channel codes, e.g., turbo codes

[6] and low-density parity-check (LDPC) codes [7]. Compared with the linear approach based on

channel codes [6], [7], DAC has advantages including better adaptability to nonstationary source

statistics and better performance for data blocks of short-to-medium length [3], [4]. As such,

DAC may be a preferred solution, whenever data block lengths are relatively short. For example,

a potential application of DAC is biometric data encryption in biometric authentication systems,

because the typical length of biometric data blocks is O(102) to O(103), which makes DAC a

better candidate for biometric data encryption than channel codes [8]. For recent advances on

DAC, the reader may refer to [9], [10], [11], [12], [13], [14], [15], [16], [17].

In essence, each distributed arithmetic (DA) code partitions source space, the set of all possible

codewords, i.e., blocks of source symbols, into a number of codebooks. DAC’s performance

is subject to two factors: (1) the distribution of codebook cardinality, (2) the distribution of

inner-codebook Hamming distance. To study the distribution of DAC codebook cardinality, the

concept of codebook cardinality spectrum (CCS) was proposed in [18], where the mathematical

expression of CCS was derived to facilitate theoretical analysis and a numerical method was

proposed for the practical calculation. Based on CCS, two methods were proposed to improve

DAC’s performance in [19]. To study the distribution of inner-codebook Hamming distance,

the concept of Hamming distance spectrum (HDS) was proposed for DAC in [20], where a

calculation method was also developed.

This paper is motivated mainly by two phenomena of DAC that are experimentally observed

[3], [4]. First, different symbol mapping schemes may result in different coding efficiency. More

concretely, if one maps the last few symbols of each source block onto non-overlapped intervals

as traditional AC, rather than mapping all symbols onto overlapped intervals, DAC’s coding

efficiency will be improved to a great degree [3], [4]. We refer to the former mapping scheme as

tailed DAC, while the latter is called tailless DAC. For tailed DAC, the last few symbols of each

source block that are mapped onto non-overlapped intervals make up the so-called tail, while

the preceding symbols that are mapped onto overlapped intervals make up the so-called body.

June 17, 2016 DRAFT

3

With breath-first decoding, the results in [3], [4] indicate the performance superiority of tailed

DAC over tailless DAC. The second phenomenon is that as tail length increases, the decoding

complexity of tailed DAC will go up very fast (hyper-exponentially). The two phenomena imply

that tail length is an important parameter of tailed DAC that should be selected carefully to

strike a balance between coding efficiency and decoding complexity.

Another motivation for this paper comes from another recent finding, namely, though the HDS

calculated by equation (46) in [20] usually coincides with experimental results very well, there

is a large gap in the special case of d = n, where d is the Hamming distance and n is the code

length. More concretely, for d = n, the value calculated by equation (46) in [20] is roughly half

of the value obtained by experiments. It is important to explain this gap analytically.

The main purpose of this paper is to provide analytic explanations for the above phenomena.

First, we derive the exact HDS formula for tailless DAC and show that equation (46) in [20]

is in fact an approximate version of the exact HDS formula. Further, the HDS behavior in the

special case of d = n is explained. Next, we extend the work on HDS from tailless DAC to

tailed DAC and show that closely-spaced fellow codewords can be removed by increasing tail

length to a value not very close to the bitstream length, where fellow codewords refer to the

codewords belonging to the same codebook, which explains why decoding errors of DAC can be

reduced by introducing tails. Third, we derive the average codebook cardinality (ACC), which

is closely related to decoding complexity of tailed DAC and show that on average, each DAC

codebook will consist of more codewords as tail length increases to a value not very close to

the bitstream length, which logically explains why a longer tail usually leads to higher decoding

complexity. In addition, we also derive the rate loss of tailed DAC and show that a longer tail

usually causes larger rate loss.

The rest of this paper is arranged as follows. The exact HDS formula of tailless DAC is

derived in Sect. II. A conjecture about the ceiling errors of geometric series is proposed in

Sect. III, which lays a foundation for deriving the approximate HDS formula in Sect. IV. Then,

both exact and approximate HDS formulas are extended to tailed DAC in Sect. V. The related

work on CCS is briefly reviewed in Sect. VI. We then make use of CCS as a tool to analyze the

ACC and rate loss of tailed DAC in Sect. VII. A numerical algorithm is given in Sect. VIII for

calculating the ACC and rate loss of tailed DAC. Experimental results are reported in Sect. IX,

and finally Sect. X concludes this paper.

June 17, 2016 DRAFT

4

II. EXACT HDS OF TAILLESS DAC

A. Notation Definition

Let X be a random variable, X the alphabet of X , and x ∈ X a realization of X . Let f(X) be

a function of X and f(x) a realization of f(X). Let Xj
i := (Xi, · · · , Xj−1), where i ≤ j. If i = j,

Xj
i is empty; if i = 0, the subscript of Xj

i can be dropped, i.e., Xj = Xj
0 . The realization of Xj

i

is denoted by xji := (xi, · · · , xj−1). Let [i : j] := {i, · · · , j} and (i : j) := {(i+1), · · · , (j−1)},

while the meanings of [i : j) and (i : j] are similar. Let a±[i:j]b := (a±ib, · · · , a±jb) and the

meanings of a±(i:j)b, a±[i:j)b, and a±(i:j]b are similar.

The τ -shifting operation of continuous interval [l, h) is defined as {[l, h)±τ} := [l±τ, h±τ).

In addition, we define {τ +[l, h)} = {[l, h)+ τ} and {τ − [l, h)} := (τ −h, τ − l]. The k-shifting

operation of discrete interval [i : j) is defined as {[i : j)± k} := [(i± k) : (j ± k)). In addition,

we define {k+ [i : j)} = {[i : j)+ k} and {k− [i : j)} := ((k− j) : (k− i)]. As for other forms

of continuous/discrete intervals, the definitions of shifting operations are similar.

Depending on the operand, | · | may denote the cardinality of a set, the length of an interval,

the absolute value of a scalar, or the number of supports, i.e., nonzero elements, in a vector. As

in [20], we define (·)+ := max(·, 0). The round operation is denoted by rnd(·). There are two

forms of indicator functions: 1I(x) takes values 1 or 0 depending on whether x ∈ I or not; 1s

takes values 1 or 0 depending on whether the statement s is true or false.

B. Review of Tailless DAC Encoding

The (n,R) DA code, which stands for a tailless DA code with length n and rate R ∈ (0, 1),

partitions source space B
n into 2nR codebooks, where nR ∈ Z [20]. The DA encoder replaces

each binary block xn ∈ B
n with a codebook index m ∈ [0 : 2nR), which is realized via iteratively

mapping source symbols onto partially-overlapped intervals. The mapping rule is 0 → [0, 2−R)

and 1 → [(1− 2−R), 1) for uniform binary sources [3], [4]. As shown in [19], the final interval

after coding xn is given by [l(xn), l(xn) + 2−nR), where

l(xn) = (1− 2−R)
n−1
∑

i=0

xi2
−iR. (1)

Further, we define s(xn) := 2nRl(xn). It is easy to show that

s(xn) = (1− 2−R)
n−1
∑

i=0

xi2
(n−i)R. (2)

June 17, 2016 DRAFT

5

The final interval [l(xn), l(xn) + 2−nR) is now mapped onto [s(xn), s(xn) + 1) [20]. It is easy

to see s(xn) ∈ [s(0n), s(1n)] = [0, (2nR − 1)]. Let us define m(xn) := ⌈s(xn)⌉. It is obvious

that m(xn) ∈ [0 : 2nR), so m(xn) is the index of the DAC codebook containing xn. Now it is

clear that the coexistence of xn and (xn ⊕ zn), where zn ∈ B
n, in the same DAC codebook, is

equivalent to m(xn ⊕ zn) = m(xn). Note that m(xn) = 0 only if xn = 0n, so there is only one

codeword 0n in C0, where Cm := {xn : ⌈s(xn)⌉ = m} denotes the m-th DAC codebook.

C. Definition of DAC HDS

Let kd(x
n) be the number of d-away fellow codewords of xn [20], i.e.,

kd(x
n) := |{zn : |zn| = d and m(xn ⊕ zn) = m(xn)}| , (3)

where |zn| denotes the number of supports in zn. Obviously, k0(x
n) ≡ 1. Let Xn be the tuple

of random variables associated with xn. We define ψn,R(d) as

ψn,R(d) := E[kd(X
n)] =

∑

xn∈Bn

Pr(Xn = xn)kd(x
n)

(a)
= 2−n

∑

xn∈Bn

kd(x
n), (4)

where (a) comes from the assumption that X is a uniform binary source. It is easy to see that

ψn,R(d) is the average number of d-away fellow codewords for each codeword xn ∈ B
n. We

refer to ψn,R(d) as the HDS of the (n,R) DA code [20], which is a function with respect to

(w.r.t.) Hamming distance d that is parameterized by code length n and code rate R.

According to (3), it is easy to show that 1
2

∑

xn∈Cm
kd(x

n) is equal to the number of d-away

codeword-pairs in Cm and
∑n

d=0 kd(x
n) = |Cm| for all xn ∈ Cm. Further, from (4), we can obtain

n
∑

d=0

ψn,R(d) = 2−n
2nR−1
∑

m=0

|Cm|
2. (5)

Obviously, the right-hand side of (5) is in fact the ACC of the (n,R) DA code.

D. Definition of Coexisting Interval

Definition 1 [Coexisting Interval] The coexisting interval of xn ∈ B
n \ 0n is

I(xn) := ((m(xn)− 1),m(xn)]. (6)

Apparently, s(xn) ∈ I(xn) holds always. If s(xn⊕zn) ∈ I(xn), xn and (xn⊕zn) will coexist

in the same codebook. Conversely, if m(xn) = m(xn⊕ zn), we have s(xn⊕ zn) ∈ I(xn⊕ zn) =

June 17, 2016 DRAFT

6

I(xn). It is easy to see that for any xn 6= 0n, |I(xn)| ≡ 1, i.e., the length of I(xn) is always

1. Since 0n is the unique codeword in C0, we define I(0n) := {0}. For conciseness, the case of

xn = 0n will be ignored below without explicit declaration.

It can be obtained from (2) that

s(xn ⊕ zn) = s(xn) + τn,R(x
n, zn), (7)

where τn,R(x
n, zn) is a function w.r.t. xn and zn that is parameterized by n and R, i.e.,

τn,R(x
n, zn) := (1− 2−R)

n−1
∑

i=0

zi(1− 2xi)2
(n−i)R. (8)

It is easy to show that

τn,R((x
n ⊕ zn), zn) = τn,R((x

n ⊕ 1n), zn) = −τn,R(x
n, zn) (9)

and |τn,R(x
n, zn)| ≤ s(1n) = (2nR − 1). If m(xn) = m(xn ⊕ zn), i.e., xn and (xn ⊕ zn) coexist

in the same codebook, s(xn ⊕ zn) ∈ I(xn) must hold and thus according to (7), s(xn) ∈

{I(xn)− τn,R(x
n, zn)}. Next we give the concept of zn-coexisting interval.

Definition 2 [zn-Coexisting Interval] The zn-coexisting interval of xn ∈ B
n \ 0n is

I(xn, zn) := {I(xn)− τn,R(x
n, zn)} ∩ I(xn). (10)

Obviously, I(xn, zn) ⊆ I(xn). It is easy to see that s(xn) ∈ I(xn, zn) is the necessary and

sufficient condition for the coexistence of xn and (xn⊕ zn) in the same codebook. On the other

hand, if m(xn) = m(xn ⊕ zn), we have I(xn) = I(xn ⊕ zn) and

s(xn ⊕ zn) ∈ I((xn ⊕ zn), zn) ⊆ I(xn ⊕ zn). (11)

It can be obtained from (10) that given m(xn) = m(xn ⊕ zn),

I((xn ⊕ zn), zn) = {I(xn ⊕ zn)− τn,R((x
n ⊕ zn), zn)} ∩ I(xn ⊕ zn)

(a)
= {I(xn) + τn,R(x

n, zn)} ∩ I(xn), (12)

where (a) comes from τn,R((x
n ⊕ zn), zn) = −τn,R(x

n, zn) and I(xn ⊕ zn) = I(xn) in the case

of m(xn) = m(xn ⊕ zn). It is obvious that |I(xn, zn)| = |I((xn ⊕ zn), zn)| and

|I(xn, zn)| = (|I(xn)| − |τn,R(x
n, zn)|)+

= (1− |τn,R(x
n, zn)|)+ ≤ 1. (13)

June 17, 2016 DRAFT

7

Obviously, I(xn, zn) = ∅ if |τn,R(x
n, zn)| ≥ 1. However, note that I(xn, zn) 6= ∅ is only the

necessary condition for m(xn) = m(xn ⊕ zn), not the sufficient condition.

E. Calculation of Exact HDS

With zn-coexisting interval, we can easily obtain

kd(x
n) = |{zn : |zn| = d and s(xn) ∈ I(xn, zn)}|. (14)

The exact HDS of the (n,R) DA code is then

ψn,R(d) = 2−n
∑

xn∈Bn

∑

zn:|zn|=d

1I(xn,zn)(s(x
n))

. (15)

Given |zn| = d, there are
(

n

d

)

different zn’s, so the complexity of computing ψn,R(d) via (15)

is O(
(

n

d

)

2n). Further, since
∑n

d=0

(

n

d

)

= 2n, the total complexity of computing all ψn,R(d)’s for

d ∈ [0 : n] via (15) is O(4n). As for calculating each term 1I(xn,zn)(s(x
n)), it can be found from

(2), (8), and (10) that the complexity is O(n).

III. CEILING ERRORS OF GEOMETRIC SERIES

Though we obtain the exact HDS expression (15) for tailless DAC in Sect. II, its computational

complexity is too large for practical use. Therefore, it is necessary to simplify (15). Before doing

so, let us give the following conjecture.

Conjecture 1 [Ceiling Errors of Geometric Series] Let (a, ar, ar2, · · ·) be a geometric series

(GS) with initial term a and common ratio r. Let ei := (⌈ari⌉ − ari). If r > 1 and r /∈ Z, ei’s

can be taken as the samples of independent and identically-distributed (i.i.d.) random variables

that are uniformly distributed over [0, 1).

The principle of Conject. 1 is very similar to that of the well-known linear congruential (LC)

method, which is widely used in generating uniformly-distributed pseudo-random numbers. Let

us recall how the LC method works. If (x0, x1, · · ·) is a sequence generated by the LC method,

we have xn = ((rxn−1 + c) mod m), where r, c, and m are all integers. In the special case

of c = 0, we have xn = (rxn−1 mod m). It is easy to see that (rxn−1 − xn) = km, where

k ∈ Z. Thus we can obtain xn+1 = (rxn mod m) = ((r2xn−1 − rkm) mod m) = (r2xn−1

June 17, 2016 DRAFT

8

mod m). In general, we have xn = (rnx0 mod m), showing that the numbers generated by the

LC method are in fact the modulus errors of a GS with integer common ratio.

Though we are not able to prove Conject. 1, its correctness can be verified by simulations.

Some examples are given in Fig. 1 to confirm Conject. 1 from different aspects. First, Fig. 1(a)

shows that the samples of GS ceiling errors look very like the samples generated by the LC

method. Second, Fig. 1(b) gives an approximate probability density function (PDF) of GS ceiling

errors to show that GS ceiling errors are uniformly distributed over [0, 1). In addition, it can also

be found from the caption of Fig. 1 that the mean and variance of GS ceiling errors are very

close to those of U(0, 1), where U(a, b) stands for the uniform distribution over [a, b), especially

when there are a large number of samples.

Third, Figs. 1(c) and 1(d) give the total variation distance (TVD) and Kullback-Leibler

divergence (KLD) of GS ceiling errors to show that GS ceiling errors can be taken as the

samples of independent random variables. The TVD between probability distributions P and Q

is defined as δ(P,Q) := sup |p(x)− q(x)|, where p and q denote the densities of P and Q. The

KLD of Q from P is defined as

DKL(P‖Q) :=

∫ ∞

−∞

p(x) log2
p(x)

q(x)
dx. (16)

To make the results more convincing, we study the TVD and KLD of GS ceiling errors from

multiple dimensions. Let (e0, e1, · · ·) be a series of GS ceiling errors and q(xk) the “joint PDF”

of (ei, · · · , ei+k−1). If e0, e1, · · · are independent and uniformly-distributed (i.u.d.) over [0, 1),

we have q(xk) = 1 for all xk ∈ [0, 1)k. To verify this point, we let p(xk) = 1 for all xk ∈ [0, 1)k.

Then the k-D TVD between P and Q becomes δ(P,Q) = supxk∈[0,1)k |q(x
k)− 1| and the k-D

KLD of Q from P becomes

DKL(P‖Q) := −

∫ 1

0

· · ·

∫ 1

0

log2 q(x
k)dx0 · · · dxk−1. (17)

To estimate q(xk), we discretize space [0, 1)k into mk equal-size cells and count the number of

GS ceiling errors falling within each cell. Then DKL(P‖Q) can be approximated by

DKL(P‖Q) ≈ −(1/mk)
∑

ik∈[0:m)k

log2 q(i
k/m). (18)

Considering the complexity, only 3 dimensions of TVD and KLD are given in Figs. 1(c) and

1(d). It can be seen that as the number of samples n increases, both TVD and KLD will go

June 17, 2016 DRAFT

9

down, showing that q(xk) tends to be uniform over [0, 1)k. Hence, GS ceiling errors can be taken

as the samples of i.u.d. random variables.

Similar results are also obtained for other settings. According to the above observations, we

assume that Conject. 1 is correct and use it in the following deduction. In addition, because

flooring and rounding errors can be taken as the shifted versions of ceiling errors, for a GS with

non-integer common ratio r > 1, flooring and rounding errors can be taken as the samples of

i.i.d. random variables that are uniformly distributed over (−1, 0] and (−0.5, 0.5], respectively.

Assuming that Conject. 1 is true, then it is easy to prove the following conjecture.

Conjecture 2 [Ceiling Errors of Weighted Sum of Geometric Series] Let (a, ar, ar2, · · ·)

be a GS with initial term a and non-integer common ratio r > 1. Let Xn be a tuple of i.i.d.

binary random variables and S =
∑n−1

i=0 ar
iXi. Let U = (⌈S⌉−S). Then for n sufficiently large,

U ∼ U(0, 1) and U is weakly correlated with Xn.

IV. APPROXIMATE HDS OF TAILLESS DAC

With the help of Conject. 1, this section will derive a fast method to compute the approximate

value of ψn,R(d). We define a ternary variable wi := zi(1 − 2xi) ∈ T := {−1, 0, 1}. Clearly,

wi = 0 if zi = 0 and wi = ±1 if zi = 1. Conversely, if wi = ±1, we have zi = 1 and

xi = (1 − wi)/2; otherwise, i.e., wi = 0, we can get zi = 0, but xi is unknownable. Thus,

given wn, zn is fully determined, but xn is partially determined. Concretely speaking, each wn

leads 2n−|wn| different xn’s. Further, we let Z ⊆ [0 : n) be the set of support indices of zn

and Zc := [0 : n) \ Z , i.e., zi = 1 if i ∈ Z and zi = 0 if i ∈ Zc. Thus |Z| = |zn| and

|Zc| = n− |zn|. From xn, we draw all elements indexed by Z to form a sub-vector xZ ∈ B
|zn|.

Similarly, xZc ∈ B
n−|zn| is also formed. Now we define

τn,R(w
n) := (1− 2−R)

n−1
∑

i=0

wi2
(n−i)R

= (1− 2−R)
∑

i∈Z

wi2
(n−i)R. (19)

Obviously, τn,R(−w
n) = −τn,R(w

n) and |τn,R(w
n)| ≤ s(1n) = (2nR − 1).

June 17, 2016 DRAFT

10

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Index

S
a
m
p
le

V
a
lu
e

GS
LC

(a) Sample Behavior.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Discretized Sample Value

A
p
p
ro
x
im

a
te

P
D
F

(b) Approximate PDF.

log2 n
16 16.5 17 17.5 18 18.5 19 19.5 20

δ
(P

,Q
)

10
-2

10
-1

10
0

1D
2D
3D

(c) Total Variation Distance (TVD).

log2 n
16 16.5 17 17.5 18 18.5 19 19.5 20

D
K
L
(P

‖Q
)

10
-5

10
-4

10
-3

10
-2

1D
2D
3D

(d) KL Divergence.

Fig. 1. (a) GS ceiling-error samples versus LC samples. The LC method is realized by the MATLAB function rand(). The

number of samples for each sequence is 200. For the GS, the common ratio is r = 1.1 and the initial term is a = 1. The mean

of samples is 0.4820 for GS and 0.4926 for LC. The variance of samples is 0.0885 for GS and 0.0789 for LC. (b) Approximate

PDF of GS ceiling errors. The common ratio is r = 1 + 10−4 and the initial term is a = 100. We collect 218 samples and

discretize interval [0, 1) into m = 64 cells. The mean of samples is 0.5, the same as the mean of U(0, 1), and the variance is

0.0834, close to 1/12 = 0.0833, the variance of U(0, 1). (c) and (d) TVD and KLD of GS ceiling errors, respectively. The

initial term is a = 1010 and the common ratio is r = 1 + 10−5. The number of samples n varies from 216 to 220. The space

[0, 1)k is divided into mk equal-size cells, where m = 16.

A. Root Coexisting Interval

Obviously, if only wn and xZc are known, xn and zn can be deduced exactly. Hence, we

rewrite I(xn, zn) as I(wn, xZc) and define

δ−(wn) := 1τn,R(wn)<0 ·min(1, |τn,R(w
n)|)

δ+(wn) := 1τn,R(wn)>0 ·min(1, |τn,R(w
n)|)

. (20)

June 17, 2016 DRAFT

11

It is easy to see that δ−(wn) + δ+(wn) ≡ min(1, |τn,R(w
n)|) ≤ 1 and δ−(wn) · δ+(wn) ≡ 0. We

can now rewrite (10) as

I(wn, xZc) =
(

(m(xn)− 1) + δ−(wn),m(xn)− δ+(wn)
]

= {m(xn)− I(wn)} , (21)

where

I(wn) :=
[

δ+(wn), 1− δ−(wn)
)

⊆ [0, 1). (22)

We call I(wn) the wn-root coexisting interval. Obviously, there are |Tn| = 3n root coexisting

intervals in total. Since I(wn, xZc) is a shifted version of I(wn), each root coexisting interval

in fact leads 2n−|wn| coexisting intervals. Clearly, I(wn) = ∅ if |τn,R(w
n)| ≥ 1 and for all

xZc ∈ B
n−|wn|,

|I(wn, xZc)| = |I(wn)| = (1− |τn,R(w
n)|)+. (23)

Coexisting Interval versus Risky Interval In [20], the concept of risky interval was proposed,

which is similar to the coexisting interval to some extent. Below we discuss their differences.

A risky interval can be denoted by I(xZ)
m,Z , where m ∈ [0 : 2nR) is codebook index. It is obvious

that given xn 6= 0n, I(wn) = 1− I(xZ)
1,Z . It is proved in [20] that given Z and xZ , |I(xZ)

m,Z |’s are

the same for all m ∈ [1 : 2nR). As a sub-vector of xn, xZ in fact leads 2n−|zn| different xn’s. It

can be easily shown that given xn 6= 0n, for all xZc ∈ B
n−|zn|,

I(wn, xZc) ∈ {I(xZ)
m,Z : m ∈ [1 : 2nR)}. (24)

B. Approximate Expression of HDS

With wn and xZc , we can obtain

ψn,R(d) = 2−d
∑

wn:|wn|=d

ρ(wn), (25)

where

ρ(wn) := 2−(n−d)
∑

xZc∈Bn−d

1I(wn,xZc)(s(x
n)). (26)

According to (21), we have

1I(wn,xZc)(s(x
n)) = 1I(wn)(m(xn)− s(xn)). (27)

June 17, 2016 DRAFT

12

Let us rewrite (2) as

s(xn) = (1− 2−R)

(

∑

i∈Z

(1− wi)2
(n−i)R−1 +

∑

i∈Zc

xi2
(n−i)R

)

= c(Z) + ϕ(xZc)− τn,R(w
n)/2, (28)

where

c(Z) := (1− 2−R)
∑

i∈Z

2(n−i)R−1

ϕ(xZc) := (1− 2−R)
∑

i∈Zc

xi2
(n−i)R

. (29)

Similarly, we can obtain

s(xn ⊕ zn) = c(Z) + ϕ(xZc) + τn,R(w
n)/2. (30)

Note the following three points:

• (m(xn)− s(xn)) ∈ [0, 1) is actually the ceiling error of s(xn);

• for each given wn, both c(Z) and τn,R(w
n) are fixed for all xZc ∈ B

n−|wn|;

• ϕ(xZc) is the partial sum of a geometric series.

According to Conject. 1, we affirm that (m(xn)− s(xn))’s for different xZc ∈ B
n−|wn| perform

like the samples of i.i.d. random variables that are uniformly distributed over [0, 1). Hence for

a given wn, if there are a large number of xZc’s, ρ(wn) will be approximately equal to the ratio

of the length of I(wn) to that of [0, 1), i.e.,

ρ(wn) ≈ |I(wn)| = (1− |τn,R(w
n)|)+. (31)

Finally, we obtain

ψn,R(d) ≈ 2−d
∑

wn:|wn|=d

(1− |τn,R(w
n)|)+. (32)

Given |wn| = d, there are
(

n

d

)

2d different wn’s, so the complexity of computing ψn,R(d) via

(32) is O(
(

n

d

)

2d). Since
∑n

d=0

(

n

d

)

2d = 3n, the total complexity of computing all ψn,R(d)’s for

d ∈ [0 : n] via (32) is O(3n), which is, for large n, far lower than O(4n). As for calculating

τn,R(w
n), it can be found from (19) that the complexity is O(n). It is easy to find that (32) is

in fact equivalent to equation (46) in [20]. However, it must be pointed out that (31) holds only

when (n − |wn|) is large, i.e., there are a large number of distinct xZc’s, because ρ(wn) is the

average of 2n−|wn| binary terms as shown by (26).

June 17, 2016 DRAFT

13

C. Case of Small (n− |wn|)

Given wn, the number of distinct xZc’s is 2n−|wn|, decreasing as |wn| goes up. For (n− |wn|)

not very large, there are only a few distinct xZc’s, so |I(wn)| may not be a good approximation

of ρ(wn) in this case. Nevertheless, if only n is sufficiently large, ψn,R(d) for any d < n can

still be well approximated by (32) because its right side is the sum of
(

n

d

)

2d pseudo-independent

terms. However, ψn,R(n) is still hard to find. If |wn| = n, we have zn = 1n, Z = [0 : n), and

Zc = ∅. Thus, ϕ(xZc) = 0 and

c(Z) = (1− 2−R)
n
∑

i=1

2iR−1 = (2nR − 1)/2. (33)

We can then obtain
{

s(xn) = 2nR−1 − (1 + τn,R(w
n))/2

s(xn ⊕ zn) = 2nR−1 − (1− τn,R(w
n))/2

. (34)

If |τn,R(w
n)| < 1, (1± τn,R(w

n))/2 ∈ (0, 1) and hence for any nR ∈ Z,

m(xn) = m(xn ⊕ zn) = 2nR−1 ∈ Z, (35)

i.e., xn and (xn ⊕ zn) always belong to the 2nR−1-th codebook. Thus if |wn| = n,

ρ(wn) = 1|τn,R(wn)|<1 = 1|τn,R(xn,1n)|<1 ∈ B, (36)

showing that ρ(wn) cannot be approximated by (1− |τn,R(w
n)|)+. Now we get

ψn,R(n) = 2−n
∑

xn∈Bn

1|τn,R(xn,1n)|<1. (37)

Since ψn,R(n) is the average of 2n binary terms, we have ψn,R(n) < 1. According to (34), given

|wn| = n, if |τn,R(w
n)| < 1, s(xn) ∈ ((2nR−1 − 1), 2nR−1), and vice versa. Hence,

1|τn,R(xn,1n)|<1 = 1((2nR−1−1),2nR−1)(s(x
n)). (38)

According to (37) and (38), we can obtain

ψn,R(n) = Pr
(

s(Xn) ∈ ((2nR−1 − 1), 2nR−1)
)

. (39)

According to Conject. 1, given |τn,R(w
n)| < 1, |τn,R(w

n)| is approximately uniformly distributed

over [0, 1) for nR sufficiently large. Therefore,
(

∑

xn∈Bn

(1− |τn,R(x
n, 1n)|)+

)

≈
1

2

(

∑

xn∈Bn

1|τn,R(xn,1n)|<1

)

, (40)

showing that the approximate value of ψn,R(n) given by (32) is roughly half of its exact value

given by (15), which explains experimental results accurately (cf. Subsect. IX-A).

June 17, 2016 DRAFT

14

V. HDS OF TAILED DAC

A. Review of Tailed DAC Encoding

Tailed DAC divides each source block xn into body xn−t and tail xnn−t. Let us use the (n,R, t)

DA code to stand for a tailed DA code with length n, rate R, and tail length t. Each tail symbol

is always coded at rate 1, so the mapping rule is: 0 → [0, 2−1) and 1 → [2−1, 1). To compress

xn at the average rate R, each body symbol should be coded at rate r = nR−t
n−t

≤ R, so the

mapping rule is: 0 → [0, 2−r) and 1 → [(1−2−r), 1). It is easy to get (n− t)(1−r) = n(1−R).

To guarantee r ≥ 0, t must not be larger than nR, so t ∈ [0 : nR]. (Obviously, tailless DAC

is a special form of tailed DAC obtained by setting t = 0 and r = R.) The final interval after

coding xn is still [l(xn), l(xn) + 2−nR), where

l(xn) = (1− 2−r)
n−t−1
∑

i=0

xi2
−ir +

n−1
∑

i=n−t

xi2
n(1−R)−1−i. (41)

Because nR = (n− t)r + t, we have

s(xn) = 2t(1− 2−r)
n−t−1
∑

i=0

xi2
(n−t−i)r +

n−1
∑

i=n−t

xi2
n−1−i. (42)

The scaled final interval is still [s(xn), s(xn) + 1) and s(xn) ≤ (2nR − 1). It can also be seen

that m(xn) ∈ [0 : 2nR) still holds.

B. Calculation of HDS for Tailed DAC

According to the definition of τn,R(w
n), we can obtain

τn,R(w
n) = 2t(1− 2−r)

n−t−1
∑

i=0

wi2
(n−t−i)r +

n−1
∑

i=n−t

wi2
n−1−i

= 2tτn−t,r(w
n−t) + τt,1(w

n
n−t). (43)

The exact and approximate values of ψn,R(d) can be computed via (15) and (32), respectively.

An Extreme Case. When t = nR, r = (1 − 2−r) = 0, so τn,R(w
n) = τt,1(w

n
n−t) ∈ Z, i.e.,

τn,R(w
n) purely depends on wnn−t and is always an integer. Thus, if znn−t 6= 0t, xn and (xn⊕ zn)

cannot coexist in the same codebook, i.e., ψn,R(d) = 0 for d > (n− t) = n(1−R). In addition,

since τn,R(w
n) is not related to wn−t, it is easy to see that, when t = nR,

ψn,R(d) =

(

n(1−R)

d

)

, d ∈ [0 : n(1−R)]

0, d ∈ (n(1−R) : n]

. (44)

June 17, 2016 DRAFT

15

C. Removal of Closely-Spaced Fellow Codewords

Though experiments show that tailed DAC is better than tailless DAC [3], [4], there is no

theoretical explanation on the superiority of tailed DAC over tailless DAC. Below, we will reveal

that closely-spaced fellow codewords can be removed by increasing tail length, which explains

the superiority of tailed DAC over tailless DAC. Due to computation complexity and to keep

the exposition simple, we consider below only two special cases ψn,R(1) and ψn,R(2). To begin

with, we give the following claim.

Claim 1 If |zn−t| = 0 and |znn−t| > 0, then m(xn) 6= m(xn ⊕ zn). Conversely, if |zn| > 0 and

m(xn) = m(xn ⊕ zn), then |zn−t| > 0.

In plain words, if a pair of codewords coexist in the same codebook, it is impossible that

these two codewords differ from each other only in tails. The proof of Claim 1 is obvious and

is omitted. With the help of Claim 1, we explain below why ψn,R(1) and ψn,R(2) will tend to

0 as t increases. Then, we discuss the general case of ψn,R(d) when d > 2.

1) 1-Away Fellow Codewords: Given |wn| = 1, there are two sub-cases: |wn−t| = 0 and

|wnn−t| = 1; |wn−t| = 1 and |wnn−t| = 0. According to Claim 1, in the former sub-case, it is

certain that m(xn) 6= m(xn ⊕ zn). Hence, we need to consider only the later sub-case, which

means τn,R(w
n) = 2tτn−t,r(w

n−t). Given |wn−t| = 1, we can obtain from (43) that

|τn−t,r(w
n−t)| ≥ (1− 2−r)2r = (2r − 1) (45)

and further |τn,R(w
n)| ≥ 2t(2r − 1). Suppose that t ≤ nR

2
. Then r ≥ R

2−R
. Hence 2t(2r − 1) ≥

2t(2
R

2−R − 1). For large n, increasing t will make 2t(2
R

2−R − 1) ≥ 1. An example of 2t(2r− 1) is

given in Fig. 2(a) for n = 64 and R = 0.5, which shows that 2t(2r− 1) increases monotonously

for small t. Hence, it is possible to make |τn,R(w
n)| ≥ 1, i.e., I(wn) = ∅, hold always for

all wn’s satisfying |wn| = 1 by increasing t. In other words, 1-away fellow codewords can be

removed by simply increasing tail length t, even for finite code length n.

2) 2-Away Fellow Codewords: Given |wn| = 2, there are three sub-cases: |wn−t| = 0 and

|wnn−t| = 2; |wn−t| = 2 and |wnn−t| = 0; |wn−t| = |wnn−t| = 1. According to Claim 1, in the first

sub-case, m(xn) 6= m(xn ⊕ zn), so we need to consider only the later two sub-cases.

In the sub-case of |wn−t| = 2 and |wnn−t| = 0, we have τn,R(w
n) = 2tτn−t,r(w

n−t). It is easy

June 17, 2016 DRAFT

16

to get from (43) that, given |wn−t| = 2,

|τn−t,r(w
n−t)| ≥ (1− 2−r)(22r − 2r) = (2r − 1)2. (46)

Thus, given |wn−t| = 2 and |wnn−t| = 0, |τn,R(w
n)| ≥ 2t(2r−1)2. Still suppose that t ≤ nR

2
, which

is followed by 2t(2r−1)2 ≥ 2t(2
R

2−R −1)2. For large n, increasing t will make 2t(2
R

2−R −1)2 ≥ 1,

as shown by Fig. 2(a), where n = 64 and R = 0.5. Hence, it is possible to make |τn,R(w
n)| ≥

2t(2r − 1)2 ≥ 1, i.e., I(wn) = ∅, hold always for all wn’s satisfying |wn−t| = 2 and |wnn−t| = 0

by increasing tail length t.

In the sub-case of |wn−t| = |wnn−t| = 1, we have |τn−t,r(w
n−t)| = (2r−1)2ir for i ∈ [0 : (n−t))

and |τt,1(w
n
n−t)| = 2j for j ∈ [0 : t). Let γi := (2r−1)2t+ir. Then, we have |τn,R(w

n)| = |γi±2j|,

where (i, j) ∈ [0 : (n − t)) × [0 : t). Since γi > 0 for all i ∈ [0 : (n − t)) and 2j ≥ 1 for all

j ∈ [0 : t), |γi + 2j| > 1 holds always. Thus, it is unnecessary to consider |γi + 2j|. As for

|γi − 2j|, there are (n − t) × t possible values for (i, j) ∈ [0 : (n − t)) × [0 : t). For n very

large and t ≪ n, r ≈ R and thus (γi+1 − γi) increases w.r.t. t, i.e., γi’s tend to be sparser as t

increases. Hence as t increases, it is less likely that γi’s fall within (2j−1, 2j+1)’s. An example

is given in Fig. 2(b) to confirm this point, where

∆i := min(γi − 2⌊log2 γi⌋, 2⌈log2 γi⌉ − γi). (47)

As shown by Fig. 2(b), as t increases, fewer ∆i’s will be less than 1 and when t > 6, there is

no ∆i less than 1. Therefore, it is possible to make |τn,R(w
n)| = |γi ± 2j| ≥ 1, i.e., I(wn) = ∅,

hold always for all wn’s satisfying |wn−t| = |wnn−t| = 1 by increasing t.

Based on the above analyses, we conclude that 2-away fellow codewords can be removed by

simply increasing tail length t, even for finite code length n.

3) General Case: The analysis of the general case d > 2 is more complex, but the principle

is similar to the above cases. From (43), we have

|τn,R(w
n)| =

∣

∣2t|τn−t,r(w
n−t)| − |τt,1(w

n
n−t)|

∣

∣ , τn−t,r(w
n−t) · τt,1(w

n
n−t) < 0

2t|τn−t,r(w
n−t)|+ |τt,1(w

n
n−t)|, τn−t,r(w

n−t) · τt,1(w
n
n−t) ≥ 0

. (48)

From (19), we have |τn−t,r(w
n−t)| ∈ [0, (2(n−t)r − 1)] and |τt,1(w

n
n−t)| ∈ [0 : 2t) ⊂ Z. Further,

2t|τn−t,r(w
n−t)| ∈ [0, (2nR − 2t)] and |τn,R(w

n)| ∈ [0, (2nR − 1)]. Therefore,

(

2t|τn−t,r(w
n−t)|, |τt,1(w

n
n−t)|

)

∈ [0, (2nR − 2t)]× [0 : 2t). (49)

June 17, 2016 DRAFT

17

0 5 10 15 20 25 30

10
0

10
2

10
4

10
6

t

n = 64, R = 0 .5

2 t(2 r
− 1)

2 t(2 r
− 1)2

(a)

0 5 10 15 20 25 30

10
0

10
2

10
4

10
6

10
8

t

∆
i

n = 64, R = 0 .5

(b)

0 5 10 15 20 25 30

10
−7

10
−6

10
−5

t

φ
b
(t
)

n = 64, R = 0.5, d = 3

db = 3

db = 2
db = 1

(c)

0 5 10 15 20 25 30

10
−8

10
−6

10
−4

10
−2

10
0

t

φ
t
(t
)

n = 64, R = 0.5, d = 3

dt = 0
dt = 1

dt = 2

(d)

Fig. 2. (a) 2t(2r − 1) and 2t(2r − 1)2 versus tail length t. (b) Distribution of ∆i, defined by (47), versus tail length t. (c)

Conditional body density. (d) Conditional tail density.

Given |wnn−t| > 0, we have

2t|τn−t,r(w
n−t)|+ |τt,1(w

n
n−t)| ≥ |τt,1(w

n
n−t)| ≥ 1. (50)

Thus, we need to consider only the sub-case of

|τn,R(w
n)| =

∣

∣2t|τn−t,r(w
n−t)| − |τt,1(w

n
n−t)|

∣

∣ . (51)

The conditional “density” of 2t|τn−t,r(w
n−t)| over [0, (2nR − 2t)] given |wn−t| = db ≤ (n − t),

which will be referred to as conditional body density for brevity, is defined as

φb(t) :=
|{wn−t : |wn−t| = db}|

2nR − 2t
=

(

n−t
db

)

2db

2nR − 2t
. (52)

June 17, 2016 DRAFT

18

It is easy to see that
(

n− (t+ 1)

db

)

=
n− t− db
n− t

(

n− t

db

)

= (1−
db

n− t
)

(

n− t

db

)

. (53)

Since (2nR − 2t+1) = (2nR − 2t − 2t), we have

2nR − 2t+1

2nR − 2t
= 1−

2t

2nR − 2t
= 1−

1

2nR−t − 1
. (54)

Thus,

φb(t+ 1) =
1− db

n−t

1− 1
2nR−t−1

φb(t). (55)

Note the following two points:

• Both db
n−t

and 1
2nR−t−1

are monotonously-increasing and convex over t ∈ [0 : nR];

• For nR large enough, db
n−t

|t=0 = db
n
> 1

2nR−t−1
|t=0 = 1

2nR−1
, and db

n−t
|t=nR = db

n(1−R)
<

1
2nR−t−1

|t=nR = ∞.

Hence, there must exist t∗ ∈ [0, nR] ⊂ R that makes db
n−t∗

= 1
2nR−t∗−1

, and db
n−t

> 1
2nR−t−1

for t < t∗ and db
n−t

< 1
2nR−t−1

for t > t∗. Further, we have φb(t + 1) < φb(t) for t < t∗ and

φb(t + 1) > φb(t) for t > t∗, i.e., φb(t) is monotonously decreasing over t ∈ [0 : ⌈t∗⌉] and

monotonously increasing over t ∈ [⌈t∗⌉ : nR]. Some examples of φb(t) are given in Fig. 2(c),

which show that t∗ is usually very close to nR.

The conditional “density” of |τt,1(w
n
n−t)| over [0 : 2t) given |wnn−t| = dt ≤ t, which will be

referred to as conditional tail density for brevity, is defined as

φt(t) :=
|{wnn−t : |w

n
n−t| = dt}|

2t
=

(

t

dt

)

2dt

2t
=

(

t

dt

)

2dt−t. (56)

Hence, φt(t + 1) = t+1
2(t−dt+1)

φt(t). It is easy to see that t+1
2(t−dt+1)

|t=2dt−1 = 1, i.e., φt(2dt) =

φt(2dt − 1). Thus, φt(t) is monotonously increasing over t ∈ [dt : 2dt) and monotonously

decreasing over t ∈ [2dt : nR]. Some examples of φt(t) are given in Fig. 2(d).

Since both φb(t) and φt(t) decrease monotonously over t ∈ [2dt : ⌈t∗⌉], 2t|τn−t,r(w
n−t)|

(|τt,1(w
n
n−t)|, resp.) will tend to be sparser over [0, (2nR − 2t)] ([0 : 2t), resp.) as t increases.

Further, from the statistical viewpoint,
∣

∣2t|τn−t,r(w
n−t)| − |τt,1(w

n
n−t)|

∣

∣ will tend to be larger as t

increases. Thus, it is possible to make |τn,R(w
n)| ≥ 1 for all wn’s satisfying |wn| = d = db+dt ≪

n by increasing t. In other words, for n sufficiently large and d ≪ n, ψn,R(d) will tend to 0

as t increases. However, note that as d increases, larger t is required to make ψn,R(d) = 0. For

example, Fig. 2 shows that ψn,R(1) = 0 when t > 1, but t > 6 is required to make ψn,R(2) = 0.

This point will be verified with experiments in Sect. IX.

June 17, 2016 DRAFT

19

VI. CODEBOOK CARDINALITY SPECTRUM

A. Definitions

The projection of m(Xn) onto [0, 2nR) ⊂ R is U0,n := 2−nRm(Xn) ∈ [0, 1). We define the

level-i projection of bitstream m(Xn) as Ui,n = ui(X
n), where

ui(X
n) :=

2ir
(

U0,n − l(X i)
)

, i ∈ [0 : (n− t)]

2i−n(1−R)
(

U0,n − l(X i)
)

, i ∈ [(n− t) : n]
. (57)

We call U0,n the initial bitstream projection and Un,n the final bitstream projection. Note that Ui,n

is defined over [0, 1) ⊂ R, so its pdf exists and is called the level-i CCS. Let us denote the level-i

CCS by f
(i)
n,R,t(u). Especially, the subscript t can be dropped if t = 0, i.e., f

(i)
n,R(u) = f

(i)
n,R,0(u).

The conditional pdf of Ui,n given Xj = x is called the conditional level-i CCS given Xj = x and

denoted by f
(i,j)
n,R,t(u|x). The subscript t can be dropped if t = 0, i.e., f

(i,j)
n,R (u|x) = f

(i,j)
n,R,0(u|x).

To simplify notation, f
(i,i)
n,R,t(u|x) is abbreviated to f

(i)
n,R,t(u|x).

B. Calculation of CCS

Below, we derive f
(n)
n,R,t(u) based on Conject. 2. Since Un,n = m(Xn)− s(Xn),

fUn,n|Xn(u|xn) = δ(u− (m(xn)− s(xn))), (58)

where fUn,n|Xn(u|xn) is the conditional pdf of Un,n given Xn = xn and δ(u) is the Dirac delta

function. Therefore,

f
(n)
n,R,t(u) =

∑

xn∈Bn

Pr(Xn = xn)δ(u− (m(xn)− s(xn)))

= 2−n
∑

xn∈Bn

δ(u− (m(xn)− s(xn))). (59)

As shown by Conject. 2, (m(xn)− s(xn))’s for different xn’s perform like the samples of i.i.d.

random variables that are uniformly distributed over [0, 1). Thus, for n sufficiently large, Un,n

is weakly correlated with Xn and f
(n)
n,R,t(u) ≈ Π(u), where

Π(u) :=

{

1, 0 ≤ u < 1

0, u < 0 or u ≥ 1
. (60)

According to (57), for i ∈ [(n− t) : n),

Ui,n = Ui+1,n/2 +Xi/2 = Un,n2
i−n +

n−1
∑

i′=i

Xi′2
(i−i′)−1. (61)

June 17, 2016 DRAFT

20

For n sufficiently large, Un,n is weakly correlated with Xn, so Ui,n, the weighted sum of Un,n

and Xn
i , is weakly correlated with X i (note that X i is independent of Xn

i). Thus, the pdf of Ui,n

is the convolution of the pdf of Ui+1,n/2 and that of Xi/2. Since aXi ∼
1
2
(δ(x) + δ(x− a)),

f
(i)
n,R,t(u) ≈ 2f

(i+1)
n,R,t (2u)⊗

(

δ(u) + δ(u− 2−1)
)

2−1

= f
(i+1)
n,R,t (2u) + f

(i+1)
n,R,t (2u− 1). (62)

where ⊗ denotes the convolution operation. We can then obtain f
(i)
n,R,t(u) ≈ f

(n)
n,R,t(u) ≈ Π(u)

for all i ∈ [(n− t) : n).

As for i ∈ [0 : (n− t)), it is easy to see that f
(i)
n,R,t(u) ≈ f

(i)
n−t,r(u), where r = nR−t

n−t
, i.e., the

level-i CCS of the (n,R, t) tailed DA code approximates to the level-i CCS of the (n − t, r)

tailless DA code, so we will discuss only the (n,R) tailless DA code below. According to (57),

Ui,n = Ui+1,n2
−R + (1− 2−R)Xi = Un,n2

(i−n)R + (1− 2−R)
n−1
∑

i′=i

Xi′2
(i−i′)R. (63)

It can be seen that, for n sufficiently large, Ui,n is weakly correlated with X i and

f
(i)
n,R(u) ≈ 2Rf

(i+1)
n,R (u2R)⊗

(

δ(u) + δ(u− (1− 2−R))
)

2−1

=
(

f
(i+1)
n,R (u2R) + f

(i+1)
n,R (u2R − (2R − 1))

)

2R−1

≈
(

Π(u2(n−i)R)⊗ λn−i,R(u)
)

2(n−i)(R−1), (64)

where

λn′,R(u) :=
n′−1
⊗

i′=0

(

δ(u) + δ(u− (1− 2−R)2−i
′R)
)

=
∑

xn
′∈Bn′

δ(u− l(xn
′

)). (65)

It is interesting that 2−nλn,R(u) is actually the pdf of l(Xn). Since limn→∞ 2nRΠ(u2nR) = δ(u),

for n sufficiently large and i≪ n, we have f
(i)
n,R(u) ≈ λn−i,R(u) ≈ λ∞,R(u).

C. Conditional CCS

For n sufficiently large, Ui,n is weakly correlated with X i, so for the (n,R) tailless DA code,

f
(i,j)
n,R (u|x) ≈ f

(i)
n,R(u) for i > j. As for f

(i)
n,R(u|x), we have

f
(i)
n,R(u|x) ≈ 2Rf

(i+1,i)
n,R ((u2R − x(2R − 1))|x)

≈ 2Rf
(i+1)
n,R (u2R − x(2R − 1)). (66)

June 17, 2016 DRAFT

21

It is obvious that

f
(i)
n,R(u) =

∑

x∈B

Pr(Xi = x)f
(i)
n,R(u|x) =

1

2

∑

x∈B

f
(i)
n,R(u|x). (67)

Let pi(x|u) := Pr(Xi = x|Ui,n = u). According to Bayes’ theorem, we can obtain

pi(x|u) =
Pr(Xi = x)f

(i)
n,R(u|x)

f
(i)
n,R(u)

=
f
(i)
n,R(u|x)

2f
(i)
n,R(u)

. (68)

VII. ACC AND RATE LOSS OF TAILED DAC

With the help of CCS, we will derive below the ACC and rate loss of tailed DAC, which is

helpful for us to understand the properties of DA codes. The deduction of ACC is rather simple.

According to the analyses in [19], it is easy to show that the ACC of the (n,R, t) tailed DA

code is approximately η2n(1−R), where

η :=

∫ 1

0

(

f
(0)
n,R,t(u)

)2

du. (69)

We call η the ACC scaling factor. Obviously, η ≥ 1 and the equality holds only if f
(0)
n,R,t(u) =

Π(u). On the contrary, the deduction of rate loss is much more difficult, as shown below.

A. Deduction of Rate Loss

Since f
(0)
n,R,t(u) ≈ f

(0)
n−t,r(u), only the (n,R) tailless DA code is considered in this subsection

for simplicity. We deduce H(Xn|m(Xn)) first, which measures the remaining uncertainty of

Xn given m(Xn). Since m(Xn) is a deterministic function w.r.t. Xn, we have H(Xn) =

H(m(Xn)) + H(Xn|m(Xn)). Because m(Xn) ∈ [0 : 2nR), we have H(m(Xn)) ≤ nR and

the equality holds only if m(Xn) is uniformly distributed over [0 : 2nR). Further, because

U0,n = 2−nRm(Xn), we have H(Xn|m(Xn)) = H(Xn|U0,n).

Lemma VII.1 (Decomposition of Conditional Entropy). For n sufficiently large,

H(Xn|m(Xn)) = H(Xn|U0,n) ≈
n−1
∑

i=0

H(Xi|Ui,n). (70)

Proof: By the chain rule, we can get

H(Xn|U0,n) =
n−1
∑

i=0

H(Xi|U0,n, X
i)

(a)
=

n−1
∑

i=0

H(Xi|U0,n), (71)

June 17, 2016 DRAFT

22

where (a) is because Xn is the tuple of i.i.d. random variables. Further, because Ui,n is weakly

correlated with X i for n sufficiently large, it can be seen that U0,n, Ui,n, and Xi approximately

form a Markov chain. Thus, H(Xi|U0,n) ≈ H(Xi|Ui,n) for n sufficiently large.

Lemma VII.2 (Symbol-wise Rate Loss). Let h(·) denote the differential entropy. For n suffi-

ciently large, the rate loss of coding Xi with the (n,R) tailless DA code is

H(Xi|Ui,n)− (1−R) ≈ h(Ui+1,n)− h(Ui,n). (72)

Proof: It is easy to show that

H(Xi|Ui,n) =

∫ 1

0

f
(i)
n,R(u)H(Xi|Ui,n = u)du, (73)

where

H(Xi|Ui,n = u) = −
∑

x∈B

pi(x|u) log2 pi(x|u). (74)

By substituting (68) into (74), we obtain

f
(i)
n,R(u)H(Xi|Ui,n = u) = −f (i)

n,R(u)
∑

x∈B

pi(x|u) log2 pi(x|u)

= −
1

2

∑

x∈B

f
(i)
n,R(u|x)

(

log2 f
(i)
n,R(u|x)− 1− log2 f

(i)
n,R(u)

)

(a)
= f

(i)
n,R(u)

(

1 + log2 f
(i)
n,R(u)

)

−
1

2

(

∑

x∈B

f
(i)
n,R(u|x) log2 f

(i)
n,R(u|x)

)

,

(75)

where (a) comes from f
(i)
n,R(u) =

1
2

∑

x∈B f
(i)
n,R(u|x). Further,

H(Xi|Ui,n) = 1− h(Ui,n) +
1

2

∑

x∈B

h(Ui,n|Xi = x). (76)

According to the properties of differential entropy and (66), h(Ui,n|Xi = x) ≈ h(Ui+1,n) − R

for n sufficiently large. Hence,

H(Xi|Ui,n) ≈ 1− h(Ui,n) + h(Ui+1,n)−R

= (1−R) + (h(Ui+1,n)− h(Ui,n)). (77)

Since Xi is coded at rate R, the rate loss is (h(Ui+1,n)− h(Ui,n)) ≥ 0.

June 17, 2016 DRAFT

23

According to Lem. VII.2, it is obvious that h(Ui,n) is monotonically increasing w.r.t. i. Since

f
(i)
n,R(u) is defined over [0, 1), we have h(Ui,n) ≤ 0 and the equality holds iff Ui,n is uniformly-

distributed over [0, 1). Therefore, h(U0,n) ≤ · · · ≤ h(Un,n) ≤ 0. As (n− i) → ∞, both f
(i)
n,R(u)

and f
(i+1)
n,R (u) will converge to f

(0)
∞,R(u) and thus (h(Ui+1,n) − h(Ui,n)) → 0. Hence, for each

xn ∈ B
n, the symbols far from the end can be compressed near-losslessly with the (n,R) DA

code, and the rate loss comes mainly from ending symbols.

Theorem VII.3 (Block-wise Rate Loss). For n sufficiently large, the total rate loss of coding

Xn with the (n,R) tailless DA code is

H(Xn|m(Xn))− n(1−R) ≈ −h(U0,n). (78)

Proof: Based on Lems. VII.1 and VII.2, it is easy to obtain

H(Xn|m(Xn)) = H(Xn|U0,n) ≈ n(1−R) + h(Un,n)− h(U0,n). (79)

Since m(Xn) is represented by nR bits, the remaining uncertainty of Xn given m(Xn) is lower

bounded by H(Xn) − nR = n(1 − R). Thus, the total rate loss of coding Xn with the (n,R)

tailless DA code is H(Xn|m(Xn)) − n(1 − R) = h(Un,n) − h(U0,n). For n sufficiently large,

Un,n is almost uniformly distributed over [0, 1) and thus h(Un,n) ≈ 0.

B. Physical Meaning of Rate Loss

The rate loss of DA codes can be explained intuitively with an example. We first compress

Xn with the (n,R) DAC encoder to obtain bitstream m(Xn) and then compress Xn with the

standard AC encoder parameterized with the probability set {pi(x|u)} to obtain another bitstream

m̂(Xn). Obviously, the length of m(Xn) is always nR and the expected length of m̂(Xn) is

about n(1−R)−h(U0,n). Thus, the total length of m(Xn) and m̂(Xn) is about n−h(U0,n) > n.

It can be shown that the error-free recovery of Xn is achievable by the interaction between the

DAC decoder of m(Xn) and the standard AC decoder of m̂(Xn). First, according to U0,n, the

DAC decoder can obtain p0(x|u), which is used by the AC decoder to recover X0 exactly. Next

according to U0,n and X0, the DAC decoder can obtain U1,n and p1(x|u), which is then used

by the AC decoder to recover X1 exactly. Such operations are repeated until Xn−1 is recovered.

This example shows that Xn can be exactly represented by two bitstreams m(Xn) and m̂(Xn),

whose total length is slightly larger than H(Xn) = n.

June 17, 2016 DRAFT

24

C. Effects of Tail Length

Now we discuss the effect of tail length t on the ACC and rate loss of DA codes. The initial

CCS of the (n,R, t) tailed DA code is approximate to that of the (n − t, r) tailless DA code,

where r = nR−t
n−t

, so for the (n,R, t) tailed DA code, the ACC scaling factor is

η ≈

∫ 1

0

(

f
(0)
n−t,r(u)

)2

du (80)

and the rate loss is

−h(U0,n) ≈

∫ 1

0

f
(0)
n−t,r(u) log2 f

(0)
n−t,r(u)du. (81)

Note that f
(0)
n−t,r(u) is subject to two parameters, t and r, that depend on each other, so both η

and −h(U0,n) behave strangely w.r.t. t.

We discuss the case of t≪ nR first. Experiments show that f
(0)
n′,r(u) converges very fast as n′

increases, so f
(0)
n−t,r(u) ≈ f

(0)
∞,r(u) for t≪ nR. Thus given t≪ nR, the ACC and rate loss of the

(n,R, t) tailed DA code almost purely depends on r, the coding rate of body symbols. It is easy

to see that f
(0)
∞,r(u) tends to be spikier as r decreases. Two extreme cases are f

(0)
∞,1(u) = Π(u)

and f
(0)
∞,0(u) = δ(u− 0.5) [18]. Hence, both η and −h(U0,n) are monotonously decreasing w.r.t.

r. For example, in the extreme case of r = 1, we have η = 1 and −h(U0,n) = 0; while in the

other extreme case of r = 0, we have η = −h(U0,n) = ∞. Further, because r is monotonously

decreasing w.r.t. t, both η and −h(U0,n) of the (n,R, t) DA code are monotonously increasing

w.r.t. t ≪ nR. Thus, from the viewpoint of decoding complexity, increasing tail length t will

cause a negative effect.

Next we consider the case of t ≈ nR. According to the definition of r, for small (nR − t),

r is very sensitive to t, so f
(0)
n−t,r(u) cannot be approximated by f

(0)
∞,r(u). Instead, for t ≈ nR,

f
(0)
n−t,r(u) will tend to be flatter as t increases (cf. Fig. 5(a) in Sect. IX), meaning that both ACC

and rate loss will become smaller. In the extreme case of t = nR, we have f
(0)
n−t,r(u) ≈ Π(u),

η = 1, and −h(U0,n) = 0, hence the ACC is equal to 2n(1−R) and there is no rate loss. The

reason for this point is: When t = nR, xnn−t is transmitted in its uncoded form, while xn−t is

not transmitted. These analyses will be further verified by experiments in Sect. IX.

VIII. NUMERICAL CALCULATION OF ACC AND RATE LOSS

To obtain η and −h(U0,n), one must know f
(0)
n,R,t(u) first. Since f

(0)
n,R,t(u) ≈ f

(0)
n−t,r(u), where

r = nR−t
n−t

, for n sufficiently large, only f
(0)
n,R(u) is considered below. It is usually very complex to

June 17, 2016 DRAFT

25

calculate f
(0)
n,R(u) directly by (64) as it involves the convolution of a lot of terms, so we propose

a numerical algorithm below. To begin with, the interval [0, 1) is discretized into N equal-length

cells. For N sufficiently large, f
(i)
n,R(u) for u ∈ [0, 1) can be approximated by f

(i)
n,R(k/N), where

k ∈ [0 : N). For simplicity, f
(i)
n,R(k/N) will be abbreviated to f

(i)
n,R(k), while the meanings of

f
(i)
n,R(k|x) and pi(x|k) are similar. Initially, f

(n)
n,R(k) ≡ 1 for all k ∈ [0 : N). Let H = rnd(N2−R)

and L = (N −H). First, we calculate

f
(i)
n,R(k|x) =

f
(i+1)
n,R (rnd((k − xL)2R)), k ∈ {xL+ [0 : H)}

0, k ∈ {(1− x)H + [0 : L)}
. (82)

Then f
(i)
n,R(k|x) is normalized by

f
(i)
n,R(k|x) = Nf

(i)
n,R(k|x)

/

N−1
∑

k=0

f
(i)
n,R(k|x) . (83)

Next we obtain f
(i)
n,R(k) = 1

2

∑

x∈B f
(i)
n,R(k|x) and pi(x|k) = f

(i)
n,R(k|x)/(2f

(i)
n,R(k)). Finally, the

ACC scaling factor can be obtained through

η ≈
1

N

N−1
∑

k=0

(

f
(0)
n,R(k)

)2

(84)

and the block-wise rate loss can be obtained through

−h(U0,n) ≈
1

N

N−1
∑

k=0

f
(0)
n,R(k) log2 f

(0)
n,R(k). (85)

In fact, the above numerical algorithm is very similar to the one proposed in [18], except that

the clip operation, which bounds rnd((k − xL)2R) to be within [0 : N), is ignored in (82). Let

us first explain why the clip operation in (82) is unnecessary for the case of x = 0. In (82), if

x = 0, we have 0 ≤ rnd(k2R) ≤ rnd((H − 1)2R) for k ∈ [0 : H). Since H = rnd(N2−R),

we have (H − N2−R) ∈ (−0.5, 0.5] and further (H − 1) ≤ (N2−R − 0.5), which is followed

by (H − 1)2R ≤ (N − 2R−1). Since 2R−1 ∈ (0.5, 1) for R ∈ (0, 1), we have (N − 2R−1) ∈

(N − 1, N − 0.5). Therefore,

0 ≤ rnd(k2R) ≤ rnd((H − 1)2R) ≤ rnd(N − 2R−1) < N, (86)

showing that rnd(k2R) never goes beyond [0 : N) and thus the clip operation is unnecessary

in (82) when x = 0. As for the case of x = 1, the analysis is very similar, so it is omitted.

Removing the clip operation from (82) will reduce the computational complexity.

June 17, 2016 DRAFT

26

TABLE I

EXAMPLES OF ψn,R(n)

R 1/6 2/6 3/6 4/6 5/6

Experimental 0.7089 0.1406 0.0267 0.0077 0.0011

(32) 0.3826 0.0689 0.0133 0.0031 0.0004

(37) 0.7065 0.1377 0.0269 0.0059 0.0010

IX. EXPERIMENTAL RESULTS

This section presents four experiments to verify the above analysis from different aspects. We

use the first experiment to verify the correctness of (37), the refined formula for ψn,R(n). Then

some examples of the HDS of tailed DAC are given. Next, we show how ψn,R(d) for small d

varies w.r.t. tail length t. Finally, some examples are given to illustrate how the ACC and rate

loss of tailed DA codes varies w.r.t. tail length t.

A. Refined Formula for ψn,R(n)

Table I gives some examples of ψn,R(n) for n = 12 and t = 0. The experimental results are

obtained by a real 32-bit DAC codec through the method described in [20]. According to (39),

the principle of the method in [20] is to generate a lot of source blocks and count the number of

source blocks xn’s whose s(xn)’s fall within ((2nR−1 − 1), 2nR−1). Let ntries be the number of

trials. According to the central limit theorem, for ntries sufficiently large and ψn,R(n) not too

near to 0 or 1, the experimental result of ψn,R(n) averaged over ntries trials approximately obeys

the normal distribution N (µ, σ2), where µ = ψn,R(n) and σ2 =
ψn,R(n)(1−ψn,R(n))

ntries
≤ 1

4∗ntries
. As

ntries increases, σ2 will go down and when ntries = 104, σ ≤ 1/200. According to the 3-

sigma rule, when ntries = 104, the probability that the experimental result of ψn,R(n) falls

within (ψn,R(n)− 3/200, ψn,R(n)+ 3/200) is larger than 99.7%. Thus, each experimental result

in Tab. I, which is the average over 104 trials, is statistically solid.

In Table I, (32) gives exactly the same results of ψn,R(n) as reported in [20], while (37)

gives the refined results of ψn,R(n). It can be seen that the results of ψn,R(n) obtained from

(37) are very close to those results obtained from the real DAC codec. It can also be seen that

the results of ψn,R(n) obtained from (32) are roughly half of those results obtained from the

June 17, 2016 DRAFT

27

2 4 6 8 10 12
0

5

10

15

20

d

ψ
n
,R
(d
)

n = 12, R = 0.5

t = 0
t = 2
t = 4
t = 6

(a)

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

d

ψ
n
,R
(d
)

n = 12, R = 0.75

t = 0
t = 3
t = 6
t = 9

(b)

Fig. 3. Examples of DAC HDS for different tail lengths, where code length n = 12. The results are obtained by (32) with

refined ψn,R(n) using (37). (a) R = 0.5. (b) R = 0.75.

real DAC codec. Similar results are also obtained for other settings of n and R. These findings

convincingly support the correctness of (37) and the analysis in Subsect. IV-C.

Another finding from Tab. I is that ψn,R(n) is monotonically decreasing w.r.t. R. As R → 0,

f
(0)
n,R(u) will tend to δ(u− 0.5), so ψn,R(n) will tend to 1; while as R → 1, f

(0)
n,R(u) will tend to

Π(u), so ψn,R(n) will tend to 0.

B. HDS of Tailed DAC

The second experiment studies the effect of tail length t on the HDS of DA codes. Some

examples are given in Fig. 3, where code length n = 12. The results in Fig. 3 are obtained by

(32) with refined ψn,R(n) using (37). In Fig. 3(a), we set R = 0.5 and thus t ∈ [0 : nR] = [0 : 6].

In Fig. 3(b), we set R = 0.75 and thus t ∈ [0 : nR] = [0 : 9]. It can be seen that, as t increases

(not very near to bitstream length nR), ψn,R(d) will tend to be smaller (and even become 0 in

some cases) for small d but tend to be larger for large d. Note that the HDS when t = nR is

very different from the HDS’s in other cases. Thus, the correctness of (44) is verified.

C. Closely-Spaced Fellow Codewords

The third experiment studies the effect of tail length t on ψn,R(d) for small d. Two examples

are given in Fig. 4, where code length n = 64 and code rate R = 0.5 or 0.75. The results in Fig.

June 17, 2016 DRAFT

28

0 5 10 15 20 25 30
0

1

2

3

4

5

t

ψ
n
,R
(d
)

n = 64, R = 0.5

d = 1
d = 2
d = 3

(a)

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

ψ
n
,R
(d
)

n = 64, R = 0.75

d = 1
d = 2
d = 3

(b)

Fig. 4. Effect of tail length on ψn,R(d) for small d, where n = 64. The results are obtained by (32). (a) R = 0.5. (b)

R = 0.75.

4 are obtained by (32). It can be seen that in general, ψn,R(d) for small d tends to be smaller

as t increases, implying that closely-spaced fellow codewords can be removed by increasing

tail length t (not very near to bitstream length nR). However, it must be pointed out that the

decrease of ψn,R(d) for small d w.r.t. t is not strictly monotonous, so tail length t should be

carefully chosen in practice to optimize the overall performance.

D. Average Codebook Cardinality and Rate Loss

The last experiment studies the effect of tail length t on the ACC and rate loss of DA codes.

Since both ACC and rate loss are closely related to the initial CCS, some examples of f
(0)
n,R,t(u)

are given in Fig. 5(a), where n = 64 and R = 0.5. By comparing the curve of t = 0 with the

curve of t = (nR− 3), it can be seen that for t not very close to nR, f
(0)
n,R,t(u) does tend to be

spikier as t increases. However, as t approaches nR, there is an opposite trend, i.e., f
(0)
n,R,t(u)

tends to be flatter. In the extreme case of t = nR, f
(0)
n,R,t(u) is uniform over [0, 1).

Correspondingly, some examples of (η−1) and −h(U0,n) versus t are given in Fig. 5(b), where

n = 64 and R = 0.5. Note that η and −h(U0,n) are obtained by (84) and (85), respectively. It can

be seen that, for t not very near to nR, both η and −h(U0,n) will go up as t increases, meaning

a higher decoding complexity and a larger rate loss. This is the negative effect of increasing tail

length. As t approaches nR, there is an opposite trend: Both η and −h(U0,n) will go down. In

June 17, 2016 DRAFT

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

u

f
(0
)

n
,R
,t
(u
)

n = 64, R = 0.5, N = 4096

t = 0
t = nR− 3
t = nR− 2
t = nR− 1
t = nR

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

n = 64, R = 0.5, N = 4096

η− 1

−h(U0,n)

(b)

Fig. 5. Examples of initial CCS, ACC scaling factor, and rate loss of DA codes, were n = 64 and R = 0.5. The results are

obtained by the numerical algorithm given in Sect. VIII with cell number N = 4096. (a) Initial CCS of DA codes versus tail

length. (b) ACC scaling factor and rate loss of DA codes versus tail length.

the extreme case of t = nR, η = 1 and −h(U0,n) = 0. The reason is: When t = nR, Xn(1−R)

is not transmitted, while Xn
n(1−R) is transmitted in its uncoded form, so there is no rate loss for

uniform binary sources. However, as shown by (44) and Fig. 3, the HDS is indeed a binomial

function when t = nR, so DAC’s performance is very poor in this case.

X. CONCLUSION

This paper discusses the effect of tail length on DA codes from two aspects: HDS and CCS.

Both exact and approximate HDS formulas are derived for tailless DAC and extended to tailed

DAC. It is revealed that closely-spaced fellow codewords can be removed by increasing tail length

to a value not near to bitstream length, which explains the superiority of tailed DAC over tailless

DAC. On the basis of CCS, the ACC and rate loss of tailed DAC are derived and it is shown

that increasing tail length to a value not near to bitstream length will raise decoding complexity

and rate loss. These findings indicate that increasing tail length will usually bring both positive

(removing closely-spaced fellow codewords) and negative (raising decoding complexity and rate

loss) effects, so tail length should be selected carefully to optimize the overall performance.

However, it is also found that the effects of tail length are sometimes surprising, e.g., ψn,R(d)

for small d may not be strictly decreasing w.r.t. t. Thus, optimizing tail length of DA codes is

a very difficult open issue in practice that will be tackled in the future.

June 17, 2016 DRAFT

30

REFERENCES

[1] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM J. Research & Development, vol. 20, no. 3, pp.

198–203, May 1976.

[2] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compression,” Commun. of the ACM, vol. 30, no. 6, pp.

520–540, Jun. 1987.

[3] M. Grangetto, E. Magli, and G. Olmo, “Distributed arithmetic coding,” IEEE Commun. Lett., vol. 11, no. 11, pp. 883–885,

Nov. 2007.

[4] M. Grangetto, E. Magli, and G. Olmo, “Distributed arithmetic coding for the Slepian-Wolf problem,” IEEE Trans. Signal

Process., vol. 57, no. 6, pp. 2245–2257, Jun. 2009.

[5] D. Slepian and J. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inform. Theory, vol. 19, no.

4, pp. 471–480, Jul. 1973.

[6] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources using turbo codes,” IEEE Commun. Lett., vol. 5,

no. 10, pp. 417–419, Oct. 2001.

[7] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of binary sources with side information at the decoder using

LDPC codes,” IEEE Commun. Lett., vol. 6, no. 10, pp. 440–442, Oct. 2002.

[8] M. Grangetto, E. Magli, and G. Olmo, “Security applications of distributed arithmetic coding,” in: Proc. 18th European

Signal Process. Conf. (EUSIPCO-2010), pp.2151–2155, Aalborg, Denmark, Aug. 23–27, 2010.

[9] X. Artigas, S. Malinowski, C. Guillemot, and L. Torres, “Overlapped quasi-arithmetic codes for distributed video coding,”

in: Proc. IEEE ICIP, 2007, vol. II, pp. 9–12.

[10] S. Malinowski, X. Artigas, C. Guillemot, and L. Torres, “Distributed coding using punctured quasi-arithmetic codes for

memory and memoryless sources,” IEEE Trans. Signal Process., vol. 57, no. 10, pp. 4154–4158, Oct. 2009.

[11] X. Chen and D. Taubman, “Distributed source coding based on punctured conditional arithmetic codes,” in: Proc. IEEE

ICIP, pp. 3713–3716, Sep. 2010.

[12] X. Chen and D. Taubman, “Coupled distributed arithmetic coding,” in: Proc. IEEE ICIP, pp. 341–344, Sep. 2011.

[13] J. Zhou, K. Wong, and J. Chen, “Distributed block arithmetic coding for equiprobable sources,” IEEE Sensors Journal,

vol. 13, no. 7, pp. 2750–2756, Jul. 2013.

[14] M. Grangetto, E. Magli, R. Tron, and G. Olmo, “Rate-compatible distributed arithmetic coding,” IEEE Commun. Lett.,

vol. 12, no. 8, pp. 575–577, Aug. 2008.

[15] M. Grangetto, E. Magli, and G. Olmo, “Distributed joint source-channel arithmetic coding,” in: Proc. IEEE Int’l Conf.

Image Process. (ICIP), 2010, pp. 3717–3720.

[16] Y. Keshtkarjahromi, M. Valipour, and F. Lahouti, “Multi-level distributed arithmetic coding with nested lattice quantization,”

in: Proc. IEEE Data Compression Conference (DCC), pp. 382–391, Mar. 26–28, 2014.

[17] Z. Wang, Y. Mao, and I. Kiringa, “Non-binary distributed arithmetic coding,” in: Proc. IEEE 14th Canadian Workshop

Inform. Theory (CWIT), pp. 5–8, Jul. 2015.

[18] Y. Fang, “DAC spectrum of binary sources with equally-likely symbols,” IEEE Trans. Commun., vol. 61, no. 4, pp.

1584–1594, Apr. 2013.

[19] Y. Fang and L. Chen, “Improved binary DAC codec with spectrum for equiprobable sources,” IEEE Trans. Commun., vol.

62, no. 1, pp. 256–268, Jan. 2014.

[20] Y. Fang, V. Stankovic, S. Cheng, and E.-H. Yang, “Hamming Distance spectrum of DAC codes for equiprobable binary

sources,” IEEE Trans. Commun., vol. 64, no. 3, pp. 1232–1245, Mar. 2016.

June 17, 2016 DRAFT

